
Citation: Capel, M.I. Artificial

Neuron-Based Model for a Hybrid

Real-Time System: Induction Motor

Case Study. Mathematics 2022, 10,

3410. https://doi.org/10.3390/

math10183410

Academic Editors: Nicholas Christakis,

George Kossioris and Mayur Patel

Received: 19 July 2022

Accepted: 5 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Artificial Neuron-Based Model for a Hybrid Real-Time System:
Induction Motor Case Study
Manuel I. Capel

Department of Software Engineering, University of Granada, 18071 Granada, Spain; manuelcapel@ugr.es

Abstract: Automatic Machine Learning (AML) methods are currently considered of great interest
for use in the development of cyber-physical systems. However, in practice, they present serious
application problems with respect to fitness computation, overfitting, lack of scalability, and the need
for an enormous amount of time for the computation of neural network hyperparameters. In this
work, we have experimentally investigated the impact of continuous updating and validation of
the hyperparameters, on the performance of a cyber-physical model, with four estimators based on
feedforward and narx ANNs, all with the gradient descent-based optimization technique. The main
objective is to demonstrate that the optimized values of the hyperparameters can be validated by
simulation with MATLAB/Simulink following a mixed approach based on interleaving the updates
of their values with a classical training of the ANNs without affecting their efficiency and automaticity
of the proposed method. For the two relevant variables of an Induction Motor (IM), two sets of
estimators have been trained from the input current and voltage data. In contrast, the training data
for the speed and output electromagnetic torque of the IM have been established with the help of a
new Simulink model developed entirely. The results have demonstrated the effectiveness of ANN
estimators obtained with the Deep Learning Toolbox (DLT) that we used to transform the trained
ANNs into blocks that can be directly used in cyber-physical models designed with Simulink.

Keywords: cyber-physical systems; neural networks; hybrid systems; automated machine learning;
simulation; real-time embedded control systems

MSC: 62M45; 37M05; 65C20; 68U20

1. Introduction

IoT is highlighting the huge current interest in the development of autonomous driving
to organize traffic in future smart cities. In this context, automated machine learning (AML)
methods [1,2] are useful to apply machine learning end-to-end to find a consistent implemen-
tation of electric vehicles (EVs) [3] and other cyber-physical systems (CPS) [4–7]. However,
they present serious application problems regarding fitness calculation, overfitting, lack of
scalability, and need a huge amount of time to compute hyperparameters on which CPS are
dependable. The problem is worsened if we choose an artificial neural network (ANN), and
to calculate the hyperparameters [8], we follow an optimization method such as gradient
descent [9,10].

Therefore, we propose in this paper to complement the computationally expensive
training phase of ANNs with hyperparameter updates carried out manually, as in [11],
with the help of efficient cyber-physical models’ simulation tools.

The optimization algorithm normally used to train ANNs for industrial control is
called gradient descent [12]. The optimization computation based on gradient descent acts
as a measurement device to gauge the accuracy of the cost function calculation, which each
step or iteration of the ANN parameters updates. Following this approach, evaluations of
the target function results in a hyper-gradient vector, i.e., one which learns various opti-
mized parameters to combine different levels of adaptations [13], instead of single values

Mathematics 2022, 10, 3410. https://doi.org/10.3390/math10183410 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183410
https://doi.org/10.3390/math10183410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2449-4394
https://doi.org/10.3390/math10183410
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183410?type=check_update&version=1

Mathematics 2022, 10, 3410 2 of 30

that are usually obtained by other methods such as the called Bayesian hyperparameter
optimization (HPO) [14].

Using HPO, when the number of derivatives is large, e.g., for a deep-learning ANN
with n layers, the gradient will increase exponentially by backpropagation until it finally
explodes. We can overcome the complexity of gradient descent and backpropagation applied to
CPS hyperparameters optimization by model transformation, such as the distributed optimal
coordination (DOC) approach for heterogeneous linear multi-agent systems proposed in [15].

Nowadays, we can obtain the model selection gradient in a reasonable time thanks to
modern parallel computers and GPU graphics cards, which are crucial to tuning hyperpa-
rameters of cyber-physical models [8]. Thanks to parallel computing recent advances, we
can now handle many hyperparameters of a model by deploying gradient descent-based
methods efficiently [9]; more specifically, our method for ANN applied to high-dimensional
HPO problems can perform the following tasks:

1. Separately optimize the learning rate of an ANN for each iteration and layer;
2. Calculate optimal weights for the synaptic connections between neurons of different

layers in the ANN;
3. Reduce the likelihood of overfitting by L2 regularization, a strategy that establishes

the decay of peaky weights for each individual parameter.

Therefore, it is possible to perform the complete training procedure of an optimized
cyber-physical model with an ANN, either by adaptive and offline updating of the hyper-
parameters: through measurements on a model of the studied CPS or after performing,
interspersed with the training of the network, a manual validation from a software sim-
ulation of the cyber-physical model. This second alternative is the one we have finally
adopted here.

This method is very model-specific but, in return, allows tuning of many hyperparameters
of the cyber-physical model, which lays the ground for obtaining a great improvement with
respect to the HPO performed so far in other papers [8,14,16], e.g., by Bayesian optimization.

Overfitting is an open problem when we try to apply ANN with a finite validation
set, and the calculation of the model’s hyperparameters suffers from this drawback. One
possibility would be to use a different shuffling for each function we need to evaluate
thus reducing the amount of overfitting. This approach has been shown to improve the
generalization accuracy and recall by deploying a cross-validation strategy of the cyber-
physical models. We can also use the strategy of finding stable optima instead only optima
in the objective function, as noted in [16].

There are currently many machine learning problems that cannot be solved directly
due to the magnitude of their scale. We will understand the term scale, in this context,
as the size of the configuration space and the high computational cost of carrying out
the individual evaluations of the models involved. There are currently some successes in
training the neural network with small datasets and setting hyperparameter values by hand
during model training [10,17]. Our approach with respect to coping with the scalability
problem is to take advantage of massive parallel computing and try to fully exploit large-
scale computer clusters or the thousands of SMs of GPU/CUDA multiprocessors.

In hybrid systems, the continuous behavior described by a system of differential
equations associated must change as a result of the occurrence of discrete events too.
Our approach gives very compact and flexible specifications for complex hybrid systems.
However, there are very few tools that support this class of tools now. In our case, we
hypothesize that there is no major problem in building a trained ANN, which can substitute
the PID [18,19] controller of a closed loop control system, capable of reacting and producing
a correct response even in the case of discrete events, i.e., messages or signals that may
modify the values of the cyber-physical model’s hyperparameters.

For implementation, CPS usually resorts to excellent tools such as MATLAB/Simulink ©
that are widely used in industry today to successfully complement machine learning
methods mentioned above in IoT or Big Data applications. Currently, the use of tools
that speed up the determination of the hyperparameters of ANNs is being considered a

Mathematics 2022, 10, 3410 3 of 30

firm basis for the development of AML methods in an industrial environment and could
certainly be considered a sound and less complex alternative to the development of new
algorithms by only using metaheuristics that present a high complexity both in their design
and in the execution time they need.

In this work, through a case study design, two research questions are answered:
(1) whether an ANN model could be used to replace a PID controller for open and closed
loop control systems, and (2) whether this model could be generated in a short time. To
obtain the objectives, two ANN models (ff and narx) are used to generate four estimators
of 2 physical variables (speed and torque) of an AC motor. Hyperparameter optimization
is used with the approximate gradient method from the literature [8], which makes the
gradient descent process much faster.

1.1. Real-Time Speed Regulation of an Induction Motor

As a case study, an induction motor (IM) has been modeled and controlled using sim-
ulation data and neural networks as an application of the proposed method for derivation
of control applications with hybrid systems with real-time characteristics.

We can control the IM rotation speed by an open loop control system with real-time
requirements, Figure 1a. The IM rotor speed is controlled by cutting the sine wave of the
input voltage using a TriaC device, Figure 1b, whose operation is like a very fast switch.
The control line of the TriaC is commanded by a synchronization signal (synch). This signal
is high when the input wave passes through a zero value, resulting in the TriaC immediately
stopping conducting electricity. If, after stopping conducting, the TriaC is fed with a current
for several milliseconds, it will go to the saturation state by the texct signal. It will drive
current until the input voltage passes through a zero value again. The maximum time
(timeval) to re-excitation of the TriaC device must be calculated in real-time and at each
cycle of the voltage with which it is fed. If after passing a full cycle of the input voltage,
the signal synch is lost, i.e., the texct signal fails, then the synchf failure signal goes high to
prevent the motor may rotate too fast. The combination of both devices, an IM and the
TriaC, can serve as the basis of an industrial prototype to control or keep constant the speed
of a vehicle in an automatic driving system or to maintain a constant airflow through a
filter in HVAC systems, etc.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 29

(a) (b)

Figure 1. (a) System context diagram. (b) Graphical plot of the input voltage and the excitation signal

of the TriaC device.

(a)

(b)

Figure 2. (a) Simulink‐block diagram of an induction motor controlled by a TriaC device. (b) Zoom‐

ing the TriaC driver stateflow block interior.

Figure 1. (a) System context diagram. (b) Graphical plot of the input voltage and the excitation signal
of the TriaC device.

Mathematics 2022, 10, 3410 4 of 30

To solve such a problem that often occurs in the manufacturing industry, we can
produce a closed loop feedback system with real-time requirements by implementing a PID,
necessary to maintain constant the rotor speed of an induction motor driven by a TriaC
device, Figure 2a. A Simulink block can be used to implement a hybrid system that also
contains discrete components, such as the TriaC driver component shown in Figure 2b.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 29

(a) (b)

Figure 1. (a) System context diagram. (b) Graphical plot of the input voltage and the excitation signal

of the TriaC device.

(a)

(b)

Figure 2. (a) Simulink-block diagram of an induction motor controlled by a TriaC device. (b) Zoom-

ing the TriaC driver stateflow block interior.

Figure 2. (a) Simulink-block diagram of an induction motor controlled by a TriaC device. (b) Zooming
the TriaC driver stateflow block interior.

Mathematics 2022, 10, 3410 5 of 30

The proposal of this paper applies, according to the approach we will detail, to the
implementation of an ANN-based controller instead of a PID-based one. The case study
shows how the proposed method can be applied to derive ANN estimators of rotor speed
and torque of an IM that provide improved control performance of this system. We have
performed a double validation of the response of the developed ANN-based estimators for
speed and electromagnetic torque, considering a time interval of 50 s. of the training time.
Deep Learning Toolbox (DLT) is used to transform the trained ANNs into blocks that can
be directly used in cyber-physical models designed with Simulink. We can observe that
the measured and estimated speed and electromagnetic motor torque have a very close
trajectory in the graphs shown (performance, error histogram), as well as we can also verify
that the regression study yields a good accuracy for the mentioned both engine variables
estimated in the study.

1.2. Article Structure

The following sections are structured as described below. First, we present the mathe-
matical modeling of the induction motor. In Section 3, we describe our proposed modeling
approach for the design of a class of CPS, i.e., hybrid real-time systems with continuous
and discrete components. We algorithmically define a new method to deploy the model,
such as closed-loop control of the IM case study based on neural networks, in which we
define training, testing, and validation. A reference Simulink model of the IM is used,
which provides insight into the functional and dynamic aspects and the necessary training
data for the ANN-based controller models proposed in this paper. In Section 4, two motor
speed and torque estimators are obtained, each with two classes of ANNs (ff and narx),
which are applied to solve a problem consisting of reliably maintaining a constant speed
and electromagnetic torque of the IM of the case study. Conclusions and current lines of
work are presented in the last section.

2. Induction Motor Modeling

The simulation of the induction motor (IM) in Simulink, which has been used as a case
study here, can be downloaded at the address https://lsi2.ugr.es/~mcapel/miscelanea/
motor/ (accessed on 20 May 2022) (see Supplementary Materials). The prototype code has
been structured in three separate blocks, corresponding to the transformation between the
reference system of magnetic fluxes, currents, and voltages in the motor, resolution of the
simulation, and return to the standard three-phase reference system, as shown in Figure 3a.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 29

The proposal of this paper applies, according to the approach we will detail, to the

implementation of an ANN-based controller instead of a PID-based one. The case study

shows how the proposed method can be applied to derive ANN estimators of rotor speed

and torque of an IM that provide improved control performance of this system. We have

performed a double validation of the response of the developed ANN-based estimators

for speed and electromagnetic torque, considering a time interval of 50 s. of the training

time. Deep Learning Toolbox (DLT) is used to transform the trained ANNs into blocks

that can be directly used in cyber-physical models designed with Simulink. We can ob-

serve that the measured and estimated speed and electromagnetic motor torque have a

very close trajectory in the graphs shown (performance, error histogram), as well as we

can also verify that the regression study yields a good accuracy for the mentioned both

engine variables estimated in the study.

