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Abstract: Mathematical methods are the basis of most models that describe the natural phenomena
around us. However, the well-known conventional mathematical models for atmospheric modeling
have some limitations. Machine learning with Big Data is also based on mathematics but offers a
new approach for modeling. There are two methodologies to develop deep learning models for
spatio-temporal image prediction. On these bases, two models were built—ConvLSTM and CNN-
LSTM—with two types of predictions, i.e., sequence-to-sequence and sequence-to-one, in order to
forecast Aerosol Optical Thickness sequences. The input dataset for training was NASA satellite
imagery MODAL2_E_AER_OD from Terra/MODIS satellites, which presents global Aerosol Optical
Thickness with an 8 day temporal resolution from 2000 to the present. The obtained results show that
the ConvLSTM sequence-to-one model had the lowest RMSE error and the highest Cosine Similarity
value. The advantages of the developed DL models are that they can be executed in milliseconds
on a PC, can be used for global-scale Earth observations, and can serve as tracers to study how the
Earth’s atmosphere moves. The developed models can be used as transfer learning for similar image
time-series forecasting models.
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1. Introduction

The need for atmospheric spatio-temporal forecasts has led to the development of
many well-known mathematical models, such as the Gaussian dispersion model, which
is suitable for fast but less accurate predictions, because it does not require a lot of com-
putational time [1]. Euler–Lagrange mathematical model is more accurate but also more
demanding in terms of calculations. The Euler model is used to give spatial prediction
as an explicit method for the numerical integration of ordinary differential equations.
The Lagrangian method is used for forecasting a trajectory path over time with implicit
time-dependence through a set of generalized coordinates. In [2], a spatio-temporal image
pattern prediction method based on the Navier–Stokes equation and non-dimensional
advection–anisotropic-diffusion equation is presented for an image sequence.

The aforementioned models are based on well-known equations, but since the model-
ing and prediction of complex and nonlinear function approximations do not give exact
solutions (ground truth), such models have errors. As an alternative to classical models,
Machine Learning (ML) and Artificial neural networks (ANNs) with Big Data offer the new
possibility to capture spatial, temporal and spatio-temporal correlations more rapidly with
fewer errors, revealing new patterns of atmospheric non-linearity.

Deep learning (DL), as part of ML, is based on mathematics, e.g., numerical optimiza-
tion problems with gradient descent. Automatic differentiation is used for backpropagation
in the training of neural networks (NNs) to estimate the correct polynomial for regression
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predictive modeling with minimum error by hyperparameter optimization. Mathematics
explains how algorithms work, e.g., statistical, probability and linear algebraic tools. The
implementation of DL demands a lot of data, and size does matter. Among other things,
deep neural networks (DNN) are very useful and successful with time-stepped data [3].

Satellite remote sensing offers imagery datasets which are sorted by date, usually
sequentially (time-series). This approach has proved to be very useful in climate and
environmental analyses. In this study, the Aerosol Optical Thickness (AOT) dataset from
NASA Earth Observations (NEO) was used [4]. AOT is the measurement of the quantity
and distribution of aerosols that have a serious impact on environment, climate and
human health.

Spatio-temporal image predictions in DL can be done using Convolutional Neural
Networks (CNNs), followed by Long Short-Term Memory (LSTM), where the CNN (Con-
volution2D) captures the spatial features and LSTM captures the correlations over time.
Another method involves a new class, ConvLSTM2D in Keras, which captures spatial and
temporal components at the same time.

The aim of the presented study is to determine which methodology shows better
results in predictions of image time series. Few studies have attempted this, especially
for sequences of images (2D input and 2D output). The first approach is to develop the
model with Conv2D layers followed by LSTM layers; the problem is to determine how
to transform a 2D array to 1D as input to the LSTM layer, and then to return to 2D as an
image). The second approach is to develop a model with perspective ConvLSTM2D layers
in order to replace the old model design (CNN followed by LSTM). For this reason, in this
study, one model is named CNN-LSTM and the other ConvLSTM.

Furthermore, prediction problems with times series can be divided into three main
types [5]: one-to-sequence, sequence-to-one and sequence-to-sequence. For the devel-
oped models, the MODAL2_E_AER_OD dataset was used for sequence-to-sequence and
sequence-to-one predictions. Thus, four models for global spatio-temporal image forecast-
ing were developed for the sake of comparison: ConvLSTM sequence-to-sequence, ConvL-
STM sequence-to-one, CNN-LSTM sequence-to-sequence, and CNN-LSTM sequence-to-one.

