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Abstract: AI provides a new method for massive simulated data calculations in molecular dynamics,
materials, and other scientific computing fields. However, the complex structures and large-scale
parameters of neural network models make them difficult to develop and train. The automatic parallel
technology based on graph algorithms is one of the most promising methods to solve this problem,
despite the low efficiency in the design, implementation, and execution of distributed parallel policies
for large-scale neural network models. In this paper, we propose an adaptive distributed parallel
training method based on the dynamic generation of critical DAG (directed acyclic graph) paths,
called FD-DPS, to solve this efficiency problem. Firstly, the proposed model splits operators with the
dimension of the tensor, which can expand the space available for model parallelism. Secondly, a
dynamic critical path generation method is employed to determine node priority changes in the DAG
of the neural network models. Finally, the model implements the optimal scheduling of critical paths
based on the priority of the nodes, thereby improving the performance of parallel strategies. Our
experiments show that FD-DPS can achieve 12.76% and 11.78% faster training on PnasNet_mobile
and ResNet_200 models, respectively, compared with the MP-DPS and Fast methods.

Keywords: deep learning; model parallel; auto-parallel; dynamic critical path; DAG

MSC: 68T05

1. Introduction

AI technology is gradually being applied to scientific computing scenarios that need
to deal with massive amounts of data, such as molecular dynamics, materials, petroleum,
gene sequencing, and whole-brain computing simulations. AI technology provides a new
method for scientific computing. For example, it has high accuracy in calculating inter-
atomic interaction forces using first-principles density functional theory (DFT), but it can
only handle a water system with 1000 atoms [1,2]. Lu et al. [3] proposed the DeepMD-kit
model, which can handle a water system with up to 1 billion atoms using AI. In biology,
Jumper et al. [4] proposed AlphaFold to predict protein structures. Their model obtained
an accuracy of 98% whereas the traditional co-evolutionary algorithm (co-evolution) [5]
obtains a prediction accuracy of only 83%. It can, therefore, be seen that deep learning
methods can effectively process massive amounts of data in molecular dynamics, protein
simulation, and other scientific computing scenarios.

However, the complex structure and large-scale parameters of deep learning models
present serious challenges. The number of parameters in a deep learning model can
reach hundreds of millions or even trillions; for example, Alphfold [4] has 2100 million
parameters, ESMFold [6] has 15 billion parameters, and GPT-3 [7] has 175 billion parameters.
With limited resources, a single device cannot handle models of this size. Distributed
parallel technology using multiple devices has become a popular method for training
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large-scale deep learning models. It divides the large-scale model into multiple submodels
and then assigns these submodels to multiple devices for parallel execution. This process is
called Model Parallelism. At present, the design and implementation of model parallelism
mainly rely on expert experience. For example, Wu et al. [8] and Sutskever et al. [9]
proposed a model parallelism method that splits a model into partitions horizontally and
vertically across layers and then processes each partition on different devices. Sun et al. [10]
utilized an explore–exploit framework to divide the DNNs dynamically. Ballard et al. [11]
adopted a tensor segmentation method to implement intra-node parallelism. For these
methods, we need to redesign the implementation of the model parallelism method when
the model architecture or device environment changes. In addition, these methods need a
lot of field experience and time.

In order to improve the efficiency of model parallelism, including the efficiency
of design, implementation, and execution of deep learning models, many researchers
have proposed auto-parallel methods, which can automatically search and tune the dis-
tributed parallel strategies and provide end-to-end adaptive distributed training solutions
for deep learning models. There are two main types of auto-parallel methods: one is
the auto-parallel method based on machine learning, such as Placeto [12], HeterPS [13],
RIFLING [14], etc., and the other is the auto-parallel methods based on graph algorithms,
such as TensorOpt [15], Alpa [16], Unity [17], and so on. Auto-parallel methods based on
machine learning rely on iteratively searching for learning and feedback, which requires
high time and resource costs. Conversely, auto-parallel methods based on graph algorithms
rely on the graph search algorithm to find the optimal strategy, which requires less time and
resources than the auto-parallel method based on machine learning, although it requires
more information about the model structure and device topology.

This paper focuses on the problem of the low efficiency of auto-parallel methods based
on graph algorithms caused by complex model structures and device topologies. The
existing methods, such as OptCNN [18], Tofu [19], FastT [20], and MP-DPS [21], ignore
the effect of dynamic environment changes on the parallel execution of the model in their
search for distributed parallel strategies for deep learning models. It is therefore difficult
to obtain an optimal distributed parallel strategy with these methods. To address this
problem, we propose a method based on a DAG dynamic critical path called FD-DPS that
can dynamically search for the distributed parallel strategy according to the changes in the
environment. Our contributions are as follows:

• We analyze the factors, such as communication, memory, and computation, which can
affect the parallel execution efficiency of the deep learning model and construct a multi-
dimensional performance cost model with iterative and linear regression algorithms
to describe the parallel execution performance of the model at a fine granularity.

• We propose a dynamic critical path generation method to determine node priority
changes in the DAG of the neural network models, which can capture the effects of
dynamic environments on the model’s performance.

• We propose a critical path optimization scheduling method based on node priority in
the DAG to dynamically search for an optimal distributed parallel strategy for a deep
learning model.

The rest of this paper is structured as follows: In Section 2, we present the related
work of our research. In Section 3, we define the problem to be solved in this paper. Then,
we propose a critical path optimization scheduling method based on node priority in DAG
in Section 4. Finally, we evaluate our approach and provide conclusions in Sections 5 and 6,
respectively.

2. Related Work

The application of AI has become an inevitable trend in science, and deep learning
models in particular are widely used to process large-scale data in atmospheric science,
high-energy physics, biological science, etc. [22]. Moreover, distributed parallel methods
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are popularly used to speed up the training of deep learning models as the sizes of datasets
are incessantly increasing and model complexity is continuously rising.

