
Citation: Fan, X.; Wang, A.; Jiang, P.;

Wu, S.; Sun, Y. Nonlinear Bending of

Sandwich Plates with Graphene

Nanoplatelets Reinforced Porous

Composite Core under Various Loads

and Boundary Conditions.

Mathematics 2022, 10, 3396. https://

doi.org/10.3390/math10183396

Academic Editor: Fernando Simoes

Received: 6 August 2022

Accepted: 14 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Nonlinear Bending of Sandwich Plates with Graphene
Nanoplatelets Reinforced Porous Composite Core under
Various Loads and Boundary Conditions
Xudong Fan 1, Aiwen Wang 1,*, Pengcheng Jiang 1, Sijin Wu 2 and Ying Sun 1

1 School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
2 School of Instrument of Science and Opto Electronics Engineering, Beijing Information Science and

Technology University, Beijing 100192, China
* Correspondence: wangaiwen@bistu.edu.cn

Abstract: The nonlinear bending of the sandwich plates with graphene nanoplatelets (GPLs) re-
inforced porous composite (GNRPC) core and two metal skins subjected to different boundary
conditions and various loads, such as the concentrated load at the center, linear loads with different
slopes passing through the center, linear eccentric loads, uniform loads, and trapezoidal loads, has
been presented. The popular four-unknown refined theory accounting for the thickness stretching
effects has been employed to model the mechanics of the sandwich plates. The governing equations
have been derived from the nonlinear Von Karman strain–displacement relationship and principle
of virtual work with subsequent solution by employing the classical finite element method in com-
bination with the Newton downhill method. The convergence of the numerical results has been
checked. The accuracy and efficiency of the theory have been confirmed by comparing the obtained
results with those available in the literature. Furthermore, a parametric study has been carried out
to analyze the effects of load type, boundary conditions, porosity coefficient, GPLs weight fraction,
GPLs geometry, and concentrated load radius on the nonlinear central bending deflections of the
sandwich plates. In addition, the numerical results reveal that the adopted higher order theory can
significantly improve the simulation of the transverse deflection in the thickness direction.

Keywords: nonlinear bending; graphene nanoplatelets reinforced porous sandwich plates; various
loads; four-unknown refined theory

MSC: 74H45

1. Introduction

Metal foam core sandwich structures have received considerable attention due to the
advantages of lightweight, energy dissipation capacity, etc. [1,2]. However, the existence of
pores resulting in the relative reduction of stiffness limits its application in the case of heavy
load bearing [3]. A large number of theoretical and experimental studies [4–8] show that a
small addition of GPLs to the matrix can significantly improve the mechanical properties
of the structure. Therefore, GPLs as reinforcement has been developed by some researchers
to the sandwich structures with porous core. By this way, not only can the stiffness be
enhanced without increasing the weight, but the required mechanical properties can be
obtained by altering the size and density of the internal pores in different directions as well
as the weight fraction and distribution pattern of GPLs [9,10]. Therefore, the sandwich
plates with GPLs reinforced porous composite (GNRPC) cores exhibit the high potential of
use as one or more components of the aerospace structures.