In our literature review, we did not find spatio-temporal image forecasts with similar
models. The goal of our study was to implement ML with satellite remote sensing in order
to more precisely measure aerosols as one of the main uncertainties in climate modeling.

2. Data and Methodology
2.1. Literature Review and Related Work

Regularization is an efficient way to improve the generalization ability of deep CNNs,
because it makes it possible to train more complex models while maintaining lower overfit-
ting [6]. Regularization techniques such as Learning rate, EarlyStopping and ReduceLROn-
Plateau with Dropout and BatchNormalization layers were implemented in this study in
order to reduce the overfitting problem. Another useful technique is the data augmentation
method at the training stage in DL, which can significantly improve the accuracy of the
deep CNN [7].

Recurrent neural networks (RNNs) have been widely adopted in research areas con-
cerned with sequential data, such as text, audio, video. LSTM with gate functions in the
cell structure has become the focus of DL [8]. Furthermore, in [9], LSTM was employed to
capture the temporal features from a sequence of ultrasound images.

DL architectures have been developed to deal with raw structured data and to enable
the rapid analysis of structured input data (sequences, images, videos) to predict complex
outputs with unprecedented accuracy [10]. A systematic review on traditional NNs and
the most advanced DL methods in environmental remote sensing applications is presented
in [11]. According to the authors of that study, the combination of physical and the DL
models is a promising direction.

In [12], satellite-based aerosol retrievals are used to provide global spatially distributed
estimates of atmospheric aerosol parameters that are commonly needed in applications
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such as estimations of atmospherically corrected satellite data products, climate modeling
and air quality monitoring. A one-dimensional CNN (which acts as a spatial feature
extractor) was integrated with a one-directional fully gated recurrent unit (GRU) for more
timely and accurate air quality forecasting, with the ultimate objective of contributing to
better public health protection and air pollution prevention [13].

The motivation for developing the ConvLSTM and CNN-LSTM models lies in the lack
of literature. Only a few studies, such as [14,15], have provided comparative analyses of the
ConvLSTM and CNN-LSTM methodologies. Furthermore, spatio-temporal image predic-
tions are very rare, especially with comparing these two methodologies when used for the
same purpose. Usually, the base comparative model is LSTM, but both studies [14,15] and
the experiences of the authors of the present study show that both methodologies yield bet-
ter results than LSTM. As such, the aim of this study is to undertake a credible comparison
of the ConvLSTM and CNN-LSTM methodologies for sequence image prediction.

2.2. Pre-Training Process

Satellite remote sensing for climate modeling can help scientists to understand how
aerosols affect the Earth’s environment. Scientists use satellites to map where there are large
amounts of aerosol on a given day or for a couple of days [4]. Scientists use measurements
from the Moderate Resolution Imaging Spectroradiometer (MODIS), aboard NASA’s Terra
and Aqua satellites, to map the quantities of aerosols in the air over most of the globe [4].
Because aerosols reflect visible and near-infrared light back to space, scientists can use
satellites to make maps of where there are high concentrations [4].

Satellite image time series are sequences of satellite images that record a given area
at consecutive moments [5]. Since the input dataset comprises continuous snapshots of
AOT as a sequence every 8 days, the aims of this study were to develop a model which is
capable of learning patterns and relationships and to extract features from time series of
satellite images in order to predict AOT for the next 8 days.

The advantage of DL over linear mathematical models and some statistical models
that is able to capture nonlinearity based on ANNs; however, to achieve this, the DL model
needs a lot of data to learn patterns and identify the relationships between them. Thus,
DL modeling is possible because of Big Data. Many open-source datasets are available,
e.g., satellite imagery from NEO. Typically, snapshots are taken daily, every 8 days, or
monthly. Near-infrared and visible light emitted from the Aqua and Terra satellites is
reflected back to space due to the presence of aerosols, making it possible to map global
aerosol concentrations. These satellites monitor AOT in order to determine the quantity of
aerosols that prevent the transmission of light through scattering or absorption, thereby
affecting climate change.

In the present study, satellite-retrieved AOT was used as a dataset MODAL2_E_AER_OD
that provides snapshots from 2000 to the present [4]. The dataset, as input data for the
training of DL models, covers the period from 18 February 2000 to 14 September 2021, with
a temporal resolution of 8 days, providing a total of 993 snapshots in PNG format with
3600 × 1800 resolution. Measurements of AOT concentration in the snapshots are based on
the color scale in a linear range, where yellow indicates AOT < 0.1 (clear sky) and brown
indicates AOT = 1 (very hazy).