1.2. Article Structure

The following sections are structured as described below. First, we present the math-

ematical modeling of the induction motor. In Section 3, we describe our proposed model-

ing approach for the design of a class of CPS, i.e., hybrid real-time systems with continu-

ous and discrete components. We algorithmically define a new method to deploy the

model, such as closed-loop control of the IM case study based on neural networks, in

which we define training, testing, and validation. A reference Simulink model of the IM

is used, which provides insight into the functional and dynamic aspects and the necessary

training data for the ANN-based controller models proposed in this paper. In Section 4,

two motor speed and torque estimators are obtained, each with two classes of ANNs (ff

and narx), which are applied to solve a problem consisting of reliably maintaining a con-

stant speed and electromagnetic torque of the IM of the case study. Conclusions and cur-

rent lines of work are presented in the last section.

2. Induction Motor Modeling

The simulation of the induction motor (IM) in Simulink, which has been used as a

case study here, can be downloaded at the address https://lsi2.ugr.es/~mcapel/miscela-

nea/motor/ (accessed on 20 May 2022) (see Supplementary Materials). The prototype code

has been structured in three separate blocks, corresponding to the transformation between

the reference system of magnetic fluxes, currents, and voltages in the motor, resolution of

the simulation, and return to the standard three-phase reference system, as shown in Fig-

ure 3a.

(a) (b)

Figure 3. In this figure, we can observe: (a) the motor stator winding and the rotating magnetic field

it produces; (b) the induction motor model with only one rotating coil at the speed ωe of the ro-

tating field B.

2.1. Physical Modeling of an Induction Motor

The most difficult component to model an induction motor (IM) is the IM drive itself,

as specialized Simulink blocks that include differentiation operators are needed or need

e eB
e eB

Figure 3. In this figure, we can observe: (a) the motor stator winding and the rotating magnetic field
it produces; (b) the induction motor model with only one rotating coil at the speed ωe of the rotating
field B.

https://lsi2.ugr.es/~mcapel/miscelanea/motor/
https://lsi2.ugr.es/~mcapel/miscelanea/motor/

Mathematics 2022, 10, 3410 6 of 30

2.1. Physical Modeling of an Induction Motor

The most difficult component to model an induction motor (IM) is the IM drive itself,
as specialized Simulink blocks that include differentiation operators are needed or need to
be developed manually, as shown in Section 2.3. The other devices in the IM model can be
modeled by means of simple switches or a combination of them.

An IM works according to the physical principle of mutual induction between electrical
circuits traversed by a varying magnetic flux. Applying Faraday’s law, which is given by
the following equation, where N is the number of turns of wire and ΦB is the magnetic flux
through a single loop, we can obtain the relation between electromagnetic force (ε) and the
change of magnetic flux ΦB through the winding of a motor as follows,

ε = − d
dt
(N·ΦB), (1)

ireel conducted by the stator circuit, i.e., it turns out to be independent, for example, on
the number of poles of the motor. Therefore, we will assign a self-induction constant L to
any circuit affected by magnetic induction, according to the following equation,

N·ΦB = L·ireel (2)

To obtain a rotating magnetic field
→
B (or B) in the stator of an IM, as shown in Figure 3a,

three windings are necessary for the stator nucleus, each of which conducts current with a
voltage phase difference of 2π/3 rad. from the next. An important parameter of induction
motors and thus necessary for our target model to learn is what we call the synchronous
speed ωe of the motor, which is the rotational speed of the magnetic field B produced by
the triple winding of the stator.

A three phases model of a dynamic IM can be found by assuming balanced voltages
(in the phase of 2π/3 rad) and constant inductances. Under these conditions, the magnetic
field vector B in the stator describes a circle in the plane with speed ωe. A mathematical
model with a rotating vector B identical to the above can be obtained with single current i
instead of using three sinusoidal currents in phase. This model would only define one coil
rotating at the same speed as vector B (Figure 3b) and conducting a direct current (DC).
The problem is that with this model, the inductances’ mutual couplings between the three
stator windings would not be considered. Therefore, a minimum of 2 coils are needed to
obtain a dynamic model of the IM, as Figure 4 shows.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 29

to be developed manually, as shown in Section 2.3. The other devices in the IM model can

be modeled by means of simple switches or a combination of them.

An IM works according to the physical principle of mutual induction between elec-

trical circuits traversed by a varying magnetic flux. Applying Faraday’s law, which is

given by the following equation, where N is the number of turns of wire and ΦB is the

magnetic flux through a single loop, we can obtain the relation between electromagnetic

force (�) and the change of magnetic flux ΦB through the winding of a motor as follows,

� = −
�

��
(� ∙ Φ�), (1)

����� conducted by the stator circuit, i.e., it turns out to be independent, for example,

on the number of poles of the motor. Therefore, we will assign a self-induction constant L

to any circuit affected by magnetic induction, according to the following equation,

� ∙ �� = � ∙ ����� (2)

To obtain a rotating magnetic field �
→

 (or B) in the stator of an IM, as shown in Figure

3a, three windings are necessary for the stator nucleus, each of which conducts current

with a voltage phase difference of 2π/3 rad. from the next. An important parameter of

induction motors and thus necessary for our target model to learn is what we call the

synchronous speed ωe of the motor, which is the rotational speed of the magnetic field B

produced by the triple winding of the stator.

A three phases model of a dynamic IM can be found by assuming balanced voltages

(in the phase of 2π/3 rad) and constant inductances. Under these conditions, the magnetic

field vector B in the stator describes a circle in the plane with speed ωe. A mathematical

model with a rotating vector B identical to the above can be obtained with single current

i instead of using three sinusoidal currents in phase. This model would only define one

coil rotating at the same speed as vector B (Figure 3b) and conducting a direct current

(DC). The problem is that with this model, the inductances’ mutual couplings between the

three stator windings would not be considered. Therefore, a minimum of 2 coils are

needed to obtain a dynamic model of the IM, as Figure 4 shows.

(a) (b)

Figure 4. The reference systems that simplify the equations of the magnetic induction in the AC

motor model: (a) αβ or stationary; (b) qd or rotative.

Complex vector space can be represented using a reference frame of only two orthog-

onal axes, according to the two-axis theory [20], so that in our study the motor model

could be considered equivalent to a two-phase machine, which is a model that reduces

the number of equations and greatly simplifies the control design of an IM.

Figure 4. The reference systems that simplify the equations of the magnetic induction in the AC
motor model: (a) αβ or stationary; (b) qd or rotative.

Mathematics 2022, 10, 3410 7 of 30

Complex vector space can be represented using a reference frame of only two orthog-
onal axes, according to the two-axis theory [20], so that in our study the motor model
could be considered equivalent to a two-phase machine, which is a model that reduces the
number of equations and greatly simplifies the control design of an IM.

2.1.1. Stationary Reference System (Alpha and Beta Coordinates)

In this case the motor is modeled by placing two coils forming an angle of π/2 rad
(Figure 4a) and each one of them drives a sinusoidal current with a phase difference of π/2
rad. The first coil (or coil-α) will conduct the first phase of the current (ϕ = 0) and it is fixed
to the ordinate axis. The second coil (or coil-β) will conduct the second phase of the current
(ϕ = π/2) and is considered fixed to the x-axis. The named αβ-reference system reduces the
IM modeling problem to a simpler electromagnetic model with only two phases.

2.1.2. Rotative Reference System

Combining the single rotating coil system and the stationary reference system yields a
new system consisting of two rotating coils, Figure 4b, which allows to obtain a rotating
vector B and allows the modeling of the couplings between the inductances of the coils. In
addition, the currents conducted by the coils could be direct (DC).

In this model, the axis of reference, which is solidary with the coil driving the phase α
is called the d-axis (from the direct axis), and the axis corresponding to the coil β is called the
q-axis (from the quadrature axis). Where θe is the angle between the α-axis of the stationary
reference attached to the stator and the d-axis of the rotative reference frame, we will always
consider the rotor angle θe as just another state of the IM model and, therefore, a value that
can be calculated.

2.1.3. Motor Shaft Rotation

To form the magnetic pole pairs that will produce the movement of the motor shaft,
the rotor winding must also conduct a current to generate magnetic flux. If we short-circuit
the rotor winding (for example, using a squirrel cage winding [21]), then a current is induced
in it, which produces an electromagnetic force. The motor will start to rotate at the speed ωr
due to the electromagnetic force generated by the change of direction of the magnetic field B,
which rotates at the synchronous angular speed ωe resulting from the stator winding.

On the other hand, according to Faraday’s law (1), only if the magnetic flux Φ varies
with time will an electromagnetic force be generated, which translates into a momentum
capable of moving a load. Such a change may be due to a change in the amplitude of the
magnetic flux Φ or the electric circuit representing the rotor winding that cuts the magnetic
flux and changes its angle of incidence. According to this observation, it will be the case
that if the rotor were to rotate at the same speed as the rotating magnetic field of the stator,
i.e., ωr = ωe, then no electromagnetic force would be induced, nor would any momentum
be created. If, on the other hand, there were a small difference between the rotor angular
velocity ωr and the B speed ωe induced by the stator, then an electromagnetic force would
be generated and, consequently, create a momentum that can be converted into mechanical
torque. The difference between both rotational speeds (ωe and ωr) is another important
parameter of induction motors, which is called slip, Table 1 shows the values assumed by
these variables during a random run of the model.

Table 1. Synchronous and rotor speeds.

Slip Feature of 2-Pole IM

ωe: stator synchronous speed (input variable) 314.2 rad/s
ωr: rotor angular speed (output variable) 311.2 rad/s
s: slip (IM parameter) 0.01 rad/s

Mathematics 2022, 10, 3410 8 of 30

2.1.4. Transformation of the 3-Phase Reference Model to the Rotating Reference System

In three-phase symmetrical machines, the direct and quadrature axis currents (as well
as the other variables) that are defined in the rotating reference frame represent two
fictitious components of the stator and rotor currents components. The components of the
three-phase reference frame currents can be transformed into the direct and quadrature
axis components by means of a linear transformation and vice versa.

It is necessary to find the transformations that allow passing the currents
→
i (ia, ib, ic),

voltages
→
v (va, vb, vc), and magnetic fluxes

→
Φ (Φa, Φb, Φc) to the stationary 2-phase reference

frame:
→
i αβ,

→
vαβ, and

→
Φαβ, then, to the rotating reference system:

→
i dq,

→
v dq,

→
Φdq. Trivially,

from a mathematical point of view, an expression given as a function of the coordinates dq can
be directly transformed into an expression in coordinates αβ if the θe angle always maintains
a constant value θe = 0. Otherwise, we will therefore have to apply the transformation of
reference systems (abc→ dq), expressed by the following T matrix transformation:

→
fdq = Tdq(θ)·

→
fabc (3)

where
→
fdq is a vector representing the voltage, current or magnetic flux of the stator or rotor

(we will use different variables for each of these motor elements) of the IM model. This is a
transformation from a three-phase system (abc) into a two-phase system (dq). However, the
d and q axes may be insufficient to describe the above physical variables if the currents are
not balanced or if induced magnetic fluxes occur, causing the neutral wire of the stator to
drive current, i.e., that v0 6= 0. Because of this, the zero component is added to the physical

magnitude
→
f , and we will therefore denote the reference system as dq0 from now on. The

transformation matrix of the three-phase reference system (abc) into the stationary reference
frame (αβ0) is given in [3].

