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Abstract: In this study, the dispersal caused by the transverse Poisson’s effect in a magneto-electro-
elastic (MEE) circular rod is taken into consideration using the nonlinear longitudinal wave equation
(LWE), a mathematical physics problem. Using the generalized exp-function method, we investigate
the families of solitary wave solutions of one-dimensional nonlinear LWE. Using the computer
program Wolfram Mathematica 10, these new exact and solitary wave solutions of the LWE are
derived as trigonometric function, periodic solitary wave, rational function, hyperbolic function,
bright and dark solitons solutions, sinh, cosh, and sech2 function solutions of the LWE. These solutions
represent the electrostatic potential and pressure for LWE as well as the graphical representation of
electrostatic potential and pressure.

Keywords: generalized exp (−ϕ (η)) expansion method; exact solutions; new optical solitons; nonlinear
longitudinal wave equation

MSC: 83C15; 35A20; 35C05; 35C07; 35C08

1. Introduction

A travelling wave pulse known as a soliton is the result of specific nonlinear partial
differential equations. Due to its exceptional stability characteristics, this particular wave
may be used in numerous significant applications [1]. In particular, solitary waves reemerge
after complete nonlinear interaction, maintaining their identities with virtually the same
speed and form, while most dispersive waves disperse inelastically and lose “energy” due
to radiation. For instance, the wave-breaking phenomenon and formation of an optical
shock are frequently associated with the propagation of a strong laser beam through an
optical crystal or fiber. This phenomenon is crucial to the movement of light pulses through
fiber optic systems used for digital communication [2].

The nonlinear interaction of ultrafast optical pulses with periodic media is now impor-
tant from a practical standpoint. This is because researchers are looking for novel pulse
propagation features with potentially very useful applications. In the middle of the 1980s,
experiments on pulse propagation via periodic resonantly absorbing media started, and
they are still ongoing today. The kinetics of pulse propagation in Bragg gratings under
various circumstances was the subject of additional research. The formation of solitons in
the presence of a weak violation of the Bragg conditions, investigations of oscillating soliton-
like solutions affected by inhomogeneous broadening spectra of two-level atoms, and the
delay of pulse reflection from Bragg gratings were of particular interest to researchers. The-
oretical predictions of the formation of an optical zumeron and oscillating gap 2π pulses
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in resonantly absorbing lattices should also be mentioned. In his monograph, Mantsyzov
reviewed the findings of his research as well as a multitude of literature on the issue of
periodic media’s optics. The one-parameter solitons subfamily is found in [3], where the
solution is stated at the band-gap edge in a sech-like form. Asymptotically reducing the
equation system to the nonlinear Schrodinger equation is an alternate strategy for locating
an analytical soliton-like solution. By including phase modulation into the zero-velocity
solitons during numerical simulation, steady-moving solitons were produced [4].

The Scottish engineer John Russell tracked a single water wave for the first time in
1834 as it went two miles down a canal without exhibiting any discernible deformation
from dispersion [5]. Wave propagation in magneto-electro-elastic (MEE) media has drawn
the attention of many academics due to the growing use of MEE structures in a variety of
engineering domains (such as sensors, actuators, etc.) Chen et al. [6] offered an analytical
treatment for the propagation of harmonic waves in MEE multilayered plates using the
propagator matrix and state-vector techniques. When axial shear MEE waves propagate
in piezoelectric-piezomagnetic composites, Chen and Shen [7] found the effective wave
velocity and attenuation factor. For the propagation of harmonic waves in inhomogeneous
(functionally graded) MEE plates, Wu et al. [8] developed a dynamic solution.

Many researchers discovered the solitary wave solutions of various nonlinear partial
differential equations, such as Seadawy [9,10], who used mathematical techniques to
find the electrostatic potential and pressure for the nonlinear higher-order Kadomtsev–
Petviashvili dynamical equation in two dimensions and the electric field potential, quantum
statistical pressure, and electric and magnetic field. The nonlinear three-dimensional
Zakharov–Kuznetsov–Burgers equation has a single wave solution that takes the form of
electric and magnetic fields potential and pressure, according to Abdullah et al. [11].

For better information, to understand the mechanism and its applications, it is crucial
to examine exact travelling and solitary wave solutions of nonlinear evolution equations.
As a result, several scholars present novel techniques to examine the solutions of these
nonlinear partial differential equations. The homogeneous balance method [12], the exp-
function method [13], the tanh and extended-function method [14,15], the extended direct
algebraic method [16], the modified simple equation method [17], the (G’/G)-expansion
method [18,19], the modified extended tanh function method [20], the iteration transform
method [21,22], and homotopy perturbation method [23] are a few examples of important
methods. Using these techniques, numerous researchers have discovered various kinds of
exact and solitary wave solutions to various nonlinear evolution equations, for example,
see references [24–32]. It is reminiscent of Lie algebraic methods, another class of strong
algebraic techniques that are frequently employed to solve nonlinear ordinary differential
equations [33–35].

The generalized exp-function method is regarded being one of the most powerful
techniques for solving nonlinear differential equations. Numerous studies show that this
method performs exceptionally well when dealing with nonlinear differential equations.
For example, Shakeel et al. [36] found novel closed-form solutions in the form of hyper-
bolic, trigonometric, and rational function solutions by using the generalized exp-function
method for nonlinear dispersive modified Benjamin–Bona–Mahony equations. In nonlin-
ear optics, Yahya et al. [37] demonstrated the suitability of the generalized exp (−φ(η))
expansion method for solving nonlinear Korteweg–de Vries equation and the modified
Zakharov–Kuznetsov equation. The generalized exp (−φ(η)) expansion method is used in
this paper to find an amount of new optical solitons for the nonlinear longitudinal wave
equation in a magneto-electro-elastic circular rod.

The exp (−φ(η)) expansion method is effective for solving NPDEs and can lead to
numerous previously unknown closed-form solutions. The goal of this work is to generate
many new and more general closed-form solutions. To that end, we propose a novel
generalized approach to investigate NLEEs based on the exp (−φ(η)) expansion method.
To demonstrate the effectiveness and benefits of this method, we apply it to the nonlinear
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longitudinal wave equation. A comparison of the obtained solutions is also given in the
form of Table 1.