Image pre-processing is done by resizing to 288 × 144 pixels, converting to JPG,
normalizing by dividing by 255 and saving the database as a NumPy array. A new function
to shift the frames for predictions in the next step was built, whereby x represents frames
from 0 to (n − 1) and y frames from 1 to n; n is the number of input and output time-
series sequences. During training, two types of predictions were used: first, a sequence of
10 frames was used for predictions when n = 10, and second, this sequence was shifted by
one frame, i.e., (1–11) for predictions of the following frame (11) [5].

The train/test split is a technique for training and evaluating the performance of a ML
model. The input dataset (MODAL2_E_AER_OD) must be split into training and testing
subsets in order to prevent overfitting and poor predictions with new data. The training
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subset is a set of data used to fit the model and to learn from it. The test subset is not used
to train the model, but rather, to compare predicted values with expected ones in order to
evaluate the fit of ML model.

A train/test split is not appropriate when the dataset is small. However, a dataset of
almost 1000 images was suitable for the present task. For the used database size, 70% of
the dataset (MODAL2_E_AER_OD) was used for training and 30% was used for testing,
as well as 80%/20%, or 90%/10%. The reason for such splits lies in the fact that training
subset must have enough data to learn and fit the model. Further, the snapshots in the
training and testing subsets were selected sequentially, i.e., sorted by data. This was done
in this way because the model needs to learn from sequences in time series and predict the
next one sequence. After performing all three split types, the evaluation metric showed
that a split of 80%/20% yielded had the best result.

For research purposes, two DL methodologies were implemented to develop two models,
ConvLSTM and CNN-LSTM, with sequence-to-sequence and sequence-to-one prediction
types. Subsequently, an intercomparison was carried out. The input for the CNN was a 4D
tensor (comprising samples, rows/height, cols/width, channels). The output was a feature
map that extracts spatial information from images with shape, i.e., samples, feature map
heights, feature map widths and feature map channels. The number of samples (frames)
was 10 in the first case (sequence-to-sequence) and 1 in the second (sequence-to-one).

LSTM is a type of Recurrent Neural Networks which is capable of learning the re-
lationships between time-series elements, i.e., sequential data. ConvLSTM2D is also a
recurrent layer with internal matrix multiplications that are exchanged with convolution
operations; thus, the input and output dimensions are the same [16]. The input to LSTM
layers is a 3D tensor with shape (samples, time steps, features), and as such, in contrast
to the ConvLSTM2D layer, it is not able to capture sequential images. The input to the
ConvLSTM2D layers is a set of images over time as a 5D tensor comprising samples, time
steps, rows, cols and channels.

The output to LSTM layers is a 3D tensor comprising samples, time steps and features
when the return_sequences attribute is set as true. It is also possible that the output of the
LSTM layers is a 2D tensor with samples and features when the return_sequences attribute
is set as false. The output of the ConvLSTM2D layers is a 5D tensor with samples, time
steps, rows, cols and filters if the return_sequences attribute is set as true. Otherwise, if
that attribute is set as False, the output is a 4D tensor with samples, rows, cols and filters.

3. Deep Learning Models

The ConvLSTM and CNN-LSTM models for global spatio-temporal image prediction
were developed based on two methodologies in Keras, an open-source software library that
provides a Python interface for ANN. Satellite remote sensing images usually comprise
datasets of time series images. Spatio-temporal image prediction with the DL model can
be done using the two aforementioned methodologies. In order to create a DL model
in Keras, five steps are required: define, compile, fit and evaluate the model, and make
predictions. For both methodologies, and training and testing subsets were the same. DL
model optimization requires a lot of trial and error during the training process, because for
regression, there is no analytical solution, just a numerical solution.

In order to achieve better model performance, a manual search and testing of the
construction and learning parameters (like hyperparameters) were done according to the
author’s previous experience. Hyperparameters are parameters whose values control the
learning process and determine the values of the model parameters. In the ConvLSTM
methodology, the optimal number of convolutional layers, the number of filters in those
layers and the optimal activation functions were tested. Different values for the dropout
layer intensity were also used. In the CNN-LSTM methodology, in addition to the steps
mentioned above, the number of LSTM units was also examined. Different training opti-
mizers were tested for all models, e.g., learning rates, features to monitor learning, epoch
patience and min_delta, with the ReduceLROnPlateau and EarlyStopping methods.
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In the interests of comparing the developed models as objectively as possible, the
same parameters were defined for the ReduceLROnPlateau and EarlyStopping regulatory
methods, and the learning rates were the same at the beginning of the process. Training the
ConvLSTM model under the stated conditions took significantly less time than it did for
the CNN-LSTM model. For these reasons, the ConvLSTM model regularly tended toward
overfitting, and as such, the learning rate was reduced from 0.001 to 0.0005.