Tαβ0 =

1 0 0
0 − 1/

√
3 1/

√
3

1 1 1

The inverse transformation matrix (from system αβ0→ abc) would be:

T−1
αβ0

=

 1 0 0
−1/2 −

√
3/2 1/2

−1/2
√

3/2 1/2

To transform any of the above magnitudes, for example, voltage, to the rotating

reference system, the following equations can be used:{
Vqs= Vαcosθe−Vβsenθe
Vds= Vαsenθe+Vβcosθe

The inverse transformation would be given by the equations:{
Vα= Vqscosθ+ + Vdssenθe
Vβ= −Vqssenθe+Vdscosθe

2.2. Physical Model of the IM in the Rotative Reference System

The IM model can be derived from the equivalent electrical circuit (Figures 5 and 6).
The differential equations describing this model expressed as a function of the magnetic
linkage Fij (see definition in Table 2) are as follows:

dFqs

dt
= ωb

[
vqs −

ωe

ωb
Fds +

Rs

χls

(
χ∗ml
χlr

Fqr +

(
χ∗ml
χls
− 1
)

Fqs

)]
(4)

Mathematics 2022, 10, 3410 9 of 30

dFds
dt

= ωb

[
vds +

ωe

ωb
Fqs +

Rs

χls

(
χ∗ml
χlr

Fdr +

(
χ∗ml
χls
− 1
)

Fds

)]
(5)

dFqr

dt
= ωb

[
− (ωe −ωr)

ωb
Fdr +

Rr

χlr

(
χ∗ml
χls

Fqs +

(
χ∗ml
χlr
− 1
)

Fqr

)]
(6)

dFdr
dt

= ωb

[
(ωe −ωr)

ωb
Fqr +

Rr

χlr

(
χ∗ml
χls

Fds +

(
χ∗ml
χlr
− 1
)

Fdr

)]
(7)

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 29

Figure 5. Dynamic equivalent circuit of an IM along the qaxis of the rotating reference system.

Figure 6. Dynamic equivalent circuit of an IM along the daxis of the rotating reference system.

Simulink Model of the Induction Motor Model

A new block has been implemented using Simulink from the physical model, given

by the differential Equations (4)–(7) of the induction motor. In the first column of the Sim-

ulink model (Figure 7), the blocks corresponding to the differential equations of the four

magnetic linkages Fij appear since they are needed to calculate the other output variables.

Each of these equations could have been implemented using the Simulink block intended

for modeling systems of equations in state-space block notation, but for reasons of design

flexibility, discrete user blocks have been used instead.

+ +

eds

Rs

Iqs
Iqr

Rr

Llr= Lr−Lm

(e−r)dr

Lm qs= Fqs/b qr= Fqr/b

vqs

vqr

 + +
eqs

Rs

Ids

Idr

Rr

Lls = Ls-Lm Llr = Lr−Lm

(e−r)qr

Lm ds = Fds/b dr = Fdr/b
vds

vdr

Figure 5. Dynamic equivalent circuit of an IM along the q-axis of the rotating reference system.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 29

Figure 5. Dynamic equivalent circuit of an IM along the qaxis of the rotating reference system.

Figure 6. Dynamic equivalent circuit of an IM along the daxis of the rotating reference system.

Simulink Model of the Induction Motor Model

A new block has been implemented using Simulink from the physical model, given

by the differential Equations (4)–(7) of the induction motor. In the first column of the Sim-

ulink model (Figure 7), the blocks corresponding to the differential equations of the four

magnetic linkages Fij appear since they are needed to calculate the other output variables.

Each of these equations could have been implemented using the Simulink block intended

for modeling systems of equations in state-space block notation, but for reasons of design

flexibility, discrete user blocks have been used instead.

+ +

eds

Rs

Iqs
Iqr

Rr

Llr= Lr−Lm

(e−r)dr

Lm qs= Fqs/b qr= Fqr/b

vqs

vqr

 + +
eqs

Rs

Ids

Idr

Rr

Lls = Ls-Lm Llr = Lr−Lm

(e−r)qr

Lm ds = Fds/b dr = Fdr/b
vds

vdr

Figure 6. Dynamic equivalent circuit of an IM along the d-axis of the rotating reference system.

Table 2. Physical constants and variables of the induction motor model.

Relevant Observables and Magnitudes of the Physical System under Study

d: direct axis of the rotating reference system χ*
lm = 1/(1/χls +1/χlr + 1/χm): total reactance

with the loses for magnetizing (χm)
q: quadrature axis of the rotating reference
system iqs, ids: currents of the q and d stator axis

s: subindex for the stator variable iqr, idr: currents of the q and d rotor axis
r: subindex for the rotor variable p: number of poles of the motor
Fij = Φij, ωb: magnetic linkage, where i = q or d
and j = s or r J: inertia momentum

vqs, vds: stator voltages Me: motor’s electromagnetic torque (output
variable)

vqr, vdr: rotor voltages Ml: load torque (input variable)

Rr, Rs: rotor and stator resistors ωe: stator synchronous speed (input variable)
of B

χls: stator reactance (ωe·Lls)
ωb=2·π·fb: angular speed corresponding to the
electric frequency of feeding voltage

χlr: rotor reactance (ωe·Llr) ωr: rotor angular speed (output variable)

Mathematics 2022, 10, 3410 10 of 30

As can be seen in Equations (6) and (7), in the IM model, voltages vqr and vdr are
identically equal to zero in the rotor since we assume a short-circuited (squirrel cage) rotor
winding; and therefore, the right-hand side of the equivalent electrical circuits would
have zero voltage. The constants and variables of the above system of linear differential
equations are defined in Table 2.

Simulink Model of the Induction Motor Model

A new block has been implemented using Simulink from the physical model, given by
the differential Equations (4)–(7) of the induction motor. In the first column of the Simulink
model (Figure 7), the blocks corresponding to the differential equations of the four magnetic
linkages Fij appear since they are needed to calculate the other output variables. Each
of these equations could have been implemented using the Simulink block intended for
modeling systems of equations in state-space block notation, but for reasons of design
flexibility, discrete user blocks have been used instead.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 29

Figure 7. Simulink block representing the dynamic model of an induction motor.

Figure 8 shows the interior design of one of the blocks of the first column—the one

that calculates the magnetic linkage Fds.

Figure 8. Simulink block that solves the differential equation of the Fds flow (Xmstar is the total

magnetizing reactance χ*lm).

2.3. Calculation of the Electromagnetic Torque and Mechanical Power Generated by the Motor

The most important function of the MI is to produce mechanical torque on the motor

shaft. The electrical power input to the motor Pinput in the three-phase reference system can

be obtained by evaluating the following expression, which is a sum of terms of products

of the voltage and current values of each of the phases of the motor input current:

Figure 7. Simulink block representing the dynamic model of an induction motor.

Figure 8 shows the interior design of one of the blocks of the first column—the one
that calculates the magnetic linkage Fds.

Mathematics 2022, 10, 3410 11 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 29

Figure 7. Simulink block representing the dynamic model of an induction motor.

Figure 8 shows the interior design of one of the blocks of the first column—the one

that calculates the magnetic linkage Fds.

Figure 8. Simulink block that solves the differential equation of the Fds flow (Xmstar is the total

magnetizing reactance χ*lm).

2.3. Calculation of the Electromagnetic Torque and Mechanical Power Generated by the Motor

The most important function of the MI is to produce mechanical torque on the motor

shaft. The electrical power input to the motor Pinput in the three-phase reference system can

be obtained by evaluating the following expression, which is a sum of terms of products

of the voltage and current values of each of the phases of the motor input current:

Figure 8. Simulink block that solves the differential equation of the Fds flow (Xmstar is the total
magnetizing reactance χ*

lm).

2.3. Calculation of the Electromagnetic Torque and Mechanical Power Generated by the Motor

The most important function of the MI is to produce mechanical torque on the motor
shaft. The electrical power input to the motor Pinput in the three-phase reference system can
be obtained by evaluating the following expression, which is a sum of terms of products of
the voltage and current values of each of the phases of the motor input current:

Pinput= vas·ias+vbs·ibs+vcs·ics+var·iar+vbr·ibr+vcr·icr (8)

The expression of Equation (8) above can be easily obtained by simply applying the
well-known electric power formula: Pe = ∑i,j vij·iij; where j = s (stator) or r (rotor) and
i = a, b, c, to the equivalent electric circuit of the induction motor (Figure 9), which we can
consider as an accurate model for calculating the input power of the motor. The input
power is expended on four things: electromagnetic energy, mechanical energy, dissipation
by losses in resistors and inductances, and the movement of the load, although most of the
electrical power generated by the motor is converted into mechanical torque.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 29

Pinput= vas·ias+ vbs·ibs+ vcs·ics+ var·iar+ vbr·ibr+ vcr·icr (8)

The expression of Equation (8) above can be easily obtained by simply applying the well-

known electric power formula: �� = ∑ ����,� ∙ ���;where j = s (stator) or r (rotor) and i = a,

b, c, to the equivalent electric circuit of the induction motor (Figure 9), which we can con-

sider as an accurate model for calculating the input power of the motor. The input power

is expended on four things: electromagnetic energy, mechanical energy, dissipation by

losses in resistors and inductances, and the movement of the load, although most of the

electrical power generated by the motor is converted into mechanical torque.

(a) (b)

Figure 9. Equivalent electrical circuits for (a) stator and (b) rotor windings.

In order to comfortably use the input power equation, we have obtained above, we

have to transform it according to our rotating reference frame dq0, using for this purpose

the inverse transformation given by T−1αβ0, and after conveniently manipulating Equation

(8), we obtain the following expression for the input power expressed in the reference

frame dq0,

������ =
2

3
���� ∙ ��� + ��� ∙ ��� + 2��� ∙ ��� + ��� ∙ ��� + ��� ∙ ��� + 2��� ∙ ���� (9)

The currents produced in the zero phase of the stator, and consequently the magnetic

fluxes induced in this phase, do not contribute to the mechanical power of the motor.

Moreover, as previously commented, if we consider that the rotor winding is short-cir-

cuited, then the voltages vqr, vdr, are zero, so that from Equation (9), we will only consider

the first two terms of the sum. On the other hand, if we substitute the voltages by their

equation as a function of the magnetic induction and the stator current intensities, Equa-

tion (9) would be re-written as follows:

Pinput=
3

2
�rds·ids

2 + ωb�qs·ids+
d

dt
�ds·ids+ rqs·iqs

2 − ωb�ds·iqs+
d

 dt
�qs·iqs� (10)

In the above equation there are three different types of generated power. The first

type has the form ri2 and corresponds to the power dissipated in the motor windings. The

second type has the form ω · �� and represents the electrical energy converted into me-

chanical energy. The third type is of the form
d

dt
� · � and takes into account the energy

exchange between the magnetizable parts of the machine and the windings. Therefore,

the total mechanical power will be given by the following equation for an IM with p poles,

����� =
3

2
�

�

2
� (�� ∙ ��� ∙ ��� − �� ∙ ��� ∙ ���) (11)

and the magnetic flux ���,�� only depends on the angular speed and the magnetic linkage

Fij = ωbij. The mechanical torque transmitted by the motor shaft would be equivalent to

the electrical torque generated by the motor, ����� = �� ∙ ��, then we can obtain,

Me=
3

2
�

�

2
�

1

��

������� − ������� (12)

Figure 9. Equivalent electrical circuits for (a) stator and (b) rotor windings.

Mathematics 2022, 10, 3410 12 of 30

In order to comfortably use the input power equation, we have obtained above, we
have to transform it according to our rotating reference frame dq0, using for this purpose the
inverse transformation given by T−1

αβ0, and after conveniently manipulating Equation (8),
we obtain the following expression for the input power expressed in the reference frame dq0,

Pinput =
2
3
(
vds·ids + vqs·iqs + 2v0s·i0s + vdr·idr + vqr·iqr + 2v0r·i0r

)
(9)

The currents produced in the zero phase of the stator, and consequently the magnetic
fluxes induced in this phase, do not contribute to the mechanical power of the motor.
Moreover, as previously commented, if we consider that the rotor winding is short-circuited,
then the voltages vqr, vdr, are zero, so that from Equation (9), we will only consider the first
two terms of the sum. On the other hand, if we substitute the voltages by their equation as
a function of the magnetic induction and the stator current intensities, Equation (9) would
be re-written as follows:

Pinput =
3
2

(
rds·i2ds+ωbφqs·ids +

d
dt

φds·ids+rqs·i2qs −ωbφds·iqs +
d
dt

φqs·iqs

)
(10)

In the above equation there are three different types of generated power. The first
type has the form ri2 and corresponds to the power dissipated in the motor windings.
The second type has the form ω·φi and represents the electrical energy converted into
mechanical energy. The third type is of the form d

dt φ·i and takes into account the energy
exchange between the magnetizable parts of the machine and the windings. Therefore, the
total mechanical power will be given by the following equation for an IM with p poles,

Pmech =
3
2

(p
2

) (
ωb·φqs·ids −ωb·φds·iqs

)
(11)

and the magnetic flux φqs,ds only depends on the angular speed and the magnetic linkage
Fij = ωb·Φij. The mechanical torque transmitted by the motor shaft would be equivalent to
the electrical torque generated by the motor, Pmech = ωb·Me, then we can obtain,

Me =
3
2

(p
2

) 1
ωb

(
Fqsids − Fdsiqs

)
(12)

from the magnetic linkages Fds, Fqs, and currents, which are obtained by solving a system of
differential linear equations, graphically represented by (Figure 7), with concrete values of p
(the number of poles) and ωb (stator speed) as the input data to the induction motor model.