2.1. AI for Science

Artificial intelligence has been heavily applied in various scientific computing scenar-
ios. For example, in atmospheric science, Collins et al. [23] designed the thunderstorm
neural network model, TANN, which was capable of forecasting the likelihood of thunder-
storms in a region several hours in advance, and the accuracy of this model is significantly
better than traditional prediction methods. In the field of physics, Negoita et al. [24] pro-
posed a feed-forward artificial neural network (ANN) method as an extrapolation tool to
obtain the ground-state energy and the ground-state point-proton root-mean-square (RMS)
radius along with their extrapolation uncertainties, which is very useful for estimating the
converged result at very large Nmax through demonstration applications in 6Li. In the
field of astronomy, Armstrong et al. [25] used machine learning methods to validate 50
new Keplerian planets, and Chan et al. [26] proposed Deep-CEE, a deep learning model
that was directly applied to wide-field color imaging to search for galaxy clusters without
photometric catalogs. In the field of molecular dynamics, Lu et al. [3] presented the GPU
version of DeePMD-kit, which, upon training a deep neural network model using ab initio
data, can drive extremely large-scale molecular dynamics (MD) simulations with ab initio
accuracy. The unprecedented ability to perform MD simulation with ab initio accuracy
creates new possibilities for studying many important issues in materials and molecules.
In the field of bioinformatics, Jumper et al. [4] proposed the transformer-based AlphaFold
model for predicting protein structures, which achieved great improvements in prediction
accuracy. Although AI has been widely used, its computational efficiency is still a problem
that needs to be solved in the face of large amounts of data.

We present the AI models typically used in science in Table 1.

Table 1. Typical AI Models for Science.

Model Field Contribution

TANN [23] Atmospheric science Forecast the likelihood of thunder-storms in a region
several hours in advance.

ANN [24] Physics Obtain the ground-state energy and the ground-state
point-proton RMS radius along with their extrapolation
uncertainties.

VESPA [25] Astronomy Validate 50 Keplerian plane.
Deep-CEE [26] Astronomy Search for galaxy clusters without photometric catalog.
DeePMD-kit [3] Molecular dynamics Drive large-scale molecular dynamics simulation with

ab initio accuracy.
AlphaFold [4] Bioinformatics Predict protein structure.

2.2. Distributed Parallel Method for Deep Learning Model

There are two main types of distributed parallel methods for deep learning models:
distributed parallel methods based on expert experience and automatically distributed
parallel methods based on machine learning or graph algorithms.

Distributed parallel methods based on expert experience. Initially, the parallel
approach to deep learning models was based on expert experience. Wu et al. [8] and
Sutskever et al. [9] constructed the LSTM, Attention, and SoftMax separately to achieve a
distributed parallel training strategy for a more complex model. Sun et al. [10] proposed a
random partition based on the backbone network exploration. Ballard et al. [11] introduced
matrix segmentation, which implemented matrix multiplication inside the operator with
fine-grained parallelism and improved the parallel efficiency of the model. These methods
are based on expert experience and require developers to be very familiar with AI, dis-
tributed and parallel computing, system architecture, and so on. Therefore, designing an
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optimal distributed parallel strategy for deep learning models is very difficult as it requires
mastery of the knowledge presented above.

Automatically distributed parallel methods. Automatic parallelism automatically
searches for and tunes distributed parallel strategies and provides end-to-end adaptive
distributed training solutions for deep learning. Reinforcement learning is an excellent
method to minimize the computing graph’s execution time by automatically searching
the distributed parallel strategy for networks. Hao et al. [27] proposed AutoSync, which
employs machine learning (ML) to predict the execution time of training and is used
to guide the search for the automatically distributed parallel strategy. However, it only
worked for data parallelism. Google [28] proposed the automatic parallel framework
REINFORCE, which applies the actual execution time as a penalty factor on LSTM models
to update the automatically distributed parallel strategy. However, it is expensive in
terms of computing resources and search time. Placeto, proposed by Addanki et al. [12],
improved on REINFORCE by capturing the computational graph structure and inter-node
dependencies of a model and generalizing the distributed parallel strategy for the models
with a similar structure without retraining. Simultaneously, the above methods are all based
on the iterative search of learning, and they require a large amount of time to complete
their search for the optimal distributed parallel strategy.

In order to minimize the time costs of reinforcement learning, the graph-based au-
tomatic parallel method has become another research hotspot. Dynamic programming
and graph search algorithms can automatically and efficiently search for the optimal par-
allel strategy with high execution performance. Jia et al. proposed FlexFlow [29] and
OptCNN [18], which both establish a high-dimensional search space in a given cluster
environment and build a performance evaluation model to guide the search for an optimal
parallel strategy in dynamic programming. Tofu [19] adopts recursive segmentation and
graph coarsening based on OptCNN, which reduces the search time for the distributed
parallel strategy and improves the scalability of the models. The above methods are limited
by their use of coarse-grained hierarchical division. In order to improve the efficiency,
Yi et al. [20] proposed a DAG scheduling-based algorithm called FastT, which adopted
fine-grained static operator priority and the critical path to place and schedule operators.
MP-DPS [21] proposed a deep learning adaptive distributed parallel method based on
node merging and path prediction, which could significantly reduce the search time and
has better scalability. However, these methods ignored the dynamic resources during
training and could not be applied in dynamic RNNs. In addition, Alpa [16] applied in-
teger linear programming to intra-operator parallelism and dynamic programming to
inter-operator parallelism.

The summary of the above methods is shown in Table 2.
However, the above methods have the following problems:

• The performance evaluation does not take into account the structural characteristics
of large deep learning models. As a result, different parallel dimensions (such as
parameters, samples, operators, etc.) will influence each other in terms of performance
optimization when submodels are combined and executed in parallel.

• The search for the distributed strategy of DNNs is an NP-hard problem. Because
the search space increases exponentially with the increase in the number of layers or
operators in the network, the performance of searching and executing the distributed
parallel strategy for large-scale complex deep neural networks is low.

Based on the above problems, this paper focuses on the auto-parallel method with intra-
operator parallelism and dynamic critical paths to search for a distributed parallel strategy.



Mathematics 2022, 10, 4788 5 of 21

Table 2. Distributed Parallel Methods.

Method Work Contribution

Distributed parallel method
based on expert experience

GNMT [8], Seq2Seq [9] Place the LSTM, Attention, and SoftMax on different devices.
Slim-DP [10] Random partition based on backbone network exploration.

RSB [11] Matrix multiplication inside the operator.

Automatically distributed
parallel method

AutoSync [27] Employ machine learning to find the distributed strategy.
REINFORCE [28] Update the distributed strategy by real execution time.

Placeto [12] Placeto generalizes distributed strategy by capturing model structure
with reinforcement.