Table 1. Comparison of Solutions.

Our Solutions Baskonus et al. [38]

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, k1 = 1,
k2 = −1,η = ζ, E = c1, N = 1 , c = 2 , and
U1(z, t) = u5(x, t) in Equation (52), then

u5(x, t) = 3 + 2
√
−3

tanh 1
2

√
−3((ζ+c1)+1)

− 4
tanh 1

2

√
−3((ζ+c1)+1)2 .

If we put n = −1 , r = 2 , c = 1 , k = 1 , and µ = 1 in
Equation (30), then

u5(x, t) = 3 + 2
√
−3

tanh 1
2

√
−3((ζ+c1)+1)

− 4
tanh 1

2

√
−3((ζ+c1)+1)2 .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, k1 = 1,
k2 = −1,η = ζ, E = c1, N = 1 , c = 2 , and
U4(z, t) = u3(x, t) in Equation (55), then

u3(x, t) = 3
2 + 2

√
−3

tanh 1
2

√
−3((ζ+c1)−1)

− 4
tanh 1

2

√
−3((ζ+c1)−1)2 .

If we put n = −1 , r = 2 , c = 1 , k = 1 , λ = 1 , and µ = 1
in Equation (28), then

u3(x, t) = 3
2 + 2

√
−3

tanh 1
2

√
−3((ζ+c1)−1)

− 4
tanh 1

2

√
−3((ζ+c1)−1)2 .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, k1 = 1,
k2 = −1,η = ζ, E = c1, N = 1 , c = 2 , and
U7(z, t) = u1(x, t) in Equation (58), then

u1(x, t) = 3− 2
√

21
tanh 1

2

√
3((η+E)−

√
7)

+ 4
tanh 1

2

√
3((η+E)−

√
7)

2 .

If we put n = −1 , r = 2 , c = 1 , k = 1 , and µ = 1 in
Equation (26), then

u1(x, t) = 3− 2
√

21
tanh 1

2

√
3((η+E)−

√
7)

+ 4
tanh 1

2

√
3((η+E)−

√
7)

2 .

The structure of this article is as follows. We go over the fundamental equations for
MEE materials in Section 2. The longitudinal wave equations for a MEE circular rod are
determined in Section 3. In Section 4, the general procedure of the proposed method is
given. Section 5 consists of the application of the proposed method to find the solitary
wave solutions. Results and discussion are provided in Section 6, and conclusion is given
in Section 7.

2. Fundamental Equations

Assumedly, the rod is formed of a transversely isotropic MEE material with a z-axis of
symmetry (i.e., the rod direction). Consequently, the fundamental relationships in it make
it possible to write the cylindrical coordinate system (r, θ, z) as

ρr = c11εr + c12εθ + c13εz − e31Ez − q31Hz,
ρθ = c12εr + c11εθ + c13εz − e31Ez − q31Hz,
ρz = c13εr + c13εθ + c33εz − e33Ez − q33Hz,
ψr z = c44φrz − e15Er − q15Hr,
ψθ z = c44φθ z − e15Eθ − q15Hθ ,
ψr θ = c66φr θ ,

(1)


αr = e15φrz + ε11Er + d11Hr,
αθ = e15φrz + ε11Er + d11Hr,
αz = e31εr + e31εθ + e33εz + ε33Ez + d33Hz,

(2)


Pr = q15φr z + d11Er + v11Hr,
Pθ = q15φθ z + d11Eθ + v11Hθ ,
Pz = q31εr + q31εθ + q33εz + d33Ez + v33Hz,

(3)

where the normal and shear stresses are ρi and ψij, and the normal and shear strains are εi
and φij; the electric field, magnetic field, electric displacement, and magnetic induction are
denoted by the letters Ei, Hi, αi, and Pi, respectively. The elastic, dielectric, piezoelectric,
magneto-electric, and magnetic coefficients are denoted by the letters cij, εij, eij, qij, dij, and
vij, respectively. It should be noticed that the relationship c11 = c12 + 2c66 holds for the
transversely isotropic material.
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Additionally, the equations of motion for the rod are as follows in the absence of body
forces, electric charges, and magnetic charges:

β ∂2Ur
∂t2 = ∂ρr

∂r + ∂ψrθ
r∂θ + ∂ψr z

∂z + ρr−ρθ
r ,

β ∂2Uθ
∂t2 = ∂ψrθ

∂r + ∂ρθ
r∂θ + ∂ψθ z

∂z + 2 ψrθ
r ,

β ∂2Uz
∂t2 = ∂ψr z

∂r + ∂ψθ z
r∂θ + ∂ρr

∂z + ψr z
r ,

(4)

∂αr

∂r
+

∂αθ

r∂θ
+

∂α z

∂z
= 0, (5)

∂Pr

∂r
+

∂Pθ

r∂θ
+

∂Pz

∂z
= 0, (6)

where the mechanical displacements in the r−, θ−, and z− directions are represented by
Ur, Uθ , and Uz, respectively.

The electric field-potential, magnetic field-potential, and finite (nonlinear) elastic
strain-displacement relationships can be described as

Er = −∂ϕ

∂r
, Eθ = − ∂ϕ

r∂θ
, Ez = −∂ϕ

∂z
, (7)

Hr = −∂ζ

∂r
, Hθ = − ∂ζ

r∂θ
, Hz = −∂ζ

∂z
, (8) εr = ∂Ur

∂r , εθ = ∂Uθ
r∂θ + Ur

r , εz = ∂Uz
∂z + 1

2

(
∂Uz
∂z

)2
,

}rθ = ∂Ur
r∂θ + ∂Uθ

∂r −
Uθ
r , }θ z = ∂Uz

r∂θ + ∂Uθ
∂z , }r z = ∂Uz

∂r + ∂Ur
∂z

(9)

where the electric potential is ϕ, and the magnetic potential is ζ, respectively. It should be
noted that we made the assumption that the normal strain component in the longitudinal
rod direction (z-direction) is finite while formulating Equation (9).