The angular speed ωr of the rotor can also be calculated since the mechanical load
torque Ml, and inertia J are also parameters of the IM model. As the above Equation (12)
shows, the electrical torque Me (and the angular rotor speed ωb) depend on the number of
poles of the rotor winding, contrary to what happens with the magnetic fluxes.

3. Modeling Method

In the proposed method, we will use different ANN classes [22,23] to design a hybrid
real-time system with continuous and discrete components. We use a typical design of a
neural network, in which we define training, testing, and validation (Figure 10). The output
generated or “measured” from the IM Simulink model, which represents the functional
and dynamic aspects of the model, are the training data.

During the execution of the IM drive implemented with Simulink, the main variables
of the CPS acquire values that are used to train the ANN. The MATLAB Deep Learning
Toolbox (DLT) allows us to generate Simulink blocks that implement different types of
neural networks (feed-forward, narx, . . .).

Mathematics 2022, 10, 3410 13 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 29

from the magnetic linkages Fds, Fqs, and currents, which are obtained by solving a system

of differential linear equations, graphically represented by (Figure 7), with concrete values

of p (the number of poles) and 𝜔 (stator speed) as the input data to the induction motor

model.

The angular speed ωr of the rotor can also be calculated since the mechanical load

torque Ml, and inertia J are also parameters of the IM model. As the above Equation (12)

shows, the electrical torque 𝑀 (and the angular rotor speed 𝜔) depend on the number

of poles of the rotor winding, contrary to what happens with the magnetic fluxes.

3. Modeling Method

In the proposed method, we will use different ANN classes [22,23] to design a hybrid

real‐time system with continuous and discrete components. We use a typical design of a

neural network, in which we define training, testing, and validation (Figure 10). The out‐

put generated or “measured” from the IM Simulink model, which represents the func‐

tional and dynamic aspects of the model, are the training data.

During the execution of the IM drive implemented with Simulink, the main variables

of the CPS acquire values that are used to train the ANN. The MATLAB Deep Learning

Toolbox (DLT) allows us to generate Simulink blocks that implement different types of

neural networks (feedforward, narx, …).

A Simulink block implementing a trained ANN can replace any PID controller in a

closed‐loop control system, such as those typically used in industrial systems to keep the

output signal constant and produce a predictable system response, even in the case of

disturbances in the input signals or noise. We can see the advantages of the mentioned

substitution in [18].

Figure 10. Diagram of the approach to deploy the general model of a cyber‐physical system; there

is only one neural network that learns from input data and outputs the next value.

3.1. Registry

The training data were obtained by simulation using the Simulink model of the IM

drive. The problem of data logging, although facilitated by the assistance offered by the

Simulink software, requires the application of algorithms such as the classical ICP or some

of its adaptations [24].

The proposed method starts from N sets of point clouds:

𝑣 , 𝑣 ,𝑣 , 𝑖 , 𝑖 , 𝑖 ,𝑀 ,𝜔 , whose points have information of a 3D static property, i.e.,

the voltages: va, vb, vc and currents: ia, ib, ic of the stator, and of two dynamic properties,

Figure 10. Diagram of the approach to deploy the general model of a cyber-physical system; there is
only one neural network that learns from input data and outputs the next value.

A Simulink block implementing a trained ANN can replace any PID controller in a
closed-loop control system, such as those typically used in industrial systems to keep the
output signal constant and produce a predictable system response, even in the case of
disturbances in the input signals or noise. We can see the advantages of the mentioned
substitution in [18].

3.1. Registry

The training data were obtained by simulation using the Simulink model of the IM
drive. The problem of data logging, although facilitated by the assistance offered by the
Simulink software, requires the application of algorithms such as the classical ICP or some
of its adaptations [24].

The proposed method starts from N sets of point clouds: {(va, vb, vc, ia, ib, ic, Ml , ωe)}N
i=1,

whose points have information of a 3D static property, i.e., the voltages: va, vb, vc and
currents: ia, ib, ic of the stator, and of two dynamic properties, which have been chosen to
be the load torque Ml and the ωe synchronous angular speed of B in the stator (see Table 2).

The point clouds for ANN training can be obtained in several ways: by direct measure-
ment of the physical device (IM) using a rotating torque-meter or obtained directly (off-line)
from an experimental database for three-phase induction motor rotor fault detection and
diagnosis [25], or they can be obtained by simulating the IM drive with Simulink, which
is the option chosen in this study. The acquisition of the training data must be repeated
several times, and outliers must be eliminated. In the end, the objective of the first stage
of the proposed method is to obtain a realistic point cloud in which the evolution of the
rotor’s angular speed ωr and the rotor’s electromagnetic torque Me in the real physical
system can be visualized. On the other hand, the objective model sought by the method, to
accurately predict the values of the above variables, must be able to react and self-stabilize
against variations of input voltages, or changes of the load torque Ml and synchronous
speed ωe, to achieve this the IM drive Simulink model proves to be of great help.

The training data have been collected assuming initially a synchronous reference
speed ωe = 2π × fb, where fb is the frequency of the feeding voltage (=100 s−1.) in the stator
winding. Ml is the load torque, whose values are in the range [0.0 . . . 330.0] Nm during the

Mathematics 2022, 10, 3410 14 of 30

simulation. The collected data from the Simulink model are the voltages and currents in
the three phases of the named abc reference system. Figure 11 shows the reference rotor
speed ωr, which is assumed to change over the simulation time. The simulation time was
50 s. The simulation was done with a sample time of 0.0005 s and the size of data points is
250,000. The rotor speed ωr has been stored in the MATLAB workspace as a time series
represented by a table with the same time step as the simulation sampling time.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 29

which have been chosen to be the load torque Ml and the ωe synchronous angular speed

of B in the stator (see Table 2).

The point clouds for ANN training can be obtained in several ways: by direct meas-

urement of the physical device (IM) using a rotating torque-meter or obtained directly

(off-line) from an experimental database for three-phase induction motor rotor fault de-

tection and diagnosis [25], or they can be obtained by simulating the IM drive with Sim-

ulink, which is the option chosen in this study. The acquisition of the training data must

be repeated several times, and outliers must be eliminated. In the end, the objective of the

first stage of the proposed method is to obtain a realistic point cloud in which the evolu-

tion of the rotor’s angular speed ωr and the rotor’s electromagnetic torque Me in the real

physical system can be visualized. On the other hand, the objective model sought by the

method, to accurately predict the values of the above variables, must be able to react and

self-stabilize against variations of input voltages, or changes of the load torque Ml and

synchronous speed ωe, to achieve this the IM drive Simulink model proves to be of great

help.

The training data have been collected assuming initially a synchronous reference

speed ωe = 2πfb, where fb is the frequency of the feeding voltage (=100 s−1.) in the stator

winding. Ml is the load torque, whose values are in the range [0.0…330.0] Nm during the

simulation. The collected data from the Simulink model are the voltages and currents in

the three phases of the named abc reference system. Figure 11 shows the reference rotor

speed ωr, which is assumed to change over the simulation time. The simulation time was

50 s. The simulation was done with a sample time of 0.0005 s and the size of data points

is 250,000. The rotor speed ωr has been stored in the MATLAB workspace as a time series

represented by a table with the same time step as the simulation sampling time.

Figure 11. Applied reference rotor speed. Training data are collected from the Simulink model of

the IM drive.

3.2. Design of the ANN and Selected Hyperparameters

The type of ANN is very important to get an accurate estimation of the electromag-

netic torque and speed of the IM. The DLT toolbox of MATLAB has been used to imple-

ment the ANN deployed in the study. The ANN hyperparameters related to the structure

(number of neurons and hidden layers...) have been chosen by trial and error; those re-

lated to how the network is trained (backpropagation step, activation function, epochs...)

are given by the selected training function and, usually, can be adjusted manually. A shal-

low multilayer neural network with two hidden layers has been initially defined, Figure

Figure 11. Applied reference rotor speed. Training data are collected from the Simulink model of the
IM drive.

3.2. Design of the ANN and Selected Hyperparameters

The type of ANN is very important to get an accurate estimation of the electromagnetic
torque and speed of the IM. The DLT toolbox of MATLAB has been used to implement the
ANN deployed in the study. The ANN hyperparameters related to the structure (number
of neurons and hidden layers . . .) have been chosen by trial and error; those related to how
the network is trained (backpropagation step, activation function, epochs . . .) are given by
the selected training function and, usually, can be adjusted manually. A shallow multilayer
neural network with two hidden layers has been initially defined, Figure 12a. The training
function of both ANN has been chosen as the Levenberg-Marquardt (‘trainlm’) one, but
any other could have been chosen instead.

The objective function selected was the mean squared error (MSE). Of course, the
number of hidden layers and the number of neurons in each layer can be tuned to obtain,
with the maximum possible performance, the estimated speed within a time window (50 s).
We have selected here 20 and 10 neurons for the first and second hidden layers, respectively.

Mathematics 2022, 10, 3410 15 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 29

12a. The training function of both ANN has been chosen as the Levenberg-Marquardt

(‘trainlm’) one, but any other could have been chosen instead.

Figure 12. Architectures of the neural networks deployed in the study. (a) Feed-forward neural

network with two hidden layers; (b) Narx implemented with a two-layer feed forward network.

The objective function selected was the mean squared error (MSE). Of course, the

number of hidden layers and the number of neurons in each layer can be tuned to obtain,

with the maximum possible performance, the estimated speed within a time window (50

s.). We have selected here 20 and 10 neurons for the first and second hidden layers, re-

spectively.

In the second part of the study, a non-linear autoregressive with exogenous input

neural network has been used, Figure 12b, i.e., a two-layer feed-forward narx, with ten

neurons and a sigmoid transfer function (depicted as one Simulink block with curved

line), which takes an input data matrix and returns another one where each column vector

contains a single value ‘1’, with all other elements equal to ‘0’. In the output layer, one

linear transfer function (Simulink block with an oblique straight line) has been defined.

Figure 12. Architectures of the neural networks deployed in the study. (a) Feed-forward neural
network with two hidden layers; (b) Narx implemented with a two-layer feed forward network.

In the second part of the study, a non-linear autoregressive with exogenous input
neural network has been used, Figure 12b, i.e., a two-layer feed-forward narx, with ten
neurons and a sigmoid transfer function (depicted as one Simulink block with curved
line), which takes an input data matrix and returns another one where each column vector
contains a single value ‘1’, with all other elements equal to ‘0’. In the output layer, one
linear transfer function (Simulink block with an oblique straight line) has been defined.

3.3. Training of the ANN

The main objective of ANN training is to minimize the objective function F(x, Πi)
iteratively by fitting a set Πi = {α,β,γ, . . . } of hyperparameters with respect to K training
samples, which have been initially chosen to be a subset of the point clouds yielded by the
prior registry stage, i.e.,

x =
{

vi
a, vi

b, vi
c, ii

a, ii
b, ii

c, Mi
l , ωi

e

}K

i=1
(13)

Mathematics 2022, 10, 3410 16 of 30

where vx, ix, Ml, ωe are the input voltages and currents in the three-phase reference system,
the load torque, and the synchronous speed, respectively.

This process can be expressed by the following equation, minΠi F(x, Πi), such that

F(x, Πi) = l.r.
({

vi
a, vi

b, vi
c, ii

a, ii
b, ii

c, Mi
l , ωi

e

)
}K

i=1, Πi

)
+ r(Πi

)
(14)

where F is the objective function, l.r. represents a linear relationship between each set of
training samples and the hyperparameters Πi, and the function r(·)represents the penalties
that the application of each set of hyperparameter values may incur.