FlexFlow [29] Build a performance evaluation model to guide the optimal parallel
strategy search in dynamic programming.

OptCNN [18] Build a performance evaluation model to guide the optimal parallel
strategy search in dynamic programming.

Tofu [19] Adopt recursive segmentation and graph coarsening based on OptCNN.

FastT [20] Adopt fine-grained operator priority and the critical path to place and
schedule operators.

MP-DPS [21] Find the distributed strategy based on node merging and path prediction.

Alpa [16] Apply integer linear programming to intra-operator parallelism and
dynamic programming to inter-operator parallelism.

3. Problem Definition

The deep learning model is composed of multiple operators, such as pooling, convolu-
tion, etc. As different operators can be executed independently on different devices, the
number of distributed parallel policies for deep learning models grows exponentially with
the increase in the number of operators or layers. It was proven that finding an optimal
distributed parallel policy in a deep learning model is an NP-hard problem in [30]. In this
paper, we reduce this problem to a problem of finding the optimal path in a DAG based
on [31].

Firstly, we use the computational graph to represent the network model, including
operator types, the dependence of operators, the structure of models, etc. We use the device
cluster’s topology to represent the device cluster, including device types, the link between
devices, computing resources, and so on. The definitions are as follows:

Definition 1 (Computational Graph). Define the computational graph of the deep learning model
as G(O, E), where O represents an operator set, and node oi ∈ O represents an operator (e.g., matrix
multiplication, convolution). E is the set of directed edges between nodes, which represents the data
dependency between operators. ∀e(i,j) = (oi, oj) ∈ E constrains the execution order of operators oi
and oj, which means the operator oi is executed before the operator oj.

Definition 2 (Device Cluster Topology). According to the information of the device cluster, we
define the device cluster topology as D(V, E), where node vi ∈ V represents the i-th device (e.g.,
CPU, GPU) in the device cluster and edge eij = (vi, vj) ∈ E represents the link between device vi
and device vj (the connection type can be NVLink, PCI-E, or others).

Then, we define a multi-dimensional cost model to evaluate the performance of differ-
ent operators on different devices, including memory, computation, and communication.
Computation, communication, and memory are key performance factors of the distributed
parallel execution of the deep learning model:

• Computation: The difference in operators (e.g., convolution and dot product) and the
heterogeneity of devices will lead to different execution times when different operators
execute on different devices. As a result, the real execution time of operators on each
device is an important role in device selection.

• Communication: If the communication time consumed by parameter synchroniza-
tion between operators is too large, the communication cost brought by distributed
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parallelism will reduce the parallel performance. Therefore, it is necessary to reduce
communication costs as much as possible.

• Memory: Large-scale memory access will affect the device response time. Therefore,
it is necessary to balance the model parameters of each device to reduce the device
memory cost and speed up the device response time.

According to the above analysis, we fully consider the balance of computation, commu-
nication, and memory in the distributed parallel method and construct a multi-dimensional
cost model based on these factors. The existing distributed parallel methods always con-
sider one or two of these performance indicators, but they cannot evaluate the distributed
execution performance of the deep learning models at a fine granularity. The definitions of
computation cost, communication cost, and memory cost are as follows[21].

Definition 3 (Computation Cost). Define the end execution time minus the start execution time
of the operator oi on the device v as the computational cost E(i,v). The computation cost model is
as follows:

Ei,v = C(oend
i,v − ostart

i,v ) (1)

where ostart
i,v and oend

i,v represent the start time and end time of operator oi on device v, C denotes
iterative averaging.

Definition 4 (Communication Cost). Define the communication time between operators oi and
oj as communication cost Ci,j. The communication cost model is as follows:

Ci,j = f (
A(T)

bi,j
) + θB (2)

where f represents the linear iterative relationship andA(T) represents the tensor for communication
between oi and oj. bi,j represent the communication bandwidth between devices. θB denotes the
regular linear regression term.

Definition 5 (Memory Cost). Define the memory occupied by the operator parameters on the
device v to the total memory of the device v as memory cost Mv. The memory cost model is as follows:

Mv =
∑A(T)

mv
(3)

where ∑A(T) represents the sum of the parameter tensor in device v, and mv denotes the total
memory of device v.

Based on Definitions 3–5, the multi-dimensional cost model can be defined as Definition 6.

Definition 6 (Multi-dimensional Cost Model). The performance of the distributed parallel
strategy is characterized by three dimensions (computational cost, communication cost, and memory
cost). Using these dimensions, we can build a multi-dimensional performance cost model Ecost,
which can automatically search for optimal distributed parallel strategies:

Ecost = ∑
i∈G

(Ei,v + Ci,j) s.t.Mv < C, ∀v ∈ V (4)

where C represents a given constraint (e.g., controlling the device’s memory footprint by set-
ting the device’s memory peak). A smaller value of Ecost represents a better-distributed parallel
strategy performance.

Finally, we can construct a graph search space in Definition 7 for a given deep learning
model and a device cluster according to the computational graph, the device cluster
topology, and the multi-dimensional cost model.
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Definition 7 (Graph Search Space). Define T(O′, E′, V′, W) as a graph search space, where
node oi ∈ O′ represents an operator oi (e.g., convolution or dot product) with attributes, such
as the computing time. The node vk ∈ V′ represents a device vk (e.g., CPU or GPU), and each
device node contains attributes, such as the device’s total memory capacity Pk and memory cost.
Edge eij = (oi, oj) ∈ E′ represents the dependency between operators oi and oj. w(oik, ojl) ∈ W
represents the communication time between the operator oi and the operator oj, where oi is executed
on vk and oj is executed on vl .

The method of constructing the graph search space T(O′, E′, V′, W) is as follows:

• Construct the operator vertex set O′. For every operator oi ∈ O in G(O, E), we collect
the historical execution time of an operator oi on a given device to predict the execution
time of the operator oi on the same type of device and assign the execution time as a
property to the operator oi, and we mark the operator with the property as o′i ∈ O′.

• Construct the device vertex set V′. For every device node v ∈ V in D(V, E), we take
the memory usage Mv as the dynamic attribute of the device node v, and we mark the
operator with the dynamic attribute as v′ ∈ V′.

• Construct edge set E′. Based on the edge set E in G(O, E) and the device vertex set V′,
for the edge ∀ei,j = (oi, oj) ∈ E, we take the communication time w(oik, ojl) ∈W as its
weight. The edge with communication cost is marked as e′i,j = (oi, oj) ∈ E′.