Significant efforts have been devoted to study the mechanical behavior of the sandwich
structures with porous core. The studies are mainly divided into two categories. For the
sandwich structures with nanofiller (carbon nanotubes, GPLs, etc.) reinforced composite
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face sheets, Yu [11] dealt with the buckling and postbuckling behavior of a sandwich
plate with a homogeneous core resting on an elastic foundation in thermal environments
based on Reddy’s high order shear deformation plate theory (HSDT). Allam [12] presented
hygrothermal stress analysis of rotating functionally graded (FG) graphene/metal sandwich
cylindrical shell with an auxetic honeycomb core using the first-order shear deformation
theory (FSDT). Arefi [13] studied buckling and free vibration analyses of sandwich beam
made of a softcore using the Ritz method and extended higher-order sandwich panel
theory. Nguyen [14] proposed an excellent computational approach based on polygonal
meshes to comprehensively examine the free vibration, buckling, and dynamic instability
behaviors of the auxetic honeycomb sandwich plate structure using the generalized C0–
HSDT [15]. Li [16] investigated multiscale modeling and nonlinear low-velocity impact
analysis of sandwich plates with FG auxetic 3D lattice cores based on FSDT. Yadav [17]
considered the nonlinear static analysis of circular cylindrical sandwich shells using a
HSDT with nine kinematic parameters. On the basis of Reddy’s HSDT, all the following
studies were conducted. Karimiasl [18] analyzed the nonlinear free and forced vibration
analysis of composite sandwich panel subjected to the harmonic force excitation in the
hygrothermal environment. Safaei [19] explored the thermal and mechanical buckling
behaviors of lightweight polymeric nanocomposite sandwich plates containing uniformly
dispersed pores resting on two-parameter elastic foundations based. For the structures with
GNRPC core, Tao [20] discussed the postbuckling behavior of sandwich cylindrical shell
panels subjected to central point loads and uniform and nonuniform pressure loadings.
Yaghoobi [3] provided a robust and accurate analytical solution for establishing the buckling
capacity of a series of simply supported sandwich plates. Chen performed modeling and
analysis of compressive and thermal postbuckling of sandwich cylindrical panels supported
by an elastic foundation [21] and surrounded by an elastic medium [22]. Twinkle [23]
employed a semianalytical approach to obtain the buckling and free vibration characteristics
of sandwich cylindrical panel. Li [24] examined the nonlinear vibration and the dynamic
buckling of sandwich plates thoroughly. A few studies have been devoted to the structures
with porous face layers. For instance, based on the framework of the FSDT, nonlinear large
amplitude vibration analysis of the conical sandwich panels with porous piezoelectric face
layers resting on the nonlinear elastic foundation has been conducted by Zhu [25].

From the above review, based on the available deformation theories, many mechanical
studies have been carried out for the nanofiller reinforced sandwich structures. As we know,
the accurate and high efficient displacement field is crucial for researchers to accurately
predict the mechanical behavior of composite sandwich structures. Generally, the core
layer thickness of the sandwich structure is much longer than the surface layer in engineer-
ing applications. It is straightforward to cause the transverse stretching or compressive
deformation for thick structures. However, the displacement field employed in the above
literature studies ignored the transverse tensile effect, thus leading to inaccuracy in the
calculations.

In the currently available literature, the bending and elastic stability analyses consid-
ering the thickness stretch effect in the GNRPC curved beams [26] have been performed.
However, to the best of the author’s knowledge, there are few studies in the open literature
on the mechanical behavior of the GNRPC sandwich plates taking the stretching effect
into account. Furthermore, the research on the nonlinear bending behavior under different
loads and different boundary conditions is even less.

In this study, the author’s aim is to carry out the nonlinear bending of the sandwich
plates with a GNRPC core and two metal skins under various loads in combination with
different boundary conditions based on the four variable shear deformation theory [27]
accounting for the stretching effects. The kinetic equation of the sandwich plates has been
derived from the principle of virtual work. The nonlinear system was solved by employing
the finite element [28,29] and Newton downhill [29,30] methods. The convergence and
the validation of the numerical method has been verified by comparing the transverse
bending deflection with that of the available published literature. In addition, the effects
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of various physical and geometrical parameters on the dimensionless central transverse
bending deflection for the porous sandwich plates have been analyzed.

2. Characteristic Material Parameters

A sandwich porous plate with length a, width b, two skin layers with thickness h f ,
and core layer with thickness hc has been depicted in Figure 1. The skin layers are made
of metal, whereas the porous core layer is composed of NL layers of the GPLs reinforced
composite [30], with its cross-section shown in Figures 2 and 3.

Figure 1. The geometry of the sandwich plate with GPLs reinforced porous core layer.

Figure 2. The cross-section of the porous core layer.

Figure 3. The cross-section of GPLs reinforced core layer.