3. Longitudinal Wave Equations in a MEE Circular Rod

As depicted in Figure 1, we take into account wave propagation in a long MEE
circular rod. Z is along the rod direction, or the direction in which waves propagate, in
the cylindrical coordinate system (r, θ, z), and θ ∈ [0, 2π], 0 ≤ r ≤ R. The following
assumptions are made to aid our study:
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Figure 1. Shows a schematic for a long, circular MEE rod [2]. Figure 1. Shows a schematic for a long, circular MEE rod [2].

(i) The rod’s cross-section remains plain both before and after the deformation;
(ii) The rod’s lateral surface has axial symmetry, suggesting that Uθ = 0 and

∂/∂θ = 0;
(iii) To take into account the Poisson’s effect, the radial displacement Ur and the

gradient of the longitudinal displacement Uz are linked by Ur = −ve f f r∂Uz/∂z, where
ve f f is the effective Poisson’s ratio that will be computed later.
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Additionally, because the problem is one-dimensional, there should be zero extended
tractions on the rod’s lateral boundary. In other words, the following relations are estab-
lished from the equations: ρr = 0, ψrz = 0, ψrθ = 0, αr = 0, and Pr = 0:{

}r z = }θ z = 0, Er = Eθ = 0,
Hr = Hθ = 0, αθ = Pθ = 0,

(10)

εr =
e31Ez + q31Hz − c12εθ − c13εz

c11
. (11)

The equations of motion are reduced to the following forms when we allow U = Uz
to represent the longitudinal displacement.

−ρr

r
= β

∂2Ur

∂t2 ,
∂ρz

∂z
= β

∂2U
∂t2 , (12a)

∂αz

∂z
= 0, (12b)

∂Pz

∂z
= 0. (12c)

In terms of U, ϕ, and ψ, these equations become

ve f f β r2 ∂3U
∂t2∂z

= F1
∂ϕ

∂z
+ F2

∂ζ

∂z
− F3ve f f

∂U
∂z

+ F4εz, (13)

β
∂2U
∂t2 =

∂

∂z

[
B1

∂ϕ

∂z
+ B2

∂ζ

∂z
− F4ve f f

∂U
∂z

+ B4εz

]
, (14)

∂

∂z

[
C1

∂ϕ

∂z
+ C2

∂ζ

∂z
+ F1ve f f

∂U
∂z
− B1εz

]
= 0, (15)

∂

∂z

[
C2

∂ϕ

∂z
+ D2

∂ζ

∂z
+ F2ve f f

∂U
∂z
− B2εz

]
= 0, (16)

where{
F1 = e31

(
1− c12

c11

)
, F2 = q31

(
1− c12

c11

)
, F3 = c11 −

c2
12

c11
, F4 = c13

(
1− c12

c11

)
, (17a)

{
B1 = e33 −

c13

c11
e31, B2 = q33 −

c13

c11
q31, B4 = c33 −

c2
13

c11
, (17b){

C1 = ε33 +
e31

c11
e31, C2 = d33 +

e31

c11
q31, D2 = v33 +

q31

c11
q31. (17c)

Differentiating Equation (13) with respect to z, we obtain

βve f f r2 ∂4U
∂t2∂z2 = F1

∂2 ϕ

∂z2 + F2
∂2ζ

∂z2 − F3ve f f
∂2U
∂z2 + F4

∂εz

∂z
, (18)

Integrating Equation (18) over the cross section of the rod, we arrive at

− F4
∂εz

∂z
+

1
2

βve f f R2 ∂4U
∂t2∂z2 = F1

∂2 ϕ

∂z2 + F2
∂2ζ

∂z2 − F3ve f f
∂2U
∂z2 . (19)

Now, we solve Equations (15), (16), and (19) to find the values of ϕ, ζ, and U as

∂2 ϕ

∂z2 =
Ω1

Ω
,

∂2ζ

∂z2 =
Ω2

Ω
,

∂2U
∂z2 =

Ω3

Ω
, (20)
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where

Ω =

∣∣∣∣∣∣
F1 F2 − ve f f F3
C1 C2 ve f f F1
C2 D2 ve f f F2

∣∣∣∣∣∣, (21a)

Ω1 =

∣∣∣∣∣∣∣
1
2 βve f f R2 ∂4U

∂t2∂z2 − F4
∂εz
∂z F2 − ve f f F3

B1
∂εz
∂z C2 ve f f F1

B2
∂εz
∂z D2 ve f f F2

∣∣∣∣∣∣∣, (21b)

Ω2 =

∣∣∣∣∣∣∣
F1

1
2 βve f f R2 ∂4U

∂t2∂z2 − F4
∂εz
∂z − ve f f F3

C1 B1
∂εz
∂z ve f f F1

C2 B2
∂εz
∂z ve f f F2

∣∣∣∣∣∣∣, (21c)

Ω3 =

∣∣∣∣∣∣∣
F1 F2

1
2 βve f f R2 ∂4U

∂t2∂z2 − F4
∂εz
∂z

C1 C2 B1
∂εz
∂z

C2 D2 B2
∂εz
∂z

∣∣∣∣∣∣∣. (21d)

Equation (20) is substituted into Equation (14) to obtain

β
∂2U
∂t2 − B4

∂εz

∂z
=

1
Ω

(
B1Ω1 + B2Ω2 − ve f f A4Ω3

)
. (22)

The longitudinal wave equation for a MEE circular rod is obtained by taking derivative
of Equation (22) with respect to z and using the finite elastic strain-displacement relation
from Equation (9):

β
∂2u
∂t2 − B4

∂2

∂z2

(
u +

u2

2

)
=

1
Ω

(
B1Ω∗1 + B2Ω∗2 − ve f f F4Ω∗3

)
, (23)

where
u = ∂U/∂z, and

Ω∗1 = ve f f
[
−F4(C2F2 − F1D2)− B1

(
F2

2 + F3D2
)
+ B2(F1F2 + C2F3)

]
∂2

∂z2

(
u + u2/2

)
+ β

2 v2
e f f R2(C2F2 − F1D2)

∂4u
∂t2∂z2 ,

(24a)

Ω∗2 = ve f f
[
A4(C1F2 − F1C2) + B1(F1F2 + F3C2)− B2

(
F2

1 + C1F3
)]