The optimization of the objective function F can be performed by several techniques:
reinforcement learning, heuristics, and gradient descent, . . . In our method, we have
chosen the latter one because the functions describing the cyber-physical model are all
differentiable. F maintains the same properties, so that the calculation of minΠi F(x, Πi)
does not usually diverge if gradient descent application is chosen.

The training of each of the ANNs used in the study has been performed offline, using
the recorded currents and voltage data during a representative run of the IM drive model
to save implementation time. The rotor speed ωr was then predicted (‘estimated speed’) by
training first the ff ANN and then the narx ANN. The same process has been carried out
for the estimation of the electromagnetic torque Me.

3.4. Validation of the ANN

In order to obtain a useful objective function adapted to our case study, we will define
a cost function to be optimized and build the complete performance evaluation model,
for which we have selected the MSE based on four key factors: vx, ix, ωr and the Me,
(see definitions in Table 2) affecting the reliability and efficiency of the IM model.

Therefore, we can interleave the dimensions of the model (
→
vx,

→
ix , Me, ωr) to obtain a

multidimensional evaluation of performance, such that the MSE can guide the iterations
during the application of the gradient descent technique,

Ikx =

√√√√∑K
i=1

(
→
ixi −

→
ire f
xi

)2

K
(15)

Ekx =

√√√√∑K
i=1

(
→
vxi −

→
vre f

xi

)2

K
(16)

Mek =

√
∑K

i=1

(
Mei −Mre f

ei

)2

K
(17)

Wrk =

√
∑K

i=1

(
ωri −ω

re f
ri

)2

K
(18)

The reference values of the four key factors for MSE calculation are the measured
values of currents, voltages, torque, and synchronous speed in each one of the K training
samples. We can find the optimal model by minimization of

F(Π) = log
(
α·Ekx + β·Ikx + γ·Mek + δ·Wrk

)
(19)

We consider that the natural logarithm can substitute the square root. In the latter
equation α, β, γ, and δ denote the weight hyperparameters, and Ekx, Ikx, Mek, Wrk represent
the performance factors of input voltages, currents, torque, and motor speed, respectively.

Mathematics 2022, 10, 3410 17 of 30

First, we create the network by executing ‘name = feedforwardnet ([10, 20])’ of DLT;
i.e., we create a two-layer feed-forward network with 10 and 5 hidden neurons, respectively.
In the second part of the study, we repeated the process by creating a narx network by
issuing the command name = narxnet(10). By executing the command ‘view (net_name)’, for
each of the two networks created we can visualize the images (a) and (b) in (Figure 12).

We have validated and tested both ANNs to prove the performance and accuracy of
the feed-forward and narx networks. Tests have been performed by calculating the MSE of
the estimated values of ωr and Me by applying regression. The estimated values should
be tested with all the data available (training, validation, and test) up to that point. If the
accuracy of the results is not satisfactory, the previous steps should be repeated, as shown
in the diagram in Figure 10.

3.5. Exporting the Simulink Block

At this stage, after checking the efficiency and accuracy of the ANN generated in the
previous phase of the method, the neural network can be exported as a Simulink block
using the command ‘gensim(net_name)’ of the DLT application. The steps to obtain an
accurate estimate of the ωr and Me can be carried out as in the listing below. This code
shows that the ff ANN has been selected to obtain these predictions and that it has two
hidden layers of 10 and 5 neurons, respectively,

1. Implement a Simulink model of the IM;
2. Simulation running of the Simulink model;
3. Collect the input signals (currents, voltages, load torque, stator synchronous speed)
4. Collect the output signals, i.e., values of rotor speed and electromagnetic torque for

training the ANN;
5. Design the ANN as a result of issuing similar commands as the next ones:

ff_net = feedforwardnet ([20, 10]);

ff_net.trainFcn = ’trainlm’;
ff_net.trainFcn = ’trainlm’;
ff_net.divideFcn =’dividetrain’;
ff_net.divideMode =’sample’;
ff_net.trainParam.Epochs = 1000;

6. Configure and train the ANN as a result of the commands:

ff_net = configure(ff_net, input_signals, output_signals); [ff_net,tr] = train(ff_net,
input_signals, output_signals).

3.6. ANN Parallelization Assessment

A fully connected network that contains two hidden layers of size 2K has been defined,
and one of them is constituted as a 50% dropout layer between them to avoid overfitting.
Each of the K-sub-networks is susceptible to be run in parallel. The optimal value of K will
depend on the number of CPU/GPU cores available on the machine and all K models are
started in parallel to follow a process that interchanges training and model validation by
coding the algorithm to operate on separate data partitions, according to the SPMD parallel
data execution paradigm. The assessment, which is carried out during the execution of
the application, consists of the comparison and fitting of the hyperparameters of the cyber-
physical model by using for this purpose the Simulink model of the IM drive, see (Figure 7).
In this way, it is possible to accelerate the convergence of the optimal values with respect to
the application of the approximate gradient descent only.

4. ANN-Based Speed Estimator

The input and output signals of ωr and Me estimators can be obtained during the
training phase by simulation of the IM drive, shown in (Figures 7 and 8). ff ANN rotor
speed estimator is exported as a Simulink block with the input x1 (time, currents, voltages)
and the output y1 (rotor_speed) signals, as they are shown in (Figure 13).

Mathematics 2022, 10, 3410 18 of 30
Mathematics 2022, 10, x FOR PEER REVIEW 18 of 29

Figure 13. The construction of the ff ANN block in Simulink. Detailed implementation of the IM

drive Simulink model, including the generated block.

4.1. FF Network Based Rotor Speed Estimator

The MATLAB DLT application has been used to train, validate, and test the ANN

(created as ‘ff_net’). Figure 14 shows the architecture of the ff ANN, information about the

algorithm selected for training and the objective function deployed in the validation

phase, as well as other characteristics of ‘ff_net’ and the total execution time spent training

this network.

(a)

(b)

Training progress

Unit Initial

value

Stopped

value

Target

value

Epoch 0 1000 1000

Elapsed

time

 00:21:23

Perfor‐

mance

3.1 102 3.16 0

Gradient 5.81 104 4.87 10‐7

Mu 0.001 0.001 1010

Validation

Checks

0 0 6

Figure 14. (a) Architecture of the ANN for rotor speed estimator training; (b) results of the ANN

training.

The performance of the ANN‐based rotor speed ωr estimator of the IM has been ob‐

tained by the MSE calculated during 1000 epochs of training, and it is shown in Figure

15a. The error histogram is shown in Figure 15b.

Figure 13. The construction of the ff ANN block in Simulink. Detailed implementation of the IM
drive Simulink model, including the generated block.

4.1. FF Network Based Rotor Speed Estimator

The MATLAB DLT application has been used to train, validate, and test the ANN
(created as ‘ff_net’). Figure 14 shows the architecture of the ff ANN, information about
the algorithm selected for training and the objective function deployed in the validation
phase, as well as other characteristics of ‘ff_net’ and the total execution time spent training
this network.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 29

Figure 13. The construction of the ff ANN block in Simulink. Detailed implementation of the IM

drive Simulink model, including the generated block.

4.1. FF Network Based Rotor Speed Estimator

The MATLAB DLT application has been used to train, validate, and test the ANN

(created as ‘ff_net’). Figure 14 shows the architecture of the ff ANN, information about the

algorithm selected for training and the objective function deployed in the validation

phase, as well as other characteristics of ‘ff_net’ and the total execution time spent training

this network.

(a)

(b)

Training progress

Unit Initial

value

Stopped

value

Target

value

Epoch 0 1000 1000

Elapsed

time

 00:21:23

Perfor‐

mance

3.1 102 3.16 0

Gradient 5.81 104 4.87 10‐7

Mu 0.001 0.001 1010

Validation

Checks

0 0 6

Figure 14. (a) Architecture of the ANN for rotor speed estimator training; (b) results of the ANN

training.

The performance of the ANN‐based rotor speed ωr estimator of the IM has been ob‐

tained by the MSE calculated during 1000 epochs of training, and it is shown in Figure

15a. The error histogram is shown in Figure 15b.

Figure 14. (a) Architecture of the ANN for rotor speed estimator training; (b) results of the ANN training.

The performance of the ANN-based rotor speed ωr estimator of the IM has been
obtained by the MSE calculated during 1000 epochs of training, and it is shown in Figure 15a.
The error histogram is shown in Figure 15b.

Mathematics 2022, 10, 3410 19 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 29

(a) (b) (c)

Figure 15. (a) Performance of the ANNbased rotor speed estimator considering mean squared er‐

ror (MSE); (b) Error histogram of the ANNbased rotor speed; (c) Regression between the rotor

speed estimated by the ff ANN and the measured in the IM drive.

As can be seen, the figures show a linear regression between the estimated (predicted

by ‘ff_net’) and the measured (in the IM drive) rotor speed values. The regression calcu‐

lation between the estimated and measured rotor speed ωr has been displayed in Figure

15c.

4.2. NARX Network Based Rotor Speed Estimator

In addition to the above speed estimator, obtained from an ff ANN, another narx

ANN has also been trained to predict a time series y(t) from the past values of the feedback

signal y(t) and the values of the exogenous input series x(t). The time series y(t) contains

values of ωr, and the series x(t), the vectors of the motor input currents and voltages in the

‘abc’ phase‐normal reference system, as Table 3 shows.

Table 3. Created narx ANN characteristics.

Series Role Time Steps
Number of

Features
Features

Predictors: x(t) 250,004 7 (time, ia, ib, ic, va, vb, vc)
Responses: y(t) 250,004 2 1 (time, ωr)

1 Exogeneous signal components.

Narx neural networks can be applied in three different forms for making predictions,

 Open loop;

 Closed loop;

 Open/closed multistep prediction.

In general, with the next value of the dependent output signal y(t), a regression is

performed on previous values of this output signal and the previous values of the exoge‐

nous independent input signal x(t).

A series‐parallel architecture based on an ff network can be efficiently used for train‐

ing a narx neural network when modeling dynamic systems since doing so is faster than

training the parallel configuration directly. We are going to apply the created narx for an

open/closed multi‐step prediction, i.e., the socalled ‘narx_net’ can initially be imple‐

mented using an ff ANN to approximate the following function,

𝑡 𝑓 𝑦 𝑡 1 ,𝑦 𝑡 2 , … , 𝑦 𝑡 𝑛 , 𝑥 𝑡 1 , 𝑥 𝑡 2 , … 𝑥 𝑡 𝑛 (20)

Figure 16a shows the seriesparallel architecture that has been used for training the
‘narx_net.’ Subsequently, the feedback loop is closed to convert such architecture into its

parallel configuration as shown in Figure 16b for performing predictions of values in the

series y(t). This technique is very useful for performing multistep forward prediction in

Figure 15. (a) Performance of the ANN-based rotor speed estimator considering mean squared error
(MSE); (b) Error histogram of the ANN-based rotor speed; (c) Regression between the rotor speed
estimated by the ff ANN and the measured in the IM drive.

As can be seen, the figures show a linear regression between the estimated (pre-
dicted by ‘ff_net’) and the measured (in the IM drive) rotor speed values. The regression
calculation between the estimated and measured rotor speed ωr has been displayed in
Figure 15c.

4.2. NARX Network Based Rotor Speed Estimator

In addition to the above speed estimator, obtained from an ff ANN, another narx ANN
has also been trained to predict a time series y(t) from the past values of the feedback signal
y(t) and the values of the exogenous input series x(t). The time series y(t) contains values
of ωr, and the series x(t), the vectors of the motor input currents and voltages in the ‘abc’
phase-normal reference system, as Table 3 shows.

Table 3. Created narx ANN characteristics.

Series Role Time Steps Number of
Features Features

Predictors: x(t) 250,004 7 (time, ia, ib, ic, va, vb, vc)
Responses: y(t) 250,004 2 1 (time, ωr)

1 Exogeneous signal components.

Narx neural networks can be applied in three different forms for making predictions,

• Open loop;
• Closed loop;
• Open/closed multistep prediction.

In general, with the next value of the dependent output signal y(t), a regression
is performed on previous values of this output signal and the previous values of the
exogenous independent input signal x(t).