The GPL volume fraction of the ith layer can be calculated by

V(i)
G =

f (i)G

f (i)G + (ρG/ρM)(1− f (i)G )
. (1)
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where, f (i)G is the GPL weight fraction of the ith core layer of the sandwich plate, as
follows [30]:

f (i)G = 4 fG

(
NL + 1

2
−
∣∣∣∣i− NL + 1

2

∣∣∣∣)/(2 + NL).i = 1, 2, . . . , NL (2)

and fG is total GPL weight fraction.
The subscripts “G” and “M” denote GPLs and matrix, respectively. “E”, “ρ”, and “µ”

represent Young’s modulus, mass density, and Poisson’s ratio respectively. The common
approach adopted to estimate the effective Young’s modulus of the individual core layer
without porosity is the modified Halpin–Tsai model [5–8] as follows:

E∗ =
3
8

1 + ξLηLV(i)
G

1− ηLV(i)
G

× EM +
5
8

1 + ξWηWV(i)
G

1− ηWV(i)
G

× EM. (3)

where,

ηL =
(EG/EM)− 1
(EG/EM) + ξL

, ηW =
(EG/EM)− 1
(EG/EM) + ξW

,ξL =
2lG
hG

, ξW =
2wG
hG

. (4)

lG, wG, and hG represent the average length, width and thickness of the GPLs, respec-
tively. Poisson’s ratio µ∗ can be expressed by the following rule of mixtures [5–8]:

µ∗ = µGV(i)
G + µM

(
1−V(i)

G

)
. (5)

Furthermore, Young’s modulus E(z) and Poisson’s ratio µ(z) of the porous core layer
can be denoted as follows [24]:

E(z) = E∗[1− e0λ(z)]. (6)

µ(z) = µ ∗ . (7)

where, the nonuniform symmetric porosity distribution can be described as [24]:

λ(z) = cos
(

πz
hc

)
. (8)

The porosity coefficient is e0 = 1− E2
E1

, where E2, E1 are the maximum and minimum
Young’s modulus, respectively.

3. Theoretical Formulation

The following four variable shear deformation theory [27] considering the stretching
effects is assumed:

u1(x, y, z) = u(x, y)− z ∂w
∂x + f (z) ∂ϕ

∂x ,

u2(x, y, z) = v(x, y)− z ∂w
∂y + f (z) ∂ϕ

∂y ,

u3(x, y, z) = w(x, y) + g(z)ϕ(x, y).

(9)

A nonlinear strain–displacement relation can be presented as follows:

εxx = u1,x + 1
2 (u3,x)

2, εyy = u2,y + 1
2
(
u3,y

)2, εzz = u3,z + 1
2 (u3,z)

2,
γxy = u1,y + u2,x + u3,xu3,y, γxz = u1,z + u3,x, γyz = u2,z + u3,y.

(10)

where the subscripts ‘, x’ and ‘, y’ represent the partial derivatives with respect to x and y
directions. Let

εT=
(
εxx, εyy, εzz, γxy, γxz, γyz

)
,

qT=
(
u,x, u,y, v,x, v,y, w,x, w,y, w,xx, w,xy, w,yy, ϕ, ϕ,x, ϕ,y, ϕ,xx, ϕ,xy, ϕ,yy

)
.
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Here, the superscript T represents the transposed operator. The strain vector ε can be
written in the following matrix form:

ε = Z
[

H +
1
2

A(q)
]

q, (11)

The detailed forms of H and A have been listed in the Appendix A. The relation
between stress σ(k)= (σ

(k)
xx , σ

(k)
yy , σ

(k)
zz ,τ(k)

xy , τ
(k)
xz , τ

(k)
yz )T and strain at layer k in the sandwich

plate can be assumed as follows:
σ(k) = Q(k)ε. (12)

Q(k)=



Q(k)
11 Q(k)

12 Q(k)
13

Q(k)
21 Q(k)

22 Q(k)
23

Q(k)
31 Q(k)

32 Q(k)
33

Q(k)
44

Q(k)
55

Q(k)
66


(13)

Q(k)
11 = Q(k)

22 = Q(k)
33 =

E(k)(z)(1− v(k))
(1− 2v(k))(1 + v(k))

,

Q(k)
12 = Q(k)

13 = Q(k)
23 =

E(k)(z)v(k)

(1− 2v(k))(1 + v(k))
,

Q(k)
44 = Q(k)

55 = Q(k)
66 =

E(k)(z)
2(1 + v(k))

.