Based on the graph search space T(O′, E′, V′, W), an assignment of an operator to a
device is called a schedule, which is denoted by a map S : O→ V, where O is the operator
set and V is the device set. Accordingly, if the predecessor and successor of the current
operator have been scheduled, the communication cost between them can be determined,
which is also represented by a map Q : E → C, where E is the edge set and C is the cost
corresponding to the edges. The distributed parallel strategy search problem of the deep
learning model can be transformed into an optimization problem as follows [21]:

π(S,Q) := arg min
π(S,Q)

(Ecost(π(S,Q)); T) s.t.C (5)

where C represents a given constraint (e.g., controlling the device’s memory footprint by
setting the device’s memory peak) and π(S,Q) represents the optimal distributed parallel
strategy. As Formula (5) shows, given a graph search space T(O′, E′, V′, W), we need to
find a distributed parallel strategy π(S,Q) with the smallest Ecost. When the execution time
of the deep learning model is the shortest (i.e., Ecost has the smallest value), the distributed
parallel strategy π(S,Q) is optimal.

4. FD-DPS Method

To solve the problem in Section 3, this section proposes an adaptive distributed
parallel training method based on the dynamic generation of critical DAG paths, called
FD-DPS (Figure 1). Firstly, FD-DPS implements intra-operator parallelism with a tensor
dimension to build a graph search space with fine granularity according to operator
attributes (Figure 1a). Secondly, it finds critical nodes and generates dynamic critical paths
to determine node priority changes in the DAG of neural network models, which can
capture the effect of the dynamic environment on model execution performance (Figure 1b).
Finally, it implements the optimal scheduling of dynamic critical paths based on node
priority to dynamically search for an optimal distributed parallel strategy for deep learning
models (Figure 1c). The specific implementation method is as follows.
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Figure 1. Architecture of FD-DPS Method.

4.1. Intra-Operator Parallelism with Tensor Dimension

With the increase in complexity and scale of a model, the parallelization of the opera-
tors in the model can improve the efficiency of the model’s training. Jeon et al. [32] exploited
the potential parallelism of a single operator, which implements the intra-operator paral-
lelism by splitting the dimensions of matrices. Intra-operator parallelism based on tensor
dimensions is a finer-grained parallel method, which can determine different parallelizable
dimensions according to the operator attributes. Operator segmentation is idempotent, so
it will not cause the loss of model accuracy.

Computationally intensive operators will affect the end-to-end execution performance
of the model because of their high computational costs. In this section, for the computa-
tionally intensive operators in DNNs, we adopt intra-operator parallelism based on tensor
dimensions. Firstly, the specified axis of the input of computationally intensive operators
is partitioned. Then, these partitions are assigned to different devices to compute disjoint
subsets of the original operator’s output tensors. According to the different partition speci-
fications of tensor dimensions, operator parallelism can be classified as data parallelism or
model parallelism.

Taking Conv1D as an example, Figure 2a shows the data parallelism for the convo-
lution operator. The input is assigned to two devices by splitting the axis of the batch
size. Each device executes Conv1D using the entire convolution kernel tensor and one of
the sub-matrices to calculate the output tensor of the corresponding batch. The result of
the original operator is collected from the outputs on the two devices. Figure 2b shows
the model parallelism for the convolution operator. The input and convolution kernel are
assigned to two devices by splitting the axis of the channel. Each device executes Conv1D
using part of the convolution kernel tensor and one of the sub-matrices to calculate the
output tensor of the corresponding channel. The result of the original operator is also
gathered from the outputs on the two devices.
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Figure 2. Schematic Diagram of intra-operator parallelism.

4.2. Generation of Dynamic Critical Path

Intra-operator parallelism makes the graph search space more complex than inter-
operator parallelism. Simultaneously, as operators are dynamically scheduled to be exe-
cuted on different devices, the available devices of the cluster will change dynamically. In a
DAG, the critical path is the path with the most expensive cost from the entry node to the
exit node, which determines the maximum end-to-end execution time of the computational
graph. The dynamic environment will lead to changes in the critical path of the compu-
tational graph, which affects the end-to-end execution time of the computational graph.
For the DAG graph, this paper adaptively generates critical paths based on the dynamic
scenarios and guides the placement of nodes in the device.

To implement the above method, we introduce the concepts of the earliest start time
(EST), latest start time (LST), critical node (CN), critical path (CP), and node priority (NP)
based on [20]. Their definitions are as follows:

Definition 8 (Earliest Start Time). The earliest start time (EST) of node oi on device vk is the
earliest time when oi can start the execution in the entire computational graph. It can be defined as
Formula (6):

EST(oi, vk) = max
oj∈pred(oi)

{EST(oj, vl) + ET(oj, vl) + w(oik, ojl)} (6)

where ET(oj, vl) represents the execution time of node oj on device vl and w(oik, ojl) represents the
communication cost between oi on vk and oj on vl . The EST of the entry node EST(oentry, v1) = 0.
According to Formula (6), the EST can be calculated by traversing the computational graph in a
breadth-first search method starting from oentry.
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Definition 9 (Latest Start Time). The latest start time (LST) of node oi on device vk is the latest
time when oi can start execution without delaying the execution of the entire computational graph.
It can be defined as Formula (7):

LST(oi, vk) = min
oj∈succ(oi)

{LST(oj, vl)− ET(oj, vl)− w(oik, ojl)} (7)

where the latest start time of the exit node LST(oexit, ve) is the total time for the execution of the
critical path. Similar to the calculation of the EST, the LST can also be calculated by traversing the
inverse computational graph in a breadth-first search method.

Definition 10 (Critical Node). The node on the critical path is the critical node. In the DAG, if the
EST and LST of node oi on device vk satisfy EST(oi, vk) = LST(oi, vk), node oi is a critical node:

CN(oi) =

{
true, i f EST(oi, vk) = LST(oi, vk)

f alse, otherwise
(8)

Definition 11 (Critical Path). Define the path from the entry node oentry to the exit node oexit in
the DAG that satisfies the maximum cost (the computational cost and the communication cost) as
the critical path (CP).