A series-parallel architecture based on an ff network can be efficiently used for training
a narx neural network when modeling dynamic systems since doing so is faster than
training the parallel configuration directly. We are going to apply the created narx for an
open/closed multi-step prediction, i.e., the so-called ‘narx_net’ can initially be implemented
using an ff ANN to approximate the following function,

(t) = f
(
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
, x(t− 1), x(t− 2), . . . x(t− nx)

)
(20)

Figure 16a shows the series-parallel architecture that has been used for training the
‘narx_net.’ Subsequently, the feedback loop is closed to convert such architecture into its

Mathematics 2022, 10, 3410 20 of 30

parallel configuration as shown in Figure 16b for performing predictions of values in the
series y(t). This technique is very useful for performing multi-step forward prediction
in modeling nonlinear dynamic systems such as the IM drive we are concerned with in
this study.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 29

modeling nonlinear dynamic systems such as the IM drive we are concerned with in this

study.

(a) (b)

Figure 16. (a) Narx model implemented with feed-forward neural network to approximate the func-

tion f. (b) Parallel configuration for multi-step-ahead prediction.

The protocol to be followed to obtain an accurate estimate of ωr and Me is given in the

following list of actions and commands of the DLT. The following code shows that the

‘narx_net’ has been selected to obtain the above predictions (estimates) and that it has one

hidden layer of 10 neurons,

1. Implement a Simulink model of the IM;

2. Simulation running of the Simulink model;

3. Collect the input signals (currents, voltages, load torque, stator synchronous speed)

4. Collect the output signals, i.e., values of rotor velocity and electric torque for training

the ANN;

5. Design the NARX ANN as a result of issuing similar commands as the next ones:

delay1 = [1:2]; delay2 = [1:2];

narx_net = narxnet(delay1,delay2,10); narx_net.trainFcn = ’trainlm’;

narx_net.trainParam.min_grad = 1 × 10−10; narx_net.trainParam.Epochs = 1000;

6. Configure and train the NARX ANN as a result of the commands:

[p,Pi,Ai,t]= preparets(narx_net,X,{},Y);

narx_net=train(narx_net,p,t,Pi);

7. Close narx_net for obtaining multi-step predictions of target values:

narx_net_closed= closeloop(narx_net);

The training data must be used with a tapped delay with respect to the inputs of both

signals. The above code listing has defined two identical delays ([1:2]) for both predictors

and responses so that the training of the network begins with the third data point in the

input(X) and output(Y) to the series-parallel network ‘narx_net.’ Using the ‘preparets’ con-

figuration command means that a lot of data preparation is required before training the

network’s tapped delay lines, which must be filled with initial conditions. Finally, the

‘narx_net_closed’ network is prepared to make predictions after the execution of the

‘closedloop’ command converts the trained network into its parallel configuration.

Since with narx neural networks, it is more frequent to get into overfitting situations,

in this part of the study, it was decided to manually divide the dataset into 70% for train-

ing, 15% to validate that the ANN is generalizing correctly, and stop it before overfitting,

and 15% to test the generalization performed by the ANN. Therefore, the histogram of

errors and the regression between estimated data and actual data must be displayed for

each of the mentioned subsets (training, validation, testing), as shown by the different

graphs in Figure 17.

Figure 16. (a) Narx model implemented with feed-forward neural network to approximate the
function f. (b) Parallel configuration for multi-step-ahead prediction.

The protocol to be followed to obtain an accurate estimate of ωr and Me is given in
the following list of actions and commands of the DLT. The following code shows that the
‘narx_net’ has been selected to obtain the above predictions (estimates) and that it has one
hidden layer of 10 neurons,

1. Implement a Simulink model of the IM;
2. Simulation running of the Simulink model;
3. Collect the input signals (currents, voltages, load torque, stator synchronous speed)
4. Collect the output signals, i.e., values of rotor velocity and electric torque for training

the ANN;
5. Design the NARX ANN as a result of issuing similar commands as the next ones:

delay1 = [1:2]; delay2 = [1:2];
narx_net = narxnet(delay1,delay2,10); narx_net.trainFcn = ‘trainlm’;
narx_net.trainParam.min_grad = 1 × 10−10; narx_net.trainParam.Epochs = 1000;

6. Configure and train the NARX ANN as a result of the commands:
[p,Pi,Ai,t]= preparets(narx_net,X,{},Y);
narx_net=train(narx_net,p,t,Pi);

7. Close narx_net for obtaining multi-step predictions of target values:
narx_net_closed= closeloop(narx_net);

The training data must be used with a tapped delay with respect to the inputs of both
signals. The above code listing has defined two identical delays ([1:2]) for both predictors
and responses so that the training of the network begins with the third data point in
the input(X) and output(Y) to the series-parallel network ‘narx_net.’ Using the ‘preparets’
configuration command means that a lot of data preparation is required before training
the network’s tapped delay lines, which must be filled with initial conditions. Finally,
the ‘narx_net_closed’ network is prepared to make predictions after the execution of the
‘closedloop’ command converts the trained network into its parallel configuration.

Since with narx neural networks, it is more frequent to get into overfitting situations,
in this part of the study, it was decided to manually divide the dataset into 70% for training,
15% to validate that the ANN is generalizing correctly, and stop it before overfitting, and
15% to test the generalization performed by the ANN. Therefore, the histogram of errors
and the regression between estimated data and actual data must be displayed for each of
the mentioned subsets (training, validation, testing), as shown by the different graphs in
Figure 17.

Mathematics 2022, 10, 3410 21 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 29

(a) (b)

(c) (d)

Figure 17. (a) Performance of the narxbased rotor speed estimator considering mean squared error

(MSE); (b) Error histogram of the narxbased rotor speed; (c) Regression between the rotor speed

estimated by the narx and then measured in the IM drive during training and validation; (d) regres-

sion during testing and regression globally calculated of the speed estimator.

4.3. Results and Discussion

The DLT MATLAB application was used to validate the complete target system as-

sociated with the ANNs for motor speed and electromagnetic torque estimation.

We have carried out a double validation of the ANN-based estimator response for

rotor speed ωr in this section considering a time span of 50 s from the training speed and

the load torque Ml has been maintained constant. The measured speed with the IM driver

model and the estimated speed based on the ff ANN is shown in Figure 18. The actual

reference speed of the IM driver and the speed estimated by the narx ANN-based estima-

tor can be seen in Figure 19. We can see in both figures that the measured and estimated

rotor speeds have the same trajectory, so we can conclude that the accuracy of the two-

speed estimators based on two different types of ANN has been correctly validated.

Figure 17. (a) Performance of the narx-based rotor speed estimator considering mean squared
error (MSE); (b) Error histogram of the narx-based rotor speed; (c) Regression between the rotor
speed estimated by the narx and then measured in the IM drive during training and validation;
(d) regression during testing and regression globally calculated of the speed estimator.

4.3. Results and Discussion

The DLT MATLAB application was used to validate the complete target system associ-
ated with the ANNs for motor speed and electromagnetic torque estimation.

We have carried out a double validation of the ANN-based estimator response for
rotor speed ωr in this section considering a time span of 50 s from the training speed and
the load torque Ml has been maintained constant. The measured speed with the IM driver
model and the estimated speed based on the ff ANN is shown in Figure 18. The actual
reference speed of the IM driver and the speed estimated by the narx ANN-based estimator
can be seen in Figure 19. We can see in both figures that the measured and estimated rotor
speeds have the same trajectory, so we can conclude that the accuracy of the two-speed
estimators based on two different types of ANN has been correctly validated.

However, in Figure 19, we can observe that perturbations in the response (ωr) of the
narx-based estimator are evident up to 8 s of run time, although the output signal tends to
stabilize soon after. In general, we can observe that the rotor speed ωr follows the changes
produced in the synchronous ωe angular speed in the stator. Since any change in the value
of ωe causes rapid oscillations around the new value in the rotor speed ωr, such oscillations
are more dramatic at the beginning in the narx-based estimator; this is probably caused by
the closed loop of the feedback signal that brings the output values of the speed back to the
input of the estimator. Therefore, we could state in view of the ωr response plots that the
narx-based estimator performs worse and takes longer to self-stabilize than the ff-based

Mathematics 2022, 10, 3410 22 of 30

estimator. The plots in Figures 18b and 19b, which show the error between the measured
and estimated values of the rotor speed, also agree that the error shown by the ff-based
open-loop estimator is smaller than the error produced by the closed-loop narx-based
implementation. In addition, a perturbation of the rotor speed at 31 s is shown in Figure 18a
that has no effect on the estimated output speed, which confirms the self-establishing
capability of the ff-based estimator.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 29

(a)

(b)

Figure 18. (a) Rotor speed ωr measured (orange) using the IM drive Simulink model, estimated

(blue) by the generated block from ‘ff_net’; (b) Rotor speed error between measured and estimated

ωr (scaled to 1.0).

However, in Figure 19, we can observe that perturbations in the response (ωr) of the

narxbased estimator are evident up to 8 s of run time, although the output signal tends

to stabilize soon after. In general, we can observe that the rotor speed ωr follows the

changes produced in the synchronous ωe angular speed in the stator. Since any change in

the value of ωe causes rapid oscillations around the new value in the rotor speed ωr, such

oscillations are more dramatic at the beginning in the narxbased estimator; this is prob-

ably caused by the closed loop of the feedback signal that brings the output values of the

speed back to the input of the estimator. Therefore, we could state in view of the ωr re-

sponse plots that the narxbased estimator performs worse and takes longer to selfsta-

bilize than the ff-based estimator. The plots in Figures 18b and 19b, which show the error

between the measured and estimated values of the rotor speed, also agree that the error

shown by the ffbased openloop estimator is smaller than the error produced by the

closed-loop narxbased implementation. In addition, a perturbation of the rotor speed at

31 s is shown in Figure 18a that has no effect on the estimated output speed, which con-

firms the self-establishing capability of the ffbased estimator.

Figure 18. (a) Rotor speed ωr measured (orange) using the IM drive Simulink model, estimated
(blue) by the generated block from ‘ff_net’; (b) Rotor speed error between measured and estimated
ωr (scaled to 1.0).

Mathematics 2022, 10, 3410 23 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 23 of 29

(a)

(b)

Figure 19. (a) Rotor speed ωr measured (orange) using the IM drive Simulink model, estimated

(blue) by the generated block from ‘narx_net’; (b) Rotor speed error between measured and esti-

mated ωr (scaled to 1.0).

5. ANN-Based Electromagnetic Torque Estimator

We have carried out a double validation of the response of the ANN-based estimator

for the electromagnetic torque Me in this section, considering a time span of 50 s of the

training speed ωe, and the load torque Ml has been maintained constant.

Feed-forward and narx ANN rotor speed estimators are exported as DLT-generated

blocks for their use in the target Simulink model with the input x1 (time, currents, volt-

ages) and the output y1 (electromagnetic_torque) signals. The load torque Ml, which has

been applied to obtain the training data, and the electrical torque Me measured with the

IM drive have been shown in Figure 20.

Figure 20. Zoomed electromagnetic torque (blue) Me (Nm) with the Simulink model of the IM drive

and load torque (orange) Ml (Nm) input to models during simulation.

Figure 19. (a) Rotor speed ωr measured (orange) using the IM drive Simulink model, estimated (blue)
by the generated block from ‘narx_net’; (b) Rotor speed error between measured and estimated ωr

(scaled to 1.0).

5. ANN-Based Electromagnetic Torque Estimator

We have carried out a double validation of the response of the ANN-based estimator
for the electromagnetic torque Me in this section, considering a time span of 50 s of the
training speed ωe, and the load torque Ml has been maintained constant.

Feed-forward and narx ANN rotor speed estimators are exported as DLT-generated
blocks for their use in the target Simulink model with the input x1 (time, currents, voltages)
and the output y1 (electromagnetic_torque) signals. The load torque Ml, which has been
applied to obtain the training data, and the electrical torque Me measured with the IM drive
have been shown in Figure 20.

Mathematics 2022, 10, 3410 24 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 23 of 29

(a)

(b)

Figure 19. (a) Rotor speed ωr measured (orange) using the IM drive Simulink model, estimated

(blue) by the generated block from ‘narx_net’; (b) Rotor speed error between measured and esti‐

mated ωr (scaled to 1.0).

5. ANN‐Based Electromagnetic Torque Estimator

We have carried out a double validation of the response of the ANN‐based estimator

for the electromagnetic torque Me in this section, considering a time span of 50 s of the

training speed ωe, and the load torque Ml has been maintained constant.