Supposing k = 1 and k = NL + 2 denote the upper and lower surfaces, and
k = 2, · · · , NL + 1 represents the core layer. Correspondingly, Young’s modulus E(k)(z)
and Poisson’s ratio ν(k)(z) can be computed as follows:

E(k)(z) =

{
EM, k = 1, NL + 2
E∗, k = 2, · · · , NL + 1

(14)

ν(k)(z) =

{
µM, k = 1, NL + 2
µ∗, k = 2, · · · , NL + 1

(15)

Based on (11), the stress resultant vector in the thickness direction can be written as:

S = D
[

H +
1
2

A(q)
]

q. (16)

The internal virtual work is represented as:

δPint =
N

∑
k=1

x

A

∫ zk+1

zk

δεTσ(k)dzdxdy=
x

A
δqT
[

HT +
1
2

AT(δqs)

]
Sdxdy (17)

On the other hand, the external virtual work is:

δPext =
x

A
δqT pdxdy (18)

where, p is the external force acting on the surface of the sandwich plate.
The weak form of the nonlinear governing equations can be written as:

x

A
δqT
{[

HT +
1
2

AT(δq)
]

S− p
}

dxdy = 0. (19)
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N
M
P
R
S
L

 =



Nxx Nyy Nzz Nxy Nxz Nyz
Mxx Myy Mzz Mxy Mxz Myz
Pxx Pyy Pzz Pxy Pxz Pyz
Rxx Ryy Rzz Rxy Rxz Ryz
Sxx Syy Szz Sxy Sxz Syz
Lxx Lyy Lzz Lxy Lxz Lyz

=
N

∑
k=1

∫ zk+1

zk

σ(k)



1
z

g(z)
g2(z)
f (z)

f ′(z) + g(z)

dz.

(20)

4. Finite Element Discretization

The nonlinear system in Equation (19) has been solved by employing the finite element
method [28,29]. The midplane displacements u, v are interpolated by the 4-node Lagrange
bilinear shape functions φ = {φi}, i = 1, 2, 3, 4, as

u = φue, v = φveφi(ξ, η) =
1
4
(1 + ξξi)(1 + ηηi). (21)

in natural coordinates (ξ, η) ∈ [−1, 1]× [−1, 1]. The interpolation of the other displace-
ments w, ϕ and their derivatives is dependent on the 4-nodes nonconforming rectangular
functions as

w = NHwe, ϕ = NH ϕe. (22)

where, the interpolating functions NH [31,32] are as follows:

NH =
{

H1, H1x, H1y, H2, H2x, H2y, · · · , H4, H4x, H4y
}

Hi =
1
8 (1 + ξiξ)(1 + ηiη)

(
2 + ξiξ + ηiη − ξ2 − η2),

Hix = le
8 ξi(ξiξ − 1)(1 + ηiη)(1 + ξiξ)

2, i = 1, 2, 3, 4.

Hiy = le
8 ηi(ηiη − 1)(1 + ξiξ)(1 + ηiη)

2,

(23)

where, ξi, ηi in Equations (21) and (23) are the corresponding nodal coordinates in the
natural reference system.

Based on the interpolation, the discretized unknowns can be written as:

q = Gθe. (24)

where, G is an interpolating matrix constructed by the components of the interpolating
functions NH and their derivative with respect to the local coordinates ξ, η. The unknown
vector can be written as θeT =

{
θe

1, θe
2, θe

3, θe
4
}

where,

θe
i

T =
{

ui ,x, vi ,x, vi ,y, wi ,x, wi ,y, wi ,xx, wi ,xy, wi ,yy, ϕi, ϕi ,x, ϕi ,y, ϕi ,xx, ϕi ,xy, ϕi ,yy
}e

By substituting Equations (21)–(23) into (19), the finite element discrete scheme of
Equation (19) at the elemental level is gained as follows:δθeTs

A GT
{[

HT + 1
2 AT(δθe)

]
Se − p

}
dxdy = 0.

Se = D
[

H + 1
2 A(θe)

]
Gθe.

(25)

According to the classical finite element method [28], a global stiffness matrix and
a nonlinear system for the sandwich plate are formed. Then, the Newton downhill
method [29,30] is subsequently applied to solve the nonlinear system.

5. Numerical Results and Analysis

In order to reveal the nonlinear bending mechanical behavior of the sandwich plates
with GNRPC core and two aluminum skins under various loads, the following loads are
considered in this study: uniform load (UL), concentrated load (CL) with radius CR around
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the center
(

a
2 , b

2 , h
2

)
, linear eccentric load (EL), linear loads with infinite slope (LL∞), and

slope k (LLk) passing through the center and trapezoidal load (TL), as shown in Figure 4.