∂2

∂z2

(
u + u2/2

)
− β

2 v2
e f f R2(C1F2 − F1C2)

∂4u
∂t2∂z2 ,

(24b)

Ω∗3 =
[
−F4

(
C1D2 − C2

2
)
− B1(F1D2 − C2F2) + B2(F1C2 − C1F2)

]
∂2

∂z2

(
u + u2/2

)
+ β

2 ve f f R2(C1D2 − C2
2
)

∂4u
∂t2∂z2 ,

(24c)

Equation (23) can also be transformed into the normative nonlinear wave equation
shown below:

∂2u
∂ t2 − c2

0
∂2u
∂ z2 =

∂2

∂ z2

(
1
2

c2
0u2 + N

∂2u
∂ t2

)
, (25)

with

c2
0 =

ve f f
Ωβ [B1

{
−F4(C2F2 − F1D2)− B1(F2

2 + F3D2) + B2(F1F2 + C2F3)
}

+B2
{

F4(C1F2 − F1C2) + B1(F1F2 + F3C2)− B2(F2
1 + C1F3)

}
−F4

{
−F4(C1D2 − C2

2)− B1(F1D2 − C2F2) + B2(F1C2 − C1F2)
}
] + B4

β ,
(26)

N =
ve f f

2 R2[B1(C2F2 − F1D2)− B2(C1F2 − F1C2)− F4(C1D2 − C2
2)]

[F1(C2F2 − F1D2)− F2(C1F2 − F1C2)− F3(C1D2 − C2
2)]
−1,

(27)
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where N is the dispersion parameter, and c0 is the linear longitudinal wave velocity for a
MEE circular rod, both of which rely on the characteristics of the material and the rod’s
geometry.

If we cogitate as c0 = c for simplicity, we can rewrite Equation (25) as

∂2u
∂ t2 − c2 ∂2u

∂ z2 =
∂2

∂ z2

(
1
2

c2u2 + N
∂2u
∂ t2

)
. (28)

Wave propagation in magneto-electroelastic (MEE) media has been studied by nu-
merous researchers as a result of the expanding applications of MEE structures in various
engineering domains (such as actuators, sensors, etc.) over time [5–7,39]. Using a modified
exp(-Ω(ξ))-expansion function approach, Baskonus et al. [38] identified the hyperbolic
function and complex hyperbolic function solutions of the nonlinear longitudinal wave
equation (LWE) in a MEE circular rod. In their study of numerical solitary wave solutions,
Xue et al. [2] used the dispersion caused by the transverse Poisson’s effect in a MEE circular
rod to derive the nonlinear LWE. The ansatz, modified (G’/G)-expansion, and functional
variable techniques are just a few of the innovative analytical solutions of the LWE in a MEE
circular rod that have been researched [39–41]. Recently, Seadawy [42] used the extended
trial equation method to find the soliton and other types of solutions of nonlinear LWE in a
MEE circular rod. The combination of piezoelectric BaTiO3 and piezomagnetic CoFe2O4
with various values of the volume fraction (vf) of piezoelectric BaTiO3 is the bodily meaning
of nonlinear LWE in MEE circular rod. The rod’s radius is given as r = 0.05 m.

4. The Generalized Exp-Function Method

Assume we have a nonlinear PDE given below of the form

F (U, Uz, Ut, Uz z, Ut t, Uz t, Uz z t, . . .) = 0, (29)

in which U is an unidentified function, and F is a polynomial in U and its derivatives with
respect to z and t, including highest-order derivatives and non-linear terms. The following
are the major steps in the generalized exp-function method:
Step 1. The travelling wave transformation

U(z, t) = u (η), η = k1 z + k2 t, (30)

where k1 and k2 are unknown constants, transforming Equation (29) into an ordinary
differential equation (ODE).

P
(
u, k1u′, k2u′, k1k2u′′ , . . .

)
= 0. (31)

Step 2. Suppose the trial solution of Equation (31) is as follows:

u (η) =
m

∑
i = 0

ai

[
exp

(
−A1 ϕ (η) + A2

A3 ϕ (η) + A4

)]i

, (32)

where ai, am 6= 0, (0 ≤ i ≤ m) are undefined constants, and φ(η) satisfies the differential
equation:

φ′(η) =
(A3 φ (η) + A4)

2

(A1 A4 + A2 A3)

(
exp

(
−A1 φ (η) + A2

A3 φ (η) + A4

)
+ A exp

(
A1 φ (η) + A2

A3 φ (η) + A4

)
+ B

)
, (33)

where ∆ = (A1 A4 − A2 A3) 6= 0. Equation (33) has the following solution families:
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Family 1. When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0,
(

B2 − 4A
)
> 0, A2 = 0,

φ1(η) =
A4 ln

((
−
√

B2 − 4A tanh
(√

B2−4A
2 (η + E)

)
− B

)
/2A

)
A1 − A3 ln

((
−
√

B2 − 4A tanh
(√

B2−4A
2 (η + E)

)
− B

)
/2A

) . (34)

Family 2. When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0,
(

B2 − 4A
)
< 0, A2 = 0,

φ2(η) =
A4 ln

((√
−B2 + 4A tan

(√
−B2+4A

2 (η + E)
)
− B

)
/2A

)
A1 − A3 ln

((√
−B2 + 4A tan

(√
−B2+4A

2 (η + E)
)
− B

)
/2A

) . (35)

Family 3. When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)

= 0, A2 = 0,

φ3(η) =
A4 ln

(
− (2(B(η + E)) + 2)/B2 (η + E)

)
A1 − A3 ln(−2 (B(η + E)) + 2)/B2 (η + E)

. (36)

Family 4. When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)
> 0, A3 = 0,

φ4(η) = −2(A2/A1) + (A4/A1) ln(−tanh
(√

(B2 − 4A)
(η + E)

2

)√
e(

2A2
A4 )(B2 − 4A)− Be(

A2
A4

)/2A). (37)

Family 5. When ∆ = (A1 A4 − A2 A3) 6= 0, B 6= 0, A 6= 0,
(

B2 − 4A
)
< 0, A3 = 0,

φ5(η) = −2(A2/A1) + (A4/A1) ln(− tan
(√

(−B2 + 4A)
(η + E)