Definition 12 (Node Priority). Node priority refers to the importance of a node during scheduling.
The smaller the difference between the EST and LST of a node is, the greater the impact is on the
end-to-end execution time of the critical path and the greater the priority of the node is. The node
priority of oi is expressed by Formula (9):

Score(oi) = 1/(LST(oi, vk)− EST(oi, vk) + eps) (9)

where Score(oi) represents the node priority of oi, eps represents a non-zero constant value, it
prevents an exception from occurring when LST(oi, vk)− EST(oi, vk) = 0.

According to the above definition, the critical path determines the longest end-to-end
execution time of the computational graph. Actually, in the progress of the schedule, the
available resources of the device cluster change dynamically. This leads to changes in the
execution performance of nodes on different devices. Moreover, this also leads to dynamic
changes in the critical nodes and critical paths. For example, as shown in Figure 3a, o2 and
o3 have no dependencies during execution, so they can be executed in parallel. As shown
in Figure 3b, if o2 is scheduled on Device0 for execution and o3 is scheduled on Device1
for execution, the critical path of the DAG is o1-o3-o4 and the critical path length is 53. As
shown in Figure 3c, if o3 is scheduled on Device0 for execution and o2 is scheduled on
Device1 for execution, the critical path of the DAG becomes o1-o2-o4 and the critical path
length becomes 35. Obviously, the strategy in Figure 3c is more optimal. Since operators
are scheduled on different devices, the critical path of the computational graph will change.
Therefore, the main goal of the dynamic critical path generation is to find the optimal
scheduling strategy.

As shown in Figure 3, different operator scheduling strategies affect the selection of
devices in the scheduling process, which will lead to changes in critical nodes and critical
paths. In this paper, we call the critical path that changes with the dynamic scenarios the
dynamic critical path (DCP).

The above analysis shows that the critical path length of the computational graph is
an important indicator for the scheduling of the operators. It represents the end-to-end
execution time of the computational graph. Therefore, we define the dynamic critical path
length (DCPL) as follows:

DCPL = max
oi∈O′ ,vk∈V′

{EST(oi, vk) + ET(oi, vk)} (10)
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where EST(oi, vk) represents the EST of node oi on device vk and ET(oi, vk) represents the
execution time of node oi on device vk.

Since DCPL is the maximum value of the earliest finish time (e.g., EST(oi, vk) +
ET(oi, vk)) of all paths, it can be used to determine the upper limit of the node start time.
Therefore, in the dynamic priority scheduling process, the EST and LST can be generated
through DCPL dynamically if a schedulable node is not assigned.
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up�me of devices)
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(Cri�cal Path: o1-o2-o4; Time: the 

up�me of devices)
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Figure 3. Critical Path Diagram.

To determine the dynamic critical nodes (DCN) on the dynamic critical path (DCP),
we assume that the DCP ranges from the entry node oentry to the exit node oexit. The specific
method is as follows:

• For all nodes in the computational graph, calculate the corresponding EST and LST.
• According to Formula (8), determine the critical nodes. If node oi satisfies

EST(oi, vk) = LST(oi, vk), it can be marked as a critical node.
• According to the identified critical nodes and the node dependencies in the computa-

tional graph, use the breadth-first search method to generate the DCP.

4.3. Optimal Scheduling Based on Operator Priority

According to Section 4.2, the DCP determines the longest end-to-end execution time
of the entire computational graph in dynamic scenarios. In this section, we propose a
critical path optimal scheduling method based on node priority, which can optimize the
end-to-end longest execution time of the computational graph.

The key to this method is to schedule nodes with high priority, which ensures that
nodes with a small time-optimizable execution range are finished at the earliest time. The
critical nodes satisfy EST = LST and Score = 1/eps, which have the highest priority.
Therefore, the marked critical nodes can be scheduled preferentially to reduce the cost of
computing the node priority.

The specific method to implement the optimal scheduling of critical paths according
to the node priority is as follows:

(1). Find the marked critical nodes from the schedulable nodes based on the prior-
ity scheduling of critical nodes.

If all the parent nodes of a node oi have been scheduled to the device, but oi has not
been scheduled and oi is a schedulable node, the selection of the optimal schedulable node
is as follows: First of all, the marked critical nodes among the schedulable nodes will
be scheduled preferentially. Then, if there is no marked critical node in the schedulable
nodes, calculate the node priority of all nodes using Formula (9). Sort the schedulable
nodes by node priority from largest to smallest. The first node (which has the highest
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priority) from the sequence is the optimal schedulable node. The specific details are shown
in Algorithm 1:

Algorithm 1: The algorithm for finding the optimal schedulable node
(Sort_Node(Node_Queue))

Input: Schedulable Node Queue Node_Queue.
Output: The Optimal Schedulable Node Obest.

1 Obest = NULL;
2 for oi ∈ Node_Queue do
3 if oi is a critical node (σ(o) = is_DCP) then
4 Obest = oi;
5 break;
6 else
7 Compute Score(oi) by Formula (9);
8 end
9 end

10 if Obest == NULL then
11 sort(Node_Queue);
12 Obest = Node_Queue[0];
13 end
14 pop(Node_Queue, Obest);
15 if succ(Obest) are the schedulable nodes then
16 push(Node_Queue, succ(Obest));
17 end

(2). Find the matching device for the optimal schedulable node.
For the optimal schedulable node, we adopt the following method to find the matching device.
Firstly, according to the node (operator) resource requirements (e.g., communication,

computation, and memory) and the idle resources of the device, we select the device set
that satisfies the resource requirements for the nodes (operators).

Then, assuming that the total number of nodes in the graph search space is n, we
select devices that satisfy resource requirements for schedulable node oi (i = 1, 2, . . . , n);
where the devices need to satisfy the execution time requirement of node oi, the scheduling
process cannot affect the execution of scheduled nodes on these devices. For a device vk
that satisfies the resource requirements of node oi, suppose that oj (j = 1, 2, . . . , n− 1) and
om (m = 1, 2, . . . , n− 1) are the scheduled nodes on this device. If oi will be scheduled to
device vk, the execution order of oj, oi, and om on device vk is oj − oi − om. Suppose that op
(p = 1, 2, . . . , i− 1) represents a parent node of oi in the computational graph. Then, we
adopt Formula (11) to determine whether node oi can be scheduled to device vk:

ET(oi, vk) ≤ min{LST(oi, vk) + ET(oi, vk), LST(om, vk)} −max{EST(oi, vk), EST(oj, vk) + ET(oj, vk)}
i f the parent node op o f oi is not scheduled to vk.