1 
 

 

 

 
Figure 4. The type of loads: (a) uniform load, (b) concentrated load, (c) 
eccentric load, (d) linear loads with infinite slope, (e) linear loads with slope k, 
(f) trapezoidal load. 

 
 

Figure 4. The type of loads: (a) uniform load, (b) concentrated load, (c) eccentric load, (d) linear loads
with infinite slope, (e) linear loads with slope k, (f) trapezoidal load.

5.1. Parameters and Validation

Aluminum was taken as matrix, and GPLs were used as reinforcement. The material
parameters have been listed in Table 1 [24].

Table 1. Material parameters of GPLs and aluminum.

Material Young’s Modulus Poisson’s Ratio Density

Al E1 = 70 Gpa v1 = 0.3 ρ1 = 2702 kg/m3

(CrO2)-1 E2 = 200 Gpa v2 = 0.3 ρ2 = 5700 kg/m3

Unless otherwise stated, the other parameters are as follows:

a = 1m, ht = 0.005a, h f = 0.1ht, hc = 0.8ht, e0 = 0.5, CR = 0.1m

lG = 2.5µm, wG = 1.5µm,hG = 1.5nm, WG = 0.5%.
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In order to clearly represent the boundary conditions, the following symbolic assump-
tions have been made.

Simply supported (S):

v = w = w,y = ϕ = ϕ,y = Mxx = Sxx = 0 at x = 0, a. (26)

u = w = w,x = ϕ = ϕ,x = Mxx = Sxx = 0 at y = 0, b. (27)

Clamped (C):

u = w = w,x = ϕ = ϕ,x = Myy = Syy = 0 at x = 0, a, y = 0, b. (28)

Based in this notation, the classical boundary conditions can be represented by a
combination of four letters, such as CCCC, SSSS, SCSC, CFCF, etc. In the following numer-
ical experiment, the initials represent the boundary of the edge at y = 0, followed by the
combination in a counter clockwise order. Thus, the last letter denotes the side x = 0, as
shown in Figure 5.

Figure 5. Schematic diagram of the boundary conditions.

First, two case study are performed to verify the convergence of the present numerical
model. One is for nonlinear bending of the aluminum/alumina (Al/ZrO2-1) functionally
graded materials (FGM) square plate under SSSS boundary condition and uniform load.
The equivalent material properties with gradient change in the thickness direction are
expressed by P(z).

P(z) = P1 + (P2 − P1)V(z) (29)

V(z) =
(

1
2
+

z
h

)υ

. (30)
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where, V(z) is the volume fraction of ZrO2-1 with index υ. P1 and P2 indicate the properties
of Al and ZrO2-1, respectively. The values of the material parameters and detailed com-
puting methodology can be found in Ref. [33]. The other is for the nonlinear bending of
sandwich plates with GNRPC core under four different boundary conditions (CCCC, SSSS,
SCSC, CFCF) and three length-to-thickness ratios (a/ht = 20, 40, 60). The dimensionless
central deflections of FGM square plates and sandwich plates with GNRPC core are shown
in Table 2 and Figure 6. Convergence behavior of dimensionless central deflection under
different boundary conditions, respectively. It is clearly observed from Table 2. and Figure 6
that the dimensionless central deflections are converging well with the mesh refinement
for different volume fraction index υ of ZrO2-1 and various boundary conditions as well
as length-to-thickness ratios. Therefore, a 30× 30 mesh is employed for the following
numerical experiments.

Table 2. Convergence of dimensionless central deflection of FGM square plate.

Element
Number

v

0 0.5 1 2

20× 20 0.1752 0.2392 0.2834 0.3296
30× 30 0.1750 0.2390 0.2830 0.3292
40× 40 0.1749 0.2389 0.2829 0.3291
50× 50 0.1749 0.2389 0.2828 0.3290
60× 60 0.1749 0.2388 0.2828 0.3290

Figure 6. Convergence behavior of dimensionless central deflection under different boundary conditions.