2

)√
e(

2A2
A4 )(−B2 + 4A)− Be(

A2
A4

)/2A). (38)

Family 6. When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)

= 0, A3 = 0,

φ6(η) = −(A2/A1) + (A4/A1) ln((2(B(η + E) + 2))/B2(η + E)). (39)

Family 7. When ∆ = (A1 A4 − A2 A3) 6= 0, A = 0, B 6= 0,
(

B2 − 4A
)
> 0,

φ7(η) = −A2 + A4 ln(B/ exp(B(η + E))− 1)
A1 + A3 ln(B/ exp(B(η + E))− 1)

. (40)

Family 8. When ∆ = (A1 A4 − A2 A3) 6= 0, A = 0, B = 0,
(

B2 − 4A
)

= 0,

φ8(η) = −A2 − A4 ln (η + E)
A1 − A3 ln (η + E)

. (41)

Family 9. When (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)

= 0, Ai 6= 0,
(i = 1, 2, 3, 4),

φ9(η) = −
A2 − A4 ln

(
− 2(η+E)

B(η+E)−2

)
A1 − A3 ln

(
− 2(η+E)

B(η+E)−2

) . (42)

Family 10. When ∆ = (A1 A4 − A2 A3) 6= 0, A < 0, B = 0,

φ10(η) = −
A2 − A4 ln

(
− exp (−2

√
−A(η+E))+1√

−A exp (−2
√
−A(η+E))−1

)
A1 − A3 ln

(
− exp (−2

√
−A(η+E))+1√

−A exp (−2
√
−A(η+E))−1

) . (43)

Step 3. Using the balancing principle between the highest-order derivative and the highest-
order nonlinear term in Equation (31), we calculate the value of the positive integer m.
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Step 4. Equation (32) is substituted into Equation (31), and then, Equation (33) is used, with

all the coefficients of
[
exp

(
− A1 φ (η) +A2

A3 φ (η) +A4

)]i
to zero, yielding an algebraic equation system

for k1, A, B, k2 and (i = 0, 1, 2, 3, . . . , m). Solving the algebraic system of equations yields
the values of the constants k1, A, B, k2, and ai (i = 0, 1, 2, . . . , m) can be determined. We
can substitute k1, k2, B, A, and ai as well as the general solutions of Equation (33) into
Equation (32) to obtain the exact solutions of nonlinear PDEs Equation (28) because we
know the general solutions of Equation (33).

5. Applications

In this section, we applied the generalized exp (-φ(η)) expansion method to the nonlin-
ear longitudinal wave equation to obtain new closed-form solutions.

The longitudinal wave equation in a magneto-electro-elastic circular rod is transformed
into a non-linear ordinary differential equation using the wave transformation Equation (30)
and some mathematical operations as follows:

u′′ (η) k2
2 − c2u′′ (η) k2

1 − c2u(η)2 k2
1 − c2u (η) u′′ (η) k2

1 − N u(iv)(η) k2
1k2

2 = 0, (44)

where c, k1, and k2 are nonzero real constants.
By integrating Equation (44) twice with respect to η and taking the integral constants

to be zero, we can find the following equation:

2Nk2
1k2

2u′′ (η) − 2( k2
2 − c2k2

1)u(η) + c2k2
1 u2 (η) = 0. (45)

By applying the balancing principle between u′′ and u2 in Equation (44), we obtain
m = 2. As a result, the trial solution Equation (32) is as follows:

u(η) = a0 + a1 exp
(
−A1 φ (η) + A2

A3 φ (η) + A4

)
+ a2 exp

(
−A1 φ (η) + A2

A3 φ (η) + A4

)2

. (46)

By inserting Equations (46) and (33) into Equation (45), we obtain a polynomial in[
exp

(
− A1 φ (η) +A2

A3 φ (η) +A4

)]i
, (i = 0, 1, 2, . . . , m) and then equate all the coefficients of the

resulting polynomial to zero, yielding a set of simultaneous algebraic equations. After
solving the algebraic system with Maple 18, we obtain the following coefficient values:
Case 1.

a0 = − 12 NA k2
2

c2 , a1 = − 12k2
√

N (4NAk2
1k2

2−c2k2
1+k2

2)

c2k1
, a2 = − 12 N k2

2
c2 ,

B =

√
(4NAk2

1k2
2−c2k2

1+k2
2)√

Nk1k2
.

(47)

Case 2.

a0 = − 2 N k2
1(B2+2A)

1+B2 Nk2
1−4NAk2

1
, a1 = − 2 N Bk2

1
1+B2 Nk2

1−4NAk2
1
, a2 = − 2 N k2

1
1+B2 Nk2

1−4NAk2
1
,

k2 = − c k1√
1+B2 Nk2

1−4NAk2
1
.

(48)

Case 3.
a0 = − 2 (6NAk2

1k2
2+c2k2

1−k2
2)

c2k2
1

, a1 =
12k2
√

N (4NAk2
1k2

2+c2k2
1−k2

2)

c2k1
,

a2 = − 12 N k2
2

c2 , B = −
√

(4NAk2
1k2

2+c2k2
1−k2

2)√
Nk1k2

.
(49)

Case 4.
a0 = a0, a1 = − i4k2

√
3N (c2a0k2

1+3c2k2
1−3k2

2)

c2k1
, a2 = − 12 N k2

2
c2 ,

A = − c2a0
12N k2

2
, B = − i

√
c2a0k2

1+3c2k2
1−3k2

2√
3Nk1k2

.
(50)
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Case 5.
a0 = a0, a1 = − i4k2

√
3N (c2a0k2

1−c2k2
1+k2

2)

c2k1
, a2 = − 12 N k2

2
c2 ,

A = − c2a0k2
1+2c2k2

1−2k2
2

12N k2
1k2

2
, B = − i

√
c2a0k2

1−c2k2
1+k2

2√
3Nk1k2

.
(51)

To begin, the hyperbolic, trigonometric, and rational function solutions to the nonlin-
ear longitudinal wave equation are obtained by substituting the coefficient values from
Equation (47) into Equation (46) and evaluating Equations (34)–(36) as follows:

U1(z, t) =
12A N2k2

2
(
k2

2 − c2k2
1
)

c2
(

α cosh(β1(k1z + k2t + E)) +
√

N
(
k2

2 − c2k2
1
)
sinh(β1(k1z + k2t + E))

) 2 , (52)

where k1, k2, E, A, N, c are non-zero real constants and α =
√

N
(
4NAk2

1k2
2 − c2k2

1 + k2
2
)
,

β1 = 1
2

√
k2

2−c2k2
1

Nk2
1k2

2
.