Feed‐forward and narx ANN rotor speed estimators are exported as DLT‐generated

blocks for their use in the target Simulink model with the input x1 (time, currents, volt‐

ages) and the output y1 (electromagnetic_torque) signals. The load torque Ml, which has

been applied to obtain the training data, and the electrical torque Me measured with the

IM drive have been shown in Figure 20.

Figure 20. Zoomed electromagnetic torque (blue) Me (Nm) with the Simulink model of the IM drive

and load torque (orange) Ml (Nm) input to models during simulation.
Figure 20. Zoomed electromagnetic torque (blue) Me (Nm) with the Simulink model of the IM drive
and load torque (orange) Ml (Nm) input to models during simulation.

5.1. FF Network Based Electromagnetic Torque Estimator

The input data to the ff ANN estimator are based on the measured currents and
voltages in the IM drive model with respect to the abc phase-standard reference system.
The output data are the electromagnetic torque Me and the speed ωr in the rotor over time.

The DLT of MATLAB has been used to train, validate, and test the ff ANN Me estimator.
The input and output data have been collected during the training by simulation with the
Simulink IM drive system. The generation of the ff ANN block in Simulink is performed
with the DLT commands,

1. TqTT = timeseries2timetable(Torque);
2. TqT1 = [seconds(TqTT.Time), TqTT.Data];
3. Tq = tonndata(TqT1,false,false);
4. W = [XT1(:,1:4),ZT1(:,2:4)];%(time, currents, voltages)
5. [ff_net, tr] = train(ff_net, W, Tq);
6. gensim(ff_net); %Simulink- FF ANN block generated

The performance of the ff ANN-based electromagnetic torque Me estimator has been
obtained by calculating the MSE for 1000 epochs of training, as shown in Figure 21a. The
error histogram in Figure 21b shows that more than 99% of all the instances exhibit almost
negligible errors. (<0.020).

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 29

5.1. FF Network Based Electromagnetic Torque Estimator

The input data to the ff ANN estimator are based on the measured currents and volt‐

ages in the IM drive model with respect to the abc phase‐standard reference system. The

output data are the electromagnetic torque Me and the speed ωr in the rotor over time.

The DLT of MATLAB has been used to train, validate, and test the ff ANN Me esti‐

mator. The input and output data have been collected during the training by simulation

with the Simulink IM drive system. The generation of the ff ANN block in Simulink is

performed with the DLT commands,

1. TqTT = timeseries2timetable(Torque);

2. TqT1 = [seconds(TqTT.Time), TqTT.Data];

3. Tq = tonndata(TqT1,false,false);

4. W = [XT1(:,1:4),ZT1(:,2:4)];%(time, currents, voltages)

5. [ff_net, tr] = train(ff_net, W, Tq);

6. gensim(ff_net); %Simulink‐ FF ANN block generated

The performance of the ff ANN‐based electromagnetic torque Me estimator has been

obtained by calculating the MSE for 1000 epochs of training, as shown in Figure 21a. The

error histogram in Figure 21b shows that more than 99% of all the instances exhibit almost

negligible errors. (<0.020).

(a) (b) (c)

Figure 21. (a) Performance of the ANN‐based electromagnetic torque Me estimator considering

mean squared error (MSE); (b) Error histogram of electromagnetic torque Me; (c) Regression be‐

tween the electromagnetic Me torque estimated by the ff ANN and the measured one in the IM drive.

It can be seen that there is a linear regression between the estimated electromagnetic

torque and the one measured with the IM driver, such regression has been calculated di‐

rectly from the 50 s time series obtained from the Simulink model, and the results are

presented in Figure 21c.

5.2. FF Network Based Electromagnetic Torque Estimator

A second narx ANNbased (Table 4) estimator of electromagnetic torque Me for the

rotor has been generated with the DLT commands,

1. narx_net = narxnet(narx_net, delay1, delay2,10);

2. [x,xi,ai,t] = preparets(narx_net, W,{}, Tq);

3. narx_net = train(narx_net, x, t, xi, ai);

4. narx_net_closed = closeloop(narx_net);

5. %Simulink‐NARX ANN block generated

6. gensim(narx_net);

The time series y(t) contains now values of Me and the series x(t) the vectors of the

motor input currents and voltages in theabc phase‐normal reference system.

As we did for the speed estimator, the dataset has been manually divided into 70%

for training, 15% for validation, and 15% for testing. Therefore, the histogram of errors

and the regression between estimated data and actual data must be displayed for each of

Figure 21. (a) Performance of the ANN-based electromagnetic torque Me estimator considering mean
squared error (MSE); (b) Error histogram of electromagnetic torque Me; (c) Regression between the
electromagnetic Me torque estimated by the ff ANN and the measured one in the IM drive.

Mathematics 2022, 10, 3410 25 of 30

It can be seen that there is a linear regression between the estimated electromagnetic
torque and the one measured with the IM driver, such regression has been calculated
directly from the 50 s time series obtained from the Simulink model, and the results are
presented in Figure 21c.

5.2. FF Network Based Electromagnetic Torque Estimator

A second narx ANN-based (Table 4) estimator of electromagnetic torque Me for the
rotor has been generated with the DLT commands,

Table 4. Created narx characteristics.

Series role Time Steps Number of
Features Features

Predictors: x(t) 250,004 7 (time, ia, ib, ic, va, vb, vc)
Responses: y(t) 250,004 2 1 (time, Me)

1 Exogeneous signal components.

1. narx_net = narxnet(narx_net, delay1, delay2,10);
2. [x,xi,ai,t] = preparets(narx_net, W,{}, Tq);
3. narx_net = train(narx_net, x, t, xi, ai);
4. narx_net_closed = closeloop(narx_net);
5. %Simulink-NARX ANN block generated
6. gensim(narx_net);

The time series y(t) contains now values of Me and the series x(t) the vectors of the
motor input currents and voltages in theabc phase-normal reference system.

As we did for the speed estimator, the dataset has been manually divided into 70%
for training, 15% for validation, and 15% for testing. Therefore, the histogram of errors
and the regression between estimated data and actual data must be displayed for each of
the mentioned subsets (training, validation, testing), as shown by the different graphs in
Figure 22a–c.

5.3. Obtained Results and Discussion

The DLT of MATLAB has been used to train, validate, and test the ff ANN and narx
electromagnetic torque estimator considering a time span of 50 s from the training speed.
The load torque has been maintained constant and equal to 145 Nm in the plots.

Figure 23a shows the zoomed capture of the measured data (used for training) and
the estimated electromagnetic torque values after training the ff ANN estimator. The input
data of the ff ANN are based on the measured voltages and currents in the abc-phases
representation and the electromagnetic torque of the rotor. The output and input data can
be obtained during the training stage by simulation of the IM drive with Simulink.

The errors, scaled to 1.0, obtained between the estimated and measured Me for the
rotor are shown in Figure 23b and the results shown validate accuracy and effectiveness of
the ff ANN estimator implemented as a Simulink block by using DLT.

Figure 24a shows the actual reference torque Me produced by the IM drive and the
output of the narx ANN-based estimator. We can see that the measured and estimated
electromagnetic torques have the same trajectory, so we can conclude that the accuracy of
the two torque estimators based on two different types of ANN has been correctly validated.

Mathematics 2022, 10, 3410 26 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 29

the mentioned subsets (training, validation, testing), as shown by the different graphs in

Figure 22a–c.

Table 4. Created narx characteristics.

Series role Time Steps
Number of

Features
Features

Predictors: x(t) 250,004 7 (time, ia, ib, ic, va, vb, vc)

Responses: y(t) 250,004 2 1 (time, Me)
1 Exogeneous signal components.

(a) (b)

(c) (d)

Figure 22. (a) Performance of the narxbased electromagnetic torque Me estimator considering mean

squared error (MSE); (b) Error histogram of electromagnetic torque Me; (c) Regression between the

narxestimated electromagnetic Me torque and the measured one in the Simulink IM drive during

training andvalidation; (d) Regression during testing and regression globally calculated.

5.3. Obtained Results and Discussion

The DLT of MATLAB has been used to train, validate, and test the ff ANN and narx

electromagnetic torque estimator considering a time span of 50 s from the training speed.

The load torque has been maintained constant and equal to 145 Nm in the plots.

Figure 23a shows the zoomed capture of the measured data (used for training) and

the estimated electromagnetic torque values after training the ff ANN estimator. The in‐

put data of the ff ANN are based on the measured voltages and currents in the abc‐phases

representation and the electromagnetic torque of the rotor. The output and input data can

be obtained during the training stage by simulation of the IM drive with Simulink.

The errors, scaled to 1.0, obtained between the estimated and measured Me for the

rotor are shown in Figure 23b and the results shown validate accuracy and effectiveness

of the ff ANN estimator implemented as a Simulink block by using DLT.

Figure 22. (a) Performance of the narx-based electromagnetic torque Me estimator considering mean
squared error (MSE); (b) Error histogram of electromagnetic torque Me; (c) Regression between the
narx-estimated electromagnetic Me torque and the measured one in the Simulink IM drive during
training andvalidation; (d) Regression during testing and regression globally calculated.

On the other hand, if we perform a closed loop-based estimation with the electromag-
netic torque Me controlled by the narx, exported as a Simulink block, we are apparently
obtaining worse results than with the ff ANN estimator, as can be seen in the error plot
between the measured and estimated values in Figure 24b. However, we can observe that
the error plot of the electromagnetic torque Me produced by the induction motor with
respect to a constant load torque Ml of 145 Nm will only have significant oscillations at
the beginning of the simulation, i.e., while the system is trying to reach a stabilization
point. The oscillations shown represent approximately 50% of the target torque value Me
(200 Nm.), but these oscillations are caused by dynamic conditions during motor operation,
which subsequently attenuates and is probably an unwanted side effect of the closed loop
of the feedback signal. The initial output values of the electromagnetic torque for the rotor
are not accurate. However, the estimator input is also fed with these values.

Mathematics 2022, 10, 3410 27 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 26 of 29

(a)

(b)

Figure 23. (a) Electromagnetic torque (orange) Me measured for training. Meestimated (blue) by the

ff ANNbased predictor; (b) Me error (scaled to 1.0) between measured and estimated electromag-

netic torque for the rotor.

Figure 24a shows the actual reference torque Me produced by the IM drive and the

output of the narx ANN-based estimator. We can see that the measured and estimated

electromagnetic torques have the same trajectory, so we can conclude that the accuracy of

the two torque estimators based on two different types of ANN has been correctly vali-

dated.

On the other hand, if we perform a closed loop-based estimation with the electro-

magnetic torque Me controlled by the narx, exported as a Simulink block, we are appar-

ently obtaining worse results than with the ff ANN estimator, as can be seen in the error

plot between the measured and estimated values in Figure 24b. However, we can observe

that the error plot of the electromagnetic torque Me produced by the induction motor with

respect to a constant load torque Ml of 145 Nm will only have significant oscillations at

the beginning of the simulation, i.e., while the system is trying to reach a stabilization

point. The oscillations shown represent approximately 50% of the target torque value Me

(200 Nm.), but these oscillations are caused by dynamic conditions during motor opera-

tion, which subsequently attenuates and is probably an unwanted side effect of the closed

loop of the feedback signal. The initial output values of the electromagnetic torque for the

rotor are not accurate. However, the estimator input is also fed with these values.

Figure 23. (a) Electromagnetic torque (orange) Me measured for training. Me-estimated (blue) by the
ff ANN-based predictor; (b) Me error (scaled to 1.0) between measured and estimated electromagnetic
torque for the rotor.

Mathematics 2022, 10, 3410 28 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 27 of 29

(a)

(b)

Figure 24. (a) Electromagnetic torque (orange) Me, measured for training. Me estimated (blue) by the

narxbased predictor; (b) Me error (scaled to 1.0) between measured and estimated electromagnetic

torque for the rotor.

6. Conclusions and Future Work

We have presented one method and application derivation scheme to obtain a correct

control system with real-time features. Automated Machine Learning methods, together

with a certain class of ANN, will allow us to model continuous and discrete dynamic sys-

tems, such as the induction motor (IM) drive that is the case study.