The main module of the ConvLSTM methodology is the ConvLSTM2D layer in Keras,
which is like an LSTM layer except that the input and recurrent transformations are convo-
lutional [17]. The number of implemented ConvLSTM2D layers depends on the type of
problem that is being solved; in our case, after testing several options, the optimal number
was found to be 3. The last layer for the ConvLSTM sequence-to-one prediction was the
fourth ConvLSTM2D layer, since the Conv2D layer only works with one image, i.e., output
is only one image, while the last layer for ConvLSTM sequence-to-sequence predictions is
a Conv3D layer [18], since output is sequence of 10 images. Thus, the ConvLSTM model
consisted of 3 x ConvLSTM2D layers and the final Conv3D layer as output to produce a ten-
sor containing rows, cols and channel. For further model optimization, the ConvLSTM2D
layer was followed by Dropout (randomly selected neurons were ignored during training)
and BatchNormalization, which standardizes the inputs to a layer for each mini-batch and
reduces the number of training epochs. EarlyStopping was implemented in the fit() method.
EarlyStopping is a type of regularization which is used to avoid overfitting, resulting in a
reduced learning rate when a metric has stopped improving. The learning rate controls
how much to update the weights at the end of each batch.

A grid search for hyperparameters was attempted, but better results were achieved
with manual tune testing. The optimal solution for the ConvLSTM developed model was
achieved with the following settings: batch size = 1, epochs = 20, activation functions
‘sigmoid’ and ‘relu’, and optimizer ‘adam’ with learning_rate = 0.0005. The activation
function controls the non-linearity of individual neurons and when to activate them. The
rectifier activation function (ReLU) is commonly used in DL due to its good gradient
propagation and efficient computation [19]. The batch size is the number of training
samples used by the training dataset to update a model’s parameters. An epoch consists
of one or more batches and represents the number of complete passes through the entire
training dataset. Figure 1 shows the results of the plot_model function in Keras and depicts
the ConvLSTM developed model for sequence-to-sequence predictions.

The second developed model for global spatio-temporal image prediction applied the
CNN-LSTM methodology, with an input layer that received a sequence of 10 pre-processed
images from the training subset and an output comprising 10 sequences, shifted by one
sequence. Since the Conv2D layer can only work with one image, a TimeDistributed
layer was added to the next four layers, which made it possible to work with a series
of input data. The first layer was Conv2D with 33 filters for better model performance.
BatchNormalization was used in the second and fourth layers to prevent the so-called
explosion of the loss function and to achieve normalization during the learning process by
preventing excessive growth of certain weights in relation to the others in each layer in the
neural network. The third layer was Conv2D with three filters; this was used to return the
format to three RGB channels. The fifth reshape layer transformed the 2D image format to
1D in order to prepare for the next LSTM memory layer. Dropout was used in the sixth and
eight layers to prevent overfitting (good processing of known data, but poor processing of
new data). The ninth layer determined the final number of pixels of the output predicted
image, which was transformed into the appropriate format in the tenth layer. The eleventh
layer was convolutional (Conv3D), i.e., a standard image processing layer adapted to the
relevant output data type.

Figures 1 and 2 present plots for sequence-to-sequence prediction. Plots for the second
type of prediction, i.e., sequence-to-one prediction, are almost the same as for the first type,
with the differences being that the last layers are adapted to the output of a single image
and the option not to return_sequences is used at the last recurrent layer.
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The best result for the CNN-LSTM model was achieved using the following set-
tings: batch size = 1, epochs = 20, activation function ‘relu’ (good for vanishing gradient
problem) and optimizer ‘adam’ (learning_rate = 0.001). Figure 2 shows the result of the
plot_model function in Keras and illustrates the developed CNN-LSTM model for sequence-
to-sequence predictions.