ET(oi, vk) ≤ min{LST′(oi, vk) + ET(oi, vk), LST(om, vk)} −max{EST′(oi, vk), EST(oj, vk) + ET(oj, vk)}
i f the parent node op o f oi is scheduled to vk.

(11)

When op is not scheduled to vk, if the execution time of oi on vk is less than the difference
between the latest start time of om on vk (LST(om, vk)) and the earliest finish time of oj
on vk (EST(oj, vk) + ET(oj, vk)), then node oi can be scheduled between oj and om on
vk. When op is a scheduled node on vk, the communication cost between op and oi on
vk is 0 if oi is scheduled to oi. However, the EST (calculated by Formula (6)) and LST
(calculated by Formula (7)) of oi on vk include the (oil , opk) between oi on vl and op on vk.
Therefore, it is necessary to recalculate the earliest start time EST′(oi, vk) and the latest
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start time LST′(oi, vk) of oi when oi and op are scheduled to the same device vk, where
EST′(oi, vk) = EST(oi, vk)− w(oil , opk) and LST′(oi, vk) = LST(oi, vk)− w(oil , opk). If the
execution time of oi on vk is less than the difference between the latest start time of om on vk
(LST′(om, vk)) and the earliest finish time of oj on vk (EST′(oj, vk) + ET(oj, vk)), then node
oi can be scheduled between oj and om on vk. For node oi, there may be multiple devices
that satisfy Formula (11). We can record all satisfied devices with a device subset.

Lastly, we find the optimal device from the selected device subset. (1) If node oi and
its parent node op can be scheduled to the same device vp, select vp preferentially as the
optimal device of node oi to reduce the communication cost. (2) If node oi and its leaf node
oc can be scheduled to the same device vb, select vb preferentially as the optimal device
of node oi, where oc needs to be selected based on the node priority and vb needs to be
selected based on the execution time of the node oc on the device. The selection of the
optimal device vb and the optimal child node oc is shown in Formula (12):

oc ← arg max
ok∈succ(oi)

{Score(ok)}

vb ← arg max
vk∈V

{ET(oc, vk) + ET(oi, vk)}
(12)

where oc has the highest node priority in the leaf node set of oi. V presents the new device
subset which satisfies the scheduling of oi and oc in the original device subset. vb is the
device that minimizes the execution time of oi and oc (ET(oc, vk) + ET(oi, vk)).

(3) We select the device vk from the device subset that satisfies the earliest execution of
oi as the optimal device. vk can execute oi as soon as possible. (4) When no device satisfies
the above conditions, according to the node priority, select the device that executes the
lowest priority node as the optimal device of node oi.

The specific details are shown in Algorithm 2.

Algorithm 2: Algorithm of finding optimal device (Find_Slot(oi, Device_List))
Input: Node oi and Device Subset Device_List.
Output: Optimal Device best_device.

1 for vk ∈ Device_List do
2 if op on vk is the parent node of oi and oi on vk satisfies Formula (11) then
3 best_device = vk;
4 else if oi on vk satisfy Formulas (11) and (12) then
5 best_device = vk;
6 else if 1 then
7 best_device = vk;
8 else continue; ;
9 end

10 if Device_List = ∅ then
11 best_device = the device vk that has the lowest priority node;
12 end

(3). Update the graph search space according to the scheduling.
After the node scheduling is finished, update the graph search space according to the

scheduling situation. The updated content mainly includes the weight of the edge, the EST
and LST of the scheduled node oi, and the EST and LST of the unscheduled node. The
specific update method is as follows.

Firstly, when the scheduled node oi is scheduled to the device where the parent node
op is located, the communication cost of edge from op to oi (w(oik, opk)) is set to 0. Then,
according to the scheduling of the scheduled node oi on the device, update the EST and
LST of oi. Finally, iteratively update the EST and LST of all unscheduled nodes through
Formulas (6) and (7) after the update of the graph search space.
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After the graph search space update, perform a new round of node optimization
scheduling, and repeat this process until the optimal parallel strategy is found.

4.4. Algorithm Implementation

The specific implementation of FD-DPS is shown in Algorithm 3:
Lines 2–6 implement the intra-operator parallelism, which split the operators with the

tensor dimension according to the operator attributes. Lines 9–14 implement the generation
of dynamic critical paths, which calculate the EST and LST of all nodes and determine
all DCP nodes for subsequent scheduling. Lines 15–26 implement optimal scheduling.
Among them, line 15 calls the finding optimal node algorithm (Sort_Node(Node_Queue))
to find the optimal schedulable node, and line 24 calls the finding optimal device algorithm
(Find_Slot(oi, Device_List)) to find the optimal device for the optimal schedulable node.

The FD-DPS algorithm returns the optimal parallel strategy S and optimal sequence
queue Q of all nodes in the DAG. The main time cost of Algorithm 3 comes from sorting
the nodes according to node priority and finding the most appropriate device for the
schedulable node.

Algorithm 3: FD-DPS: The Algorithm for Dynamic Critical Path Generation
Based on DAG

Input: Graph Search Space T(O′, E′, V′, W).
Output: The optimal parallel strategy S and Scheduling Queue Q.

1 while True do
2 for oi ∈ O′ do
3 if oi satisfies the fine-grained conditions then
4 oi is split into oi1 and oin;
5 end
6 end
7 Node_Queue = {o1};
8 while Node_Queue 6= ∅ do
9 for o ∈ Node_Queue do

10 σ(o) = no_DCP;
11 if EST(o) = LST(o) then
12 σ(o) = is_DCP;
13 end
14 end
15 oi = Sort_Node(Node_Queue);
16 Device = V′;
17 Best_Device = NULL;
18 Device_List = NULL;
19 for v ∈ Device do
20 if v is a schedulable node then
21 push(v, Device_List);
22 end
23 end
24 Best_Device = Find_Slot(oi, Device_List);
25 S.append((oi, Best_Device));
26 Q.append(oi);
27 Update weight of edges, EST and LST for nodes;
28 end
29 end
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5. Experiment

To verify the effectiveness and performance of FD-DPS, we conducted experiments
on Vgg_16, InceptionV3, and other models, and compare the results with those from
FastT and MP-DPS. Specifically, we compare them in terms of single-round iteration time,
intra-operator parallelism performance, strategy search time, and dynamic search time.