Four estimators, based on a feed-forward (ff) and a narx ANNs, have been used for

estimating two output signals: the rotor speed ωr and electromagnetic torque Me of an IM

drive. Simulink blocks have been implemented and analyzed for the ANN-based estima-

tors in this article. The validation of the estimators has been performed using MATLAB

and Simulink, as well as the Deep Learning Toolbox (DLT), which provides a specific

command for transforming certain types of ANNs into blocks that can be directly used in

cyber-physical models designed with Simulink. The training, validation, and testing of

the ff and narxbased estimators have been detailed as a useful reference for engineers

and researchers. The estimated rotor speed and electromagnetic torque follow the same

track as the measured ones from the IM drive.

Therefore, we have shown that PID (proportional integrative differential) controllers

can be substituted by trained ANN of different classes. The ff and narx have been used

here to integrate continuous components in a hybrid real/time system design without any

accuracy or timeliness losses. However, unlike other proposals that attempted to over-

come the same problem, our methodological scheme also includes a set of guidelines as a

Figure 24. (a) Electromagnetic torque (orange) Me, measured for training. Me estimated (blue) by the
narx-based predictor; (b) Me error (scaled to 1.0) between measured and estimated electromagnetic
torque for the rotor.

6. Conclusions and Future Work

We have presented one method and application derivation scheme to obtain a correct
control system with real-time features. Automated Machine Learning methods, together
with a certain class of ANN, will allow us to model continuous and discrete dynamic
systems, such as the induction motor (IM) drive that is the case study.

Four estimators, based on a feed-forward (ff) and a narx ANNs, have been used for
estimating two output signals: the rotor speed ωr and electromagnetic torque Me of an IM
drive. Simulink blocks have been implemented and analyzed for the ANN-based estimators
in this article. The validation of the estimators has been performed using MATLAB and
Simulink, as well as the Deep Learning Toolbox (DLT), which provides a specific command
for transforming certain types of ANNs into blocks that can be directly used in cyber-
physical models designed with Simulink. The training, validation, and testing of the ff
and narx-based estimators have been detailed as a useful reference for engineers and
researchers. The estimated rotor speed and electromagnetic torque follow the same track as
the measured ones from the IM drive.

Therefore, we have shown that PID (proportional integrative differential) controllers
can be substituted by trained ANN of different classes. The ff and narx have been used
here to integrate continuous components in a hybrid real/time system design without
any accuracy or timeliness losses. However, unlike other proposals that attempted to

Mathematics 2022, 10, 3410 29 of 30

overcome the same problem, our methodological scheme also includes a set of guidelines
as a method, which have proved to be of use for deriving a verifiable model of a cyber-
physical complex system.

A possible objection to the work carried out in this paper has to do with the basic
classes of ANN deployed (ff and narx), which is due to hyperparameter optimization
only performed in the case study with an approximate gradient method that may not
be used with Recurrent Neural Networks (RNN), which seem to be more appropriate
for obtaining accurate and performant estimators of relevant cyber-physical variables in
industrial systems as the induction motor drives. In future work, other classes of ANN, such
as RNN, must be used and tested, which may produce an improvement in the effectiveness
and estimation accuracy with respect to the ANN deployed in this paper. The case study
carried out here can be continued with the detection and isolation of incipient faults to
improve the safety and reliability of the induction motor with squirrel cage winding in
the future.

Finally, the proposed method has been defined for its easy integration in industrial
environments for simulation (Simulink). It can also be used with standard libraries for
neural networks development, such as SkLearn [14] in order to interoperate with the
Python NumPy and SciPy numerical and scientific libraries, and PySpark, which has been
launched to support collaboration between Apache Spark and Python, is actually a Python
API for Spark. PySpark allows us to use a GPU cluster architecture and SparkGPU data
transfer. In future work, we plan to develop a tool capable of automated code generation of
real-time and embedded system software for several computing platforms.

Supplementary Materials: The complete IM Simulink drive model supporting material can be
downloaded at: https://lsi2.ugr.es/~mcapel/miscelanea/motor/ (accessed on 20 May 2022).

Funding: This research was funded by B-TIC-42-UGR20 through regional (Consejería de Economía,
Innovación, Ciencia y Empleo, Junta de Andalucía) and EU-FEDER funds and when applicable cofounded
by the Spanish Science Ministry (Ministerio de Ciencia e Innovación) grant PID2020-112495RB-C21.

Data Availability Statement: The main data and physical parameters of the IM drive are in the
file motordata.m, which can be downloaded at: https://lsi2.ugr.es/~mcapel/miscelanea/motor/
(accessed on 20 May 2022). For the model to work, running the m-file included in Matlab MATLAB is
necessary before opening the Simulink model. All the physical constants listed in Table 2 have been
defined using IS physical units in the ‘motordat.m’ file.

Acknowledgments: I would like to thank Juan A. Holgado from the University of Granada, who
collaborated in the development of an initial prototype of the IM Simulink model used in this study.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Series on Challenges in

Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019.
2. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.

In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; Volume 28.
3. Amrhein, M.; Krein, P.T. Dynamic Simulation for Analysis of Hybrid Electric Vehicle System and Subsystem Interactions,

Including Power Electronics. IEEE Trans. Veh. Technol. 2005, 54, 825–836. [CrossRef]
4. Mehrotra, P.; Quaicoe, J.E.; Venkatesan, R. Development of an Artificial Neural Network Based Induction Motor Speed Estimator.

In PESC Record, Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, 23–27 June 1996; IEEE:
Piscataway, NJ, USA, 1996; Volume 1, pp. 682–688. [CrossRef]

5. Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.-Y. Levenberg-Marquardt Backpropagation Training of Multilayer
Neural Networks for State Estimation of A Safety Critical Cyber-Physical System. IEEE Trans. Ind. Inform. 2018, 14, 3436–3446.
[CrossRef]

6. Patel, S.A. Developing Smart Devices with Automated Machine Learning Approach: A Review. Mater. Today Proc. 2022, 51,
816–831. [CrossRef]

7. Iruela, J.R.S.; Ruiz, L.G.B.; Capel, M.I.; Pegalajar, M.C. A TensorFlow Approach to Data Analysis for Time Series Forecasting in
the Energy-Efficiency Realm. Energies 2021, 14, 4038. [CrossRef]

https://lsi2.ugr.es/~mcapel/miscelanea/motor/
https://lsi2.ugr.es/~mcapel/miscelanea/motor/
http://doi.org/10.1109/TVT.2005.847231
http://doi.org/10.1109/PESC.1996.548655
http://doi.org/10.1109/TII.2017.2777460
http://doi.org/10.1016/j.matpr.2021.06.243
http://doi.org/10.3390/en14134038

Mathematics 2022, 10, 3410 30 of 30

8. Franceschi, L.; Donini, M.; Frasconi, P.; Pontil, M. Forward and Reverse Gradient-Based Hyperparameter Optimization. In
Proceedings of the 34th International Conference on Machine Learning—ICML’17, Sydney, NSW, Australia, 6–11 August 2017;
JMLR.org: Sydney, NSW, Australia, 2017; Volume 70, pp. 1165–1173.

9. Pedregosa, F. Hyperparameter Optimization with Approximate Gradient. In Proceedings of the 33rd International Conference on
Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 737–746.

10. Baydin, A.G.; Cornish, R.; Rubio, D.M.; Schmidt, M.; Wood, F. Online Learning Rate Adaptation with Hypergradient Descent.
arXiv 2022, arXiv:1703.04782.

11. Pravin, P.S.; Tan, J.Z.M.; Yap, K.S.; Wu, Z. Hyperparameter Optimization Strategies for Machine Learning-Based Stochastic Energy
Efficient Scheduling in Cyber-Physical Production Systems. Digit. Chem. Eng. 2022, 4, 100047. [CrossRef]

12. Fukuda, T.; Shibata, T. Theory and Applications of Neural Networks for Industrial Control Systems. IEEE Trans. Ind. Electron.
1992, 39, 472–489. [CrossRef]

13. Jie, R.; Gao, Y.; Vasnev, A.; Tran, M.-N. Adaptive Hierarchical Hyper-gradient Descent. Int. J. Mach. Learn. Cybern. 2022, 1–22.
[CrossRef]

14. Lévesque, J.-C. Bayesian Hyperparameter Optimization: Overfitting, Ensembles and Conditional Spaces. Ph.D. Thesis, Université
Laval, Quebec, QC, Canada, 2018.

15. An, L.; Yang, G.-H. Distributed Optimal Coordination for Heterogeneous Linear Multi-Agent Systems. IEEE Trans. Automat.
Contr. 2021, 67, 460–467. [CrossRef]

16. Nguyen, T.D.; Gupta, S.; Rana, S.; Venkatesh, S. Stable Bayesian Optimization. Int. J. Data Sci. Anal. 2018, 6, 327–339. [CrossRef]
17. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. arXiv 2018, arXiv:1808.05377. [CrossRef]
18. Cheon, K.; Kim, J.; Hamadache, M.; Lee, D. On Replacing PID Controller with Deep Learning Controller for DC Motor System.

J. Autom. Control Eng. 2015, 3, 452–456. [CrossRef]
19. Yuan, X.; Wang, Y. Neural Networks Based Self-Learning PID Control of Electronic Throttle. Nonlinear Dyn. 2009, 55, 385–393.

[CrossRef]
20. Splater, S.A. Power Consumption Analysis of a Practical Series Hybrid Electric Vehicle. Master’s Thesis, University of Illinois,

Chicago, IL, USA, 1996.
21. Wu, Y.; Jiang, B.; Wang, Y. Incipient Winding Fault Detection and Diagnosis for Squirrel-Cage Induction Motors Equipped on

CRH Trains. ISA Trans. 2020, 99, 488–495. [CrossRef] [PubMed]
22. Brusaferri, A.; Matteucci, M.; Portolani, P.; Spinelli, S.; Vitali, A. Hybrid System Identification Using a Mixture of NARX

Experts with LASSO-Based Feature Selection. In Proceedings of the 2020 7th International Conference on Control, Decision and
Information Technologies (CoDIT), Prague, Czech Republic, 29 June–2 July 2020; IEEE: Piscataway, NJ, USA, 2020; Volume 1,
pp. 545–550.

23. Messai, N.; Riera, B.; Zaytoon, J. Identification of a Class of Hybrid Dynamic Systems with Feed-Forward Neural Networks:
About the Validity of the Global Model. Nonlinear Anal. Hybrid Syst. 2008, 2, 773–785. [CrossRef]

24. Pomerleau, F.; Colas, F.; Siegwart, R.; Magnenat, S. Comparing ICP Variants on Real-World Data Sets. Auton. Robot. 2013, 34,
133–148. [CrossRef]

25. Treml, A.E.; Flauzino, R.A.; Suetake, M.; Maciejewski, N.A.R. Experimental Database for Detecting and Diagnosing Rotor Broken Bar
in A Three-Phase Induction Motor; IEEE: Piscataway, NJ, USA, 2020.

http://doi.org/10.1016/j.dche.2022.100047
http://doi.org/10.1109/41.170966
http://doi.org/10.1007/s13042-022-01625-4
http://doi.org/10.1109/TAC.2021.3133269
http://doi.org/10.1007/s41060-018-0119-9
http://doi.org/10.48550/ARXIV.1808.05377
http://doi.org/10.12720/joace.3.6.452-456
http://doi.org/10.1007/s11071-008-9371-1
http://doi.org/10.1016/j.isatra.2019.09.020
http://www.ncbi.nlm.nih.gov/pubmed/31587810
http://doi.org/10.1016/j.nahs.2007.11.008
http://doi.org/10.1007/s10514-013-9327-2

	Introduction
	Real-Time Speed Regulation of an Induction Motor
	Article Structure

	Induction Motor Modeling
	Physical Modeling of an Induction Motor
	Stationary Reference System (Alpha and Beta Coordinates)
	Rotative Reference System
	Motor Shaft Rotation
	Transformation of the 3-Phase Reference Model to the Rotating Reference System

	Physical Model of the IM in the Rotative Reference System
	Calculation of the Electromagnetic Torque and Mechanical Power Generated by the Motor

	Modeling Method
	Registry
	Design of the ANN and Selected Hyperparameters
	Training of the ANN
	Validation of the ANN
	Exporting the Simulink Block
	ANN Parallelization Assessment

	ANN-Based Speed Estimator
	FF Network Based Rotor Speed Estimator
	NARX Network Based Rotor Speed Estimator
	Results and Discussion

	ANN-Based Electromagnetic Torque Estimator
	FF Network Based Electromagnetic Torque Estimator
	FF Network Based Electromagnetic Torque Estimator
	Obtained Results and Discussion

	Conclusions and Future Work
	References