In DL, to create a model which is capable of learning, training is required to capture
unknown relationships and patterns among data. After finishing the training process, the
ConvLSTM and CNN-LSTM models were used to predict the first image from the test
dataset, and subsequently, that image was compared with the original first image from
the same dataset. Given that the input dataset consisted of global AOT snapshots with an
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8 day temporal resolution, it made sense to forecast global AOT for the next eight days
(which is the usual duration of the cycle of of aerosol transportation in the atmosphere).
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4. Results and Discussion

The ML model learns through an error function, i.e., loss function, whereby the weights
can be updated to reduce the loss on the next evaluation as a part of the optimization.
Ideally, the prediction will be the ground truth. MSE is the most commonly used loss
function for regression, and as such, was selected as the loss function in both of the
developed DL models.

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (1)
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where n is the number of data points, yi is the vector of the observed values of the variable
being predicted, and ŷi is the predicted values. MSE is always positive, regardless of the
sign of the predicted and actual values. The MSE range is from zero to infinity, where zero
means that there is no error (predicted value = actual value).

Our evaluation of the ML model was based on several evaluation metrics showing the
amount of deviation from the actual values. Root Mean Squared Error (RMSE) is a metric
for evaluating regression models as the square root of MSE. RMSE was used as a metric for
both models.

In addition, for better DL model evaluation and comparisons with other studies, cosine
similarity (CS) was used. CS is a measure of similarity between two paired sets of numbers.
This metric is interesting for image recommendation systems based on comparisons of
two paired images [20]. The results of such comparisons are given in the form of values
between –1 and 1, whereby values closer to 1 are obtained for the most similar strings. This
metric is interesting for use in regression models for training because, together with the loss
function, it can be used to estimate the moment when the model starts to overfit, similar to
the accuracy metric for classification.

CS = cos(α) = ∑n
i=1 xiyi√

∑n
i=1 xi

2
√

∑n
i=1 yi

2
(2)

where xi and yi are components of the X and Y vectors, respectively (X represents a 1D
vector of the image from the training dataset and Y represents a 1D vector of the predicted
image of the developed model) and α is the angle between vector X and vector Y. If a
two-dimensional image is converted into a one-dimensional array, a vector with the same
number of elements as there are pixels in the image will be obtained. Parameter α represents
the angle between the vectors obtained in the described manner, i.e., from the images of the
training or testing subset and from the images predicted by the model. The more similar
the pixel values of the images, the more similar the sequences and the smaller the angle
between the two vectors when the cosine is closer to 1.

Before the DL models were trained, we examined the validation set in the database in
order to better understand the results obtained by modeling. First, the average difference of
randomly selected images in a given set was calculated with 1000 repetitions. This resulted
in an RMSE value of 0.4613 with a standard deviation (STD) of 0.042 and a CS value of
0.7030 with STD of 0.050. STD is a statistic that measures the dispersion of a dataset relative
to its mean; it is calculated as the square root of the variance:

σ =

√
1
n ∑n

i=1(xi − x)2 (3)

where {x1, x2, . . . , xn} are the observed values of the sample items, x is the mean value of
these observations, and n is the size of the sample.

This test shows the average difference between images, regardless of where they
are in the dataset. As the images were arranged in a time-spaced sequence, the next test
was to determine the average difference between each two adjacent images, which would
represent the average change at a given time step. This resulted in an RMSE of 0.4219 with
STD of 0.0147 and a CS of 0.7608 with STD of 0.0304.

DL model training was performed with the same input data for all the models, whilst
for the sequence-to-one type of prediction, the last image was extracted from the standard
output sequence, as previously explained. For the developed models, the EarlyStopping
and ReduceLROnPlateau regulation methods were defined with the same parameters in
order to train the models under the same conditions, with the difference being that for
models with ConvLSTM2D layers, the learning rate was reduced from 0.001 to 0.0005 due
to the risk of fast learning resulting in to overfitting. The monitor for the aforementioned
methods was CS for the validation dataset with a patience setting of five epochs and
min_delta = 0.0001 for EarlyStopping and a patience setting of two epochs with an order
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of magnitude correction that was the same as that used for ReduceLROnPlateau. The
dynamics of the learning process are depicted in Figure 3.
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Figure 3 reveals that the CNN-LSTM models showed steady and more uniform learn-
ing flows across epochs compared to the ConvLSTM models. This behavior depends on
the construction of the model and the applied regulation techniques. However, it does not
affect the results of various metrics when predicting the model, because in our case, the
final characteristics of the model depended only on the weights that had been updated
in the last epoch. The statistical characteristics of the final, trained models are shown in
Table 1.

Table 1. Comparison of the prediction errors of the four developed DL models using the valida-
tion dataset.

Developed DL
Model

Prediction Error (RMSE) for the First Set of 10 Frames from the Validation Dataset Prediction Statistics