5.1. Experimental Setup

(1) System Model.
We selected six widely used DNNs to evaluate the effectiveness of FD-DPS, as shown

in Table 3.
These DNNs have different numbers of operators and edges in the computational

graphs so that we can evaluate the scalability and performance of FD-DPS at different scales.

Table 3. Deep neural network model and corresponding dataset.

Source DNNs (Batch) Number of Operators Number of Edges Dataset

TF-Slim

Vgg_16 (64) 3932 5461

CIFAR-10

InceptionV3 (64) 12,745 21,928
ResNet_50 (64) 12,692 24,345
ResNet_200 (16) 45,472 82,347
PnasNet_mobile (64) 62,192 91,957
NasNet_large (16) 83,206 148,548

(2) Baseline.
We chose three deep learning training strategies as baselines.
Data Parallelism: Data parallelism is suitable for scenarios where the memory capacity

of the devices cannot hold all the training data. It divides the data through certain division
methods (e.g., data sample division and data dimension division) and stores the data in
different devices. After that, each device uses local data to update the model in an optimized
way. The experiment in this paper adopts simple data division based on TensorFlow
slim [33].

FastT: Based on the data flow graph of TensorFlow, we propose a white-box algorithm
to compute strategies that consume few computing resources in a short time. The white-box
algorithm is used to automatically identify the optimal parallel strategies in DNNs to speed
up model training. Compared with reinforcement learning, the strategy search time of
FastT is relatively short. However, FastT does not consider the dynamic memory ratio
during model training, so there is still room for optimization of this scheduling algorithm.

MP-DPS: MP-DPS uses computational graphs in the form of data flow graphs. It
optimizes operator placement through the DAG scheduling algorithm. Firstly, MP-DPS
constructs a graph search space by extracting the features of the original computational
graph and device topology. Then, it reduces the search space by merging nodes with
computing power awareness. Finally, it implements optimal scheduling by predicting the
path cost in DAG to find the optimal parallel strategy. However, the dynamic changes
of the scenarios will lead to the problem that static methods are difficult to search for the
optimal distributed parallel strategy, so MP-DPS still has room for optimization in strategy
search time and performance.

(3) Software and Hardware Environment:
The experimental hardware environment of this paper is a single server, including a

Genuine Intel CPU and eight NVIDIA Tesla P100 GPUs. The specific software environment
is shown in Table 4.
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Table 4. Experimental software environment.

Environment Name Environment Version

System Ubuntu 16.04.4 LTS
Kernel Linux 4.15.0-123-generic
GPU Driver NVIDIA-418.87.00
CUDA CUDA 10.0.130
TensorFlow TensorFlow 1.14.0
Python Python 3.7.10

5.2. Strategy Execution Performance

In this section, we use the single-round iteration performance of the generation strategy
as the measurement index and compare FD-DPS, MP-DPS, and FastT. The comparison
results are shown in Table 5.

Compared with MP-DPS and FastT, FD-DPS performs better when the model size
increases and the number of devices increases. When four GPUs are used, FD-DPS signifi-
cantly exceeds FastT and MP-DPS. Its single-round iteration performance on ResNet_50
and PnasNet_mobile shows an 18.11% and 10.54% improvement over FastT and MP-DPS,
respectively. When eight GPUs are used, FD-DPS more significantly exceeds FastT and
MP-DPS, with speed increases in the single-round iteration performance of 23.83% and
12.76%, respectively, on PnasNet_mobile . This is because FD-DPS calculates the scheduling
priority several times during its policy search based on global resources, whereas the FastT
and MP-DPS methods do not consider dynamic resources. The FastT method uses static
operator priority according to the critical path, and MP-DPS uses node merging and path
prediction to search for the distributed strategy. Thus, the FD-DPS method can find a better
scheduling policy than the above methods.

To simulate the inter-operator communication environment, we test the cross-container
communication and scheduling on a single server. We deployed two dockers (each with
four GPUs) on the same server and included the communication time between dockers in
the overall performance cost.

As shown in Figure 4, after incorporating the communication cost between devices,
FD-DPS also achieves a greater effect in the single-round iteration performance compared
with MP-DPS. Specifically, on PnasNet_mobile, the single-round iteration performance of
MP-DPS compared with FastT was only improved by 4.9%. However, the single-round
iteration performance of FD-DPS compared with FastT was improved by 16.0%, which was
11.1% better than that of MP-DPS.

Table 5. Single-round iteration time comparison of FD-DPS and baseline.

Model (batch) Single-GPU (s) Multi-GPUs DP (s) FastT (s) MP-DPS (s) Speedup 1 FD-DPS (s) Speedup 2

Vgg_16 (64) 0.794 2 1.272 1.122 1.066 1.41% 1.051 6.33%
4 1.770 1.975 1.905 4.88% 1.812 8.25%

InceptionV3 (64) 0.574 2 0.738 0.712 0.702 2.42% 0.685 3.79%
4 0.943 0.912 0.872 5.62% 0.823 9.76%

ResNet_50 (64) 0.394 4 0.895 0.834 0.719 5.01% 0.683 18.11%
8 1.983 1.874 1.741 8.85% 1.587 15.31%

ResNet_200 (16) 2.331 4 0.986 0.853 0.806 7.82% 0.743 12.90%
8 2.321 2.046 1.955 11.87% 1.723 15.79%

PnasNet_mobile (64) 0.822 4 1.669 1.624 1.547 10.54% 1.384 14.59%
8 2.643 2.459 2.147 12.76% 1.873 23.83%

NasNet_large (16) OOM 4 OOM 4.289 3.876 6.42% 3.627 15.43%
8 OOM 7.425 6.550 9.45% 5.931 20.12%

DP: Data Parallel. Speedup 1 : Speedup of MP-DPS over FastT. Speedup 2: Speedup over FD-DPS and FastT.
OOM: Out of Memory.
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Figure 4. Single-round iteration time speedup comparison (two dockers with eight GPUs).

5.3. Intra-Operator Parallelism Performance

In this section, we conduct experiments to evaluate the intra-operator parallelism
performance of FD-DPS, compared to D-DPS(-F) and MD-DPS.