Secondly, a further comparison study has been performed for the above FGM square
plates. The dimensionless central deflections of FGM square plates under SSSS bound-
ary conditions has been compared with those in open literature studies [33–36] and the
simulation results by software ANSYS in Table 3. Table 4 considers the comparison of the
dimensionless central deflection of FGM square plate under other three boundary condi-
tions (CCCC, SCSC, SFSF). The coherence of the numerical results indicates the correctness
and successful validation of the model and numerical calculation process depending on
the finite element method.
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Table 3. Comparison of dimensionless central deflection of FGM square plate.

Method
v

0 0.5 1 2

Present 0.1752 0.2392 0.2834 0.3296
Ref. [32] 0.1717 0.2319 0.2716 0.3121
Ref. [33] 0.1703 0.2232 0.2522 0.2827
Ref. [34] 0.1671 0.2505 0.2905 0.3280
Ref. [35] 0.1722 0.2403 0.2811 0.3221
Ansys 0.1541 0.2594 0.2793 0.3013

Table 4. Comparison of dimensionless central deflection of FGM square plate under three boundary
conditions.

Boundary
Conditions Method

v

0 0.5 1 2

CCCC
Present 0.0692 0.0938 0.1113 0.1308
Ref. [34] 0.0731 0.1073 0.1253 0.1444
Ref. [35] 0.0773 0.1034 0.1207 0.1404

SCSC
Present 0.0941 0.1282 0.1522 0.1783
Ref. [34] 0.1017 0.1501 0.1751 0.2008
Ref. [35] 0.1073 0.1447 0.1701 0.1953

SFSF
Present 0.5177 0.6830 0.7795 0.8805
Ref. [34] 0.5019 0.7543 0.8708 0.9744
Ref. [35] 0.5061 0.7029 0.8214 0.9423

5.2. Nonlinear Bending Analysis of Sandwich Plates with GNRPC Core

The dimensionless central deflection at central point
(

a
2 , b

2 , z
)

along the thickness of
the sandwich plates under different loads and boundary conditions have been depicted
in Figure 7. It is interesting to note that the dimensionless central deflection follows
same behaviors for all six types of loads, which varies with z coordinate and exhibits the
influence of the stretching effect in the thickness direction. According to the magnitude of
dimensionless central deflections, the load types are sorted. For CCCC and CFCF boundary
conditions, the order from large to small is UL, LL10, CL with CR = 0.1 m, LL∞, TL, EL.
However, for SSSS and SCSC boundary conditions, CL and LL∞ are fine tuned in the above

sorting. The dimensionless central normal stress σxx = σxx(a/2,b/2,z)
q0a2/ht2 , q0 = 100pa4

Emht4 and shear

stress τyz =
τyz(a/2,0,z)

q0a/h have also been illustrated in Figures 8 and 9. It can be observed
that all load types have the same nature. The normal stress in X-direction and shear stress
are negative on the bottom surface and positive on the upper surface of the sandwich
plates subjected to various loads and different boundary conditions. The transverse shear
deformation distribution of all six loads is parabolic and fully satisfies the zero shear stress
conditions on the surfaces.
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Figure 7. The dimensionless central deflection along the thickness direction.

Figure 8. The dimensionless normal stress σxx

(
a
2 , b

2 , z
)

along the thickness direction.
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Figure 9. The dimensionless shear stress τyz (a/2, 0, z) along the thickness direction.

The central load-deflection curves of the sandwich plates subjected to the different
loads and boundary conditions are depicted in Figure 10. It is observed that the dimension-
less central bending deflection increases in a curve as all types of load increases. Besides,
It can also be seen from Figures 7 and 10 that among all the type of loads, UL loads give
the maximum dimensionless central deflection, EL load (0.5 cm off center) generates the
minimum ones.
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Figure 10. The central load-deflection curves of the sandwich plates subjected to various loads and
boundary conditions.

The effect of porosity on the dimensionless central deflection of the sandwich plates
has been presented in Figure 11. It is observed the dimensionless central deflection increase
with an increment in porosity coefficient. This phenomenon is due to the fact that the
existence of pores can significantly reduce the overall stiffness of the sandwich plates.
Moreover, the larger porosity coefficient, the smaller the stiffness.

Figure 11. The effect of porosity on the dimensionless central deflection of the sandwich plates.