U2(z, t) = −
12A N2k2

2
(
c2k2

1 − k2
2
)

sec2(β2 (k1z + k2t + E))

c2
(√

N
(
c2k2

1 − k2
2
)

tan (β2 (k1z + k2t + E))− α
) 2 , (53)

where k1, k2, E, A, N, c are non-zero real constants, and α =
√

N
(
4NAk2

1k2
2 − c2k2

1 + k2
2
)
,

β2 = 1
2

√
c2k2

1−k2
2

Nk2
1k2

2
.

U3(z, t) = −
12 A N k2

2
c2 − 6α

3
2 (k1z + k2t + E)

k2
1c2(α(k1z + k2t + E) + 2Nk1k2)

−
3N
(
4NAk2

1k2
2 − c2k2

1 + k2
2
)2
(k1z + k2t + E)2

k2
1c2(α(k1z + k2t + E) + 2Nk1k2)

2 . (54)

where k1, k2, E, A, N, c are non-zero real constants, and α =
√

N
(
4NAk2

1k2
2 − c2k2

1 + k2
2
)
.

Secondly, we calculate the hyperbolic, trigonometric, and rational functions solutions
for Equation (28) by substituting the coefficient values from Equation (48) into Equation (46)
and considering Equations (34)–(36) as follows:

U4(z, t) = −

(
H
(

B2 − 6A + 2KBtanh[ f (z, t)]
)
+
(

B2 + 2A
)
tanh2[ f (z, t)]

)
S(B + Ktanh[ f (z, t)]) 2 , (55)

where k1, E, A, B, N, c are non-zero real constants, and S = 1 + B2Nk2
1 − 4NAk2

1,

H = 2Nk2
1
(

B2 − 4A
)
, K =

√
B2 − 4A, f (z, t) = K

2

(
k1z− k1c√

1+B2 Nk2
1−4NAk2

1
t + E

)
.

U5(z, t) =

(
H
(
−B2 + 6A + 2iKB tan[g(z, t)]

)
+
(

B2 + 2A
)

tan2[g(z, t)]
)

S(−B + iK tan[g(z, t)]) 2 , (56)

where k1, E, A, B, N, c are non-zero real constants, and S = 1 + B2Nk2
1 − 4NAk2

1,

H = 2Nk2
1
(

B2 − 4A
)
, K =

√
B2 − 4A, g(z, t) = iK

2

(
k1z− k1c√

1+B2 Nk2
1−4NAk2

1
t + E

)
.

U6(z, t) = −
2 N k2

1(B2 + 2 A)

S
+

12B3N k2
1

(
k1z− k1c√

S
t + E

)
S
(

2B
(

k1z− k1c√
S

t + E
)
+ 4
) − 12B4N k2

1

(
k1z− k1r√

S
t + E

)2

S
(

2B
(

k1z− k1c√
S

t + E
)
+ 4
)2 . (57)

where k1, E, A, B, N, c are non-zero real constants, and S = 1 + B2Nk2
1 − 4NAk2

1.
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Thirdly, we calculate the hyperbolic, trigonometric, rational and exponential functions
solutions for Equation (1) by substituting the coefficient values from Equation (49) into
Equation (46) and considering Equations (34)–(36) as follows:

U7(z, t) = −2 +
2k2

2
c2k2

1
+

12A N2k2
2
(
c2k2

1 − k2
2
)

sec h2(β3 (k1z + k2t + E))

c2
(

α1 −
√

N
(
c2k2

1 − k2
2
)
tanh (β3 (k1z + k2t + E))

) 2 , (58)

where k1, k2, E, A, N, c are non-zero real constants, and α1 =
√

N
(
4NAk2

1k2
2 − c2k2

1 + k2
2
)
,

β3 = 1
2

√
c2k2

1−k2
2

Nk2
1k2

2
.

U8(z, t) = −2 +
2k2

2
c2k2

1
+

12A N2k2
2
(
c2k2

1 − k2
2
)

sec2(β4 (k1z + k2t + E))

c2
(

α1 +
√

N
(
k2

2 − c2k2
1
)

tan (β4 (k1z + k2t + E))
) 2 , (59)

where k1, k2, E, A, N, c are non-zero real constants, and α1 =
√

N
(
4NAk2

1k2
2 + c2k2

1 − k2
2
)
,

β4 = 1
2

√
k2

2−c2k2
1

Nk2
1k2

2
.

U9(z, t) = −2 +
2k2

2
c2k2

1
+

3 N
(
−16α1k1k2 + α2

1(k1z + k2t + E)
)

c2k2
1(α1(k1z + k2t + E)− 2Nk1k2)

2 , (60)

where k1, k2, E, A, N, c are non-zero real constants, and α1 =
√

N
(
4NAk2

1k2
2 + c2k2

1 − k2
2
)
.

Fourthly, we calculate the hyperbolic, trigonometric, rational and exponential func-
tions solutions for Equation (28) by substituting the coefficient values from Equation (50)
into Equation (46) and considering Equations (34)–(36) as follows:

U10(z, t) = −
9Na0

(
k2

2 − c2k2
1
)

c2
(

δ cosh(β1(k1z + k2t + E)) + 3
√

N
(
k2

2 − c2k2
1
)
sinh(β1(k1z + k2t + E))

) 2 , (61)

where k1, k2, E, a0, N, c are non-zero real constants, and δ =
√
−3N

(
c2a0k2

1 + 3c2k2
1 − 3k2

2
)
,

β1 = 1
2

√
k2

2−c2k2
1

Nk2
1k2

2
.