Table 6 shows the splitting decisions, the execution time (before splitting), and pa-
rameter sizes of some representative operators in Vgg_16. Since the convolution (e.g.,
Conv1_1, Conv1_2, and Conv1_2bp) operator is a computationally intensive operator. Its
execution time is longer than other operators, and it is easiest to be split with the tensor
dimension. The fully connected (e.g., Fc6) operator that contains many parameters is a
parameter-intensive operator. For the FD-DPS algorithm with operator segmentation based
on the tensor dimension, the fully connected operator is not easy to split.

Table 6. Operator Split Decision in Vgg_16.

Operator Time (ms) Memory Ratio (KB) Whether to Split

Conv1_1 2.146 3.64 no
Conv1_2 15.673 43.82 yes
Conv1_2bp 36.466 56.88 yes
Relu1_2 2.908 0.12 no
Pool1 0.96 0.54 no
Fc6 1.654 136,766.44 no

Therefore, when verifying the intra-operator parallelism performance of FD-DPS, it is
necessary to select models with more convolution operators for comparative experiments.

As shown in Table 7, compared with the D-DPS(-F) algorithm without intra-operator
parallelism, the performance of FD-DPS has been greatly improved in the use case of four
GPUs. Among them, FD-DPS has the best effect on NasNat_large, achieving a speedup of
13.87% compared with D-DPS(-F). The experiment also shows that the use of intra-operator
parallelism further refines the granularity of the operator, the larger search space, and more
flexible strategy search. After intra-operator parallelism, FD-DPS can find the suboptimal
or optimal parallel strategy.

Table 7. Single-round iteration time comparison of intra-operator parallelism FD-DPS and baseline
with 4 GPUs.

Model (Batch) MP-DPS (s) D-DPS(-F) (s) FD-DPS (s) Speed Split Operator

Vgg_16 (64) 1.905 1.926 1.812 5.92% Conv2D, Conv2Dbp
InceptionV3 (64) 0.872 0.843 0.823 2.37% Conv2D, Conv2Dbp
ResNet_50 (64) 0.719 0.735 0.683 7.07% Conv2D, Conv2Dbp
ResNet_200 (16) 0.806 0.825 0.743 9.94% Conv2D, Conv2Dbp
PnasNet_mobile (64) 1.547 1.489 1.314 11.75% Conv2D, Conv2Dbp, Matmul
NasNet_large (16) 3.876 4.211 3.627 13.87% Conv2D, Conv2Dbp, Matmul

D-DPS(-F): the FD-DPS algorithm without fine-grained intra-operator parallelism.
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5.4. Strategy Search Performance

To analyze the impact of dynamic scheduling on the parallel strategy search time, this
section conducts comparative experiments on MP-DPS, D-DPS(-F), and FD-DPS under the
eight GPUs configuration.

As shown in Figure 5, FD-DPS has a relatively longer parallel strategy search time than
FastT, when the trained model is small. However, the parallel strategy search time of the
FD-DPS is much less than that of FastT when the trained model is large. The experimental
results show that FD-DPS is better than FastT in the performance of automatic parallel
strategy searches for large-scale models. Particularly, on PnasNet_mobile, the automatic
parallel strategy search time of FD-DPS is reduced by 185.8s compared with FastT. The
experimental results demonstrate that FD-DPS has better scalability and robustness than
FastT when dealing with large-scale models.

MP-DPS has the least search cost among the three algorithms. Particularly, on Nas-
Net_large model, MP-DPS reduces the dynamic search time by 95.5 s (compared with
D-DPS(-F)) and 117.3 s (compared with FD-DPS), respectively. Simultaneously, we can
notice that D-DPS(-F) reduces the parallel strategy search time by 21.8 s compared with
FD-DPS. Therefore, the improvement of single-round iteration performance is produced
under the premise of increasing the search cost.

However, compared with the increase in search cost, the performance improvement
of FD-DPS brings more benefits. Assuming that NasNet_large is trained on eight GPUs,
MP-DPS is 117.3 s less than FD-DPS in dynamic search time. As shown in Table 5, the cost
of FD-DPS under the single-round iteration is 0.619 s less than that of MP-DPS. Under the
premise that the batch size is 16 and the dataset is 10,000 images, it takes 625 iterations
to train CIFAR-10 to complete one epoch. Additionally, the time saved by training one
epoch in distributed parallel is 386.878 s, which is enough to offset the increase in time
consumption caused by parallel strategy optimization. The parallel performance gains
brought by FD-DPS are greater when training large-scale DNNs for multiple rounds
of iteration.
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Figure 5. The optimal strategy search time comparison of FD-DPS and baselines.

As results of Table 4 and Figure 5 show, for FD-DPS, there was a small increase
in search time because using intra-operator parallelism compared with D-DPS (F) and
MP-DPS. However, the single-round iteration performance of FD-DPS has been greatly
improved compared with D-DPS (F) and MP-DPS.

6. Conclusions

To address the problem of the low efficiency of the static auto-parallel method based
on graph algorithms caused by complex model structures and dynamic changes in the exe-
cution environment, this paper proposes an adaptive distributed parallel training method
based on the dynamic generation of critical paths for DAG called FD-DPS. The proposed
method reduces the problem of finding an optimal distributed parallel policy to the problem
of finding an optimal path in a directed graph. It searches for the optimal path with intra-
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operator parallelism with tensor dimension and dynamical critical paths of DAG, which can
expand the searching space and deal with the effect of a dynamic environment on model
execution performance. The experimental results show that compared with FastT and
MP-DPS, FD-DPS can effectively optimize the node placement and scheduling sequence. It
also can reduce the iteration time of the models and optimize the training performance.

Although FD-DPS utilizes an automatically distributed parallel method to achieve
inter-operator parallelism, intra-operator parallelism with a tensor dimension is based
on expert experience. This will increase the workload of the designer and result in a
suboptimal intra-operator parallelism strategy. Therefore, our future work will focus on the
implementation of automatic intra-operator parallelism to improve the FD-DPS method.
By implementing an automatically distributed parallel method for both inter-operator and
intra-operator parallelism, we will update the FD-DPS method and apply it to accelerating
model training.
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DAG directed acyclic graph
DFT density functional theory
DNN deep neural network
ANN artificial neural network
RMS root-mean-square
LSTM long short-term memory
ML machine learning
EST earliest start time
LST latest start time
CN critical node
CP critical path
NP node priority
ET execution time
DCP dynamic critical path
DCPL dynamic critical path length
DCN dynamic critical node
DP data parallel
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