The effect of the GPLs weight fraction on the dimensionless central deflection curves
is illustrated graphically in Figure 12. It is observed that the dimensionless central bending
deflection decreases with the enhancement of GPLs weight fraction. The results reveal that
the accretion of GPLs can significantly improve the overall stiffness of sandwich plates.
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Figure 12. Effect of GPLs weight fraction on the dimensionless central nonlinear bending deflection
of the sandwich plates under various boundary conditions.

The effect of GPLs geometry aspect ratio (lG/wG) and length-to-thickness ratio (lG/hG)
on the dimensionless central nonlinear bending deflection of the sandwich plates with
length-to-thickness ratio a/ht = 5 and a/ht = 10 has been presented in Figure 13a,b. It
can be observed that GPLs with higher aspect ratio and smaller length-to-thickness ratio
significantly reduce the stiffness of the sandwich plates. In addition, an increment in the
length-to-thickness ratio of the sandwich plates leads to an enhanced dimensionless central
nonlinear bending deflection.

Figure 13. Cont.
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Figure 13. Effect of the GPLs aspect ratio (lG/wG) and length-to-thickness ratio (lG/hG) on the di-
mensionless central nonlinear bending deflection of the sandwich plates: (a) a/ht = 5, (b) a/ht = 10.

The effect of the layer thickness ratio on the nonlinear bending deflection of the porous
sandwich plates under different boundary conditions has been shown in Figure 14. As
observed, the dimensionless central deflections are higher and lower for the 1-8-1 and 1-0-1
sandwich plates, respectively. The results show that the thicker the core thickness, the
smaller the stiffness caused by the pores.

Figure 14. Effect of the layer thickness ratio on the nonlinear bending deflection of the porous
sandwich plates under various BCs.

As shown in Figure 15, the nonlinear bending deflection increases with the concen-
trated load radius. As the radius gradually increases, the load applied to the upper surface
becomes larger and closer to the uniform load.



Mathematics 2022, 10, 3396 16 of 19

Figure 15. Effect of the concentrated load radius of the porous sandwich plates under the boundary
condition SSSS.

6. Conclusions

In this study, nonlinear bending of the sandwich plates with a GNRPC core and
two metal skins has been investigated by employing the four-unknown refined theory
considering the thickness stretching effects. The mathematical models of the sandwich
plates under six load types rest upon the virtual work principle and nonlinear Von Karman
strain–displacement relationship. The nonlinear bending deflection has been gained by
taking the classical finite element and Newton downhill methods into account. A good
agreement is observed between the findings obtained in this study and reported literature.
The following conclusions are drawn from the numerical results.

(1) The adopted higher order theory can significantly improve the simulation of the
transverse deflection and different stresses in the thickness direction.

(2) All six types of loads have similar mechanical behaviors. According to the dimension-
less central deformation caused by them, six load types are sorted with a descending
order UL, LL10, CL with CR = 0.1 m, LL∞, TL, EL for CCCC as well as CFCF bound-
ary conditions and UL, LL10, LL∞, CL with CR = 0.1 m, TL, EL for SSSS and SCSC
boundary conditions.

(3) The dimensionless central deflection is maximum for the UL and minimum for the EL
compared to other examined four different types of load.

(4) Under the same boundary conditions, the dimensionless central nonlinear bending
deflection increases with the enhancement of porosity coefficient, GPLs aspect ratio,
thickness of porous core layer. However, it shows a reverse trend for the GPLs weight
fraction, GPLs length-to-thickness ratio.

Considering the continuous gradient change of the material physical parameters, only
one pore distribution and GPLs distribution models in the core layer have been employed
in this study. The mechanical behavior of the sandwich plates with core layer is impacted
by various pore and GPLs distribution patterns, thus, the sandwich plates with FG GPLs
reinforced composite skins will be developed in the future for further insights.
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Appendix A

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0



A =



0 0 0 w,x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 w,y 0 0 0 0 0 0 0 0 0
0 0 0 w,y w,x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ϕ,x 0 0 0 0 0 w,x 0 0 0 0
0 0 0 0 ϕ,y 0 0 0 0 0 w,y 0 0 0
0 0 0 ϕ,y ϕ,x 0 0 0 0 w,y w,x 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ϕ,x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ϕ,y 0 0 0
0 0 0 0 0 0 0 0 0 ϕ,y ϕ,x 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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