U11(z, t) =
9Na0

(
c2k2

1 − k2
2
)

sec2(β3(k1z + k2t + E))

c2
(

δ − 3
√

N
(
c2k2

1 − k2
2
)

tan(β3(k1z + k2t + E))
) 2 , (62)

where k1, k2, E, a0, N, c are non-zero real constants, and δ =
√
−N

(
c2a0k2

1 + 3c2k2
1 − 3k2

2
)
,

β3 = 1
2

√
c2k2

1−k2
2

Nk2
1k2

2
.

U12(z, t) =
9N
(
−4
√

3k1k2ω1
(
c2k2

1 − k2
2
)
(k1z + k2t + E) + c2k4

1
(
4Nk2

2 + a0
)
−ω2(k1z + k2t + E)2

)
c2k2

1

(√
3ω1(k1z + k2t + E) + 6Nk1k2

) 2 , (63)

where k1, k2, E, a0, N, c are non-zero real constants, and ω1 =
√
−N

(
r2(a0 + 3)k2

1 − 3k2
2
)
,

ω2 =
(
c2k2

1k2
2(a0 + 6) − 3k4

2 − c4k4
1(a0 + 3)

)
.

Lastly, we calculate the hyperbolic, trigonometric, rational, and exponential functions
solutions for Equation (28) by substituting the coefficient values from Equation (51) into
Equation (46) and considering Equations (34)–(36) as follows:
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U13(z, t) = −
3
(
c2k2

1 − k2
2
) (

q− 3c2k2
1a0tanh2(β3(k1z + k2t + E)) + 4ip

√
c2k2

1 − k2
2tanh(β3(k1z + k2t + E))

)
c2k2

1

(
ip +

√
c2k2

1 − k2
2tanh(β3(k1z + k2t + E))

) 2 , (64)

where k1, k2, E, a0, N, c are non-zero real constants, and p =
√

3
(
c2a0k2

1 − c2k2
1 + k2

2
)
,

q = c2a0k2
1 + 8c2k2

1 − 8k2
2, β3 = 1

2

√
c2k2

1−k2
2

Nk2
1k2

2
.

U14(z, t) =
3N
(
c2k2

1 − k2
2
) (
−q− 3c2k2

1a0 tan2(β1(k1z + k2t + E)) + 4ip
√

k2
2 − c2k2

1 tan(β1(k1z + k2t + E))
)

c2k2
1N
(

ip +
√

k2
2 − c2k2

1 tan(β1(k1z + k2t + E))
) 2 , (65)

where k1, k2, E, a0, N, c are non-zero real constants, and p =
√

3
(
c2a0k2

1 − c2k2
1 + k2

2
)
,

q = c2a0k2
1 + 8c2k2

1 − 8k2
2, β1 = 1

2

√
k2

2−c2k2
1

Nk2
1k2

2
.

U15(z, t) = a0 +
Np2(k1z + k2t + E)

(
−i4
√

Npk1k2 + p2(k1z + k2t + E)
)

c2k2
1N
(

6Nk1k2 − ip
√

N(k1z + k2t + E)
) 2 , (66)

where k1, k2, E, a0, N, c are non-zero real constants, and p =
√

3
(
c2a0k2

1 − c2k2
1 + k2

2
)
.

6. Results and Discussion

In this section, the generalized exp (−φ (η)) expansion function method was devel-
oped and has been utilized in solving the longitudinal wave equation in a magneto-electro-
elastic circular rod, and various solutions in hyperbolic function, trigonometric function,
periodic solitary wave, rational function, bright and dark solitons solutions, sinh, cosh, and
sech2 function solutions form were obtained. These soliton solutions can help to explain
the dynamics of higher-order dispersion, full nonlinearity, and spatiotemporal dispersion.
They can also be utilized to the propagation of solitons through a variety of waveguides.
The nonlinear DNA lattice, long–short-wave interaction systems, double-strand dynamics
in biophysics, ultrashort pulses in metamaterials, blood flow in arteries, solitons in periodic
resonant media, coupled waveguide arrays in nonlinear optics, and seismic sea waves
are just a few examples of physical challenges that have been modeled using solitary
waves. We plotted some of the solutions to have an idea on the mechanism of the original
Equation (28). We examined the nature of numerous solutions to the model of MEE circular
rod as non-linear dynamics of radially displaced by selecting certain parameter values and
plotting the precise solutions produced by the use of the mathematical software Mathe-
matica 10. We specifically plotted solutions Equations (52)–(66) using appropriate values
of the obtained parameters. The graphs of these solutions are presented in Figures 2–16,
respectively. We discovered that some of the solutions in this study possess significant
physical meanings, such as the hyperbolic tangent, which appears in the calculation of
magnetic moment and special relativity rapidity.
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Figure 16. The 3D and 2D plots of Equation (66) for various values of parameters.

Graphical representations are a highly helpful tool for communicating and clearly and
succinctly describing problem solutions. A graph is an easily compared visual representa-
tion of quantitative or qualitative solutions or other facts. We wish to have a fundamental
understanding of the graphs when performing computations. A hyperbolic function solu-
tion is represented by Equation (52). Singular kink solutions are waves that travel from one
asymptotic state to the next. At infinity, the singular kink solutions approach a constant.
Figure 2 pageants the shape of singular soliton exact solution for 3D and 2D plots of U1(z, t)
for the unknown constants k1 = 0.5, k2 = 1, c = 1, N = 2, A = 1, and E = 0.1 within
the interval −25 ≤ z ≤ 25, 0 ≤ t ≤ 10 for the 3D graph and t = 0.01 for the 2D graph.
Equation (53) represents the exact periodic travelling wave solution. The 3D and 2D plots
for U2(z, t) are shown in Figure 3 for unknown parameters k1 = 0.5, k2 = 1, c = −4, N = 2,
A = 2, and E = 0.1 and within the interval − 5≤ x, t≤5 for the 3D graph and t = 0.5 for 2D
graph. Figure 4 represents the 3D and 2D plots for dark singular soliton wave solution of
U3(z, t) for parameters k1 = 0.5, k2 = 1, c = 1, N = 2, A = 1, and E = 0.1 and within the
interval −5 ≤ z ≤ 5, −2 ≤ t ≤ 2 for the 3D graph and t = 1 for the 2D graph. Figure 5 dis-
plays the 3D and 2D plots for kink-type solution of U4(z, t) for k1 = 15, c = 4, N = 2, B = 13,
A = 12, and E = 5 and within the interval −20 ≤ z ≤ 20, −10 ≤ t ≤ 10 for the 3D graph
and t = 0.01 for the 2D graph. The trigonometric function solution in Figure 6 demonstrates
the periodic soliton solutions of U5(z, t) for the unknown constants k1 = 0.3, c = 3, N = −2,
B = 3, A = 2, and E = 5 to the interval −20 ≤ z ≤ 20, −10 ≤ t ≤ 10 for the 3D graph and
t = 10 for 2D graph. The 3D plot to the rational function solution U6(z, t) in Equation
(57) that behaves like a singular soliton solution for the unknown constants k1 = 0.3,
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c = 3, N = −2, B = 3, A = 2, and E = 5, and within the interval −15 ≤ z ≤ 15,−1 ≤ t ≤ 1
for 3D graphs and t = 1 for 2D graphs is shown in Figure 7. The hyperbolic function
solution in Figure 8 demonstrates the singular kink-type wave solutions of U7(z, t) for
the unknown constants k1 = 0.1, k2 = 0.6, c = 0.4, N = −0.2, A = 2, and E = 0.1 in the
interval −20 ≤ z ≤ 20, −10 ≤ t ≤ 10 for the 3D graph and t = 1 for 2D graph. Figure 9
represents the 3D and 2D new periodic soliton solution to the Equation (60) for different
values of the parameters k1 = 0.5, k2 = 1, c = 4, N = −2, A = 2, and E = 1 and to the
interval −18≤z, t≤ 18 for the 3D graph and t = 30 for the 2D graph. Figure 10 shows
the singular kink-type soliton solution for U9(z, t) for unknown constants k1 = 1, k2 = 2,
c = 2, N = 4, A = 1, and E = 5 for 3D graph within the interval −15 ≤ z ≤ 15, −1 ≤ t ≤ 1
and t = 1 for 2D graph. Figure 11 represents bright singular solitons trajectory of U10(z, t)
for the known parameters k1 = 0.3, k2 = 0.6, a0 = 1, c = 4, N = 2, and E = 1 for 3D
graph and t = 0.1 for the 2D graph within the intervals −10 ≤ z ≤ 10, −20 ≤ t ≤ 20. The
real and imaginary parts of U11(z, t) in Figure 12 show the breaking soliton and periodic
solutions for various values of the parameters k1 = 0.5, k2 = 1, a0 = −10, c = 4,
N = 2, and E = 0.1 for 3D and t = 0.1 for 2D plots. Figure 13 shows the singular soliton
solution for the unknown constants k1 = 0.3, k2 = 0.6, α0 = 1, c = 4, N = −16, and
E = 1 for 3D graphs within the interval −15 ≤ z ≤ 15, −1 ≤ t ≤ 1 and t = 1 for 2D
graphs. Figure 14 shows the real and imaginary parts of hyperbolic function solution of
U13(z, t) for the unknown constant k1 = 2, k2 = 6, a0 = 2, c = 4, N = 5, and E = 0.1
for 3D graphs within the interval −10 ≤ z, t ≤ 10, and t = 1 for 2D graphs, which shows
multiple bright singular soliton solution. Figure 15 represents the 3D and 2D plots of the
trigonometric function solution U14(z, t), which shows periodic solution for the unknown
constants k1 = 0.5, k2 = 1, a0 = 1, c = −4, N = −2, and E = 0.1 for 3D graphs within
the interval −6 ≤ z ≤ 1, 0 ≤ t ≤ 1 and t = 1 for 2D graphs. Figure 16 shows the singular
soliton solution for the unknown constants k1 = 0.3, k2 = 0.6, a0 = 1, c = 4, N= −16,
and E = 1 for 3D graphs within the interval −15 ≤ z ≤ 15, −1 ≤ t ≤ 1 and t = 1 for 2D
graphs.

7. Conclusions

In the current study, we investigated the generalized exp (-φ(η)) expansion approach
to identify various types of new precise travelling and solitary wave solutions of one-
dimensional nonlinear LWE in a circular MEE rod. This effective approach can also be
used to resolve a wide variety of nonlinear evolution equations that arise in the fields of
engineering, plasma, hydrodynamics, mathematical physics, and other applied sciences.
As a result, we were able to acquire several single-wave electrostatic potential and pressure
solutions, demonstrating the efficiency and dependability of this technique. The solitary
wave solutions are acquired in the form of bright and dark solitons, sinh and cosh function
solutions, sech2 function solutions, periodic solitary wave, rational function, and complex
hyperbolic function solutions. There are numerous mathematical and mathematical physics
applications that involve the hyperbolic functions. For instance, the gravitational potential
of a cylinder gives birth to the hyperbolic sine. The shape of a dangling cable can be seen
in the hyperbolic cosine function. The computation and speed of special relativity give rise
to the hyperbolic tangent. All three can be seen in general relativity’s Schwarzschild metric
when employing external isotropic Kruskal coordinates. The hyperbolic secant appears
in a laminar jet’s profile. The Langevin function for magnetic polarization contains the
hyperbolic cotangent. The analytical results from Section 5 are connected to the physical
characteristics of hyperbolic functions. Particularly, it is projected that the complex hy-
perbolic function solutions U13 discovered in this study will represent the gravitational
potential of a cylinder described by Equation (28). They are also displayed in two- and
three-dimensional graphs. This can also aid researchers in their understanding of an inves-
tigation into the system’s scientific explanation. Many existing solutions in the literature
were re-derived when parameters were given specific values, demonstrating the novelty of
our work. Similarly, if we use Equations (37)–(43), we obtain numerous new and interesting
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solutions. This method can be used to obtain not only exponential function solutions
but also hyperbolic, trigonometric, and rational function solutions. The generalized exp
(-φ(η)) expansion method has been demonstrated to be an effective method for obtaining
closed-form solutions to other nonlinear partial differential equations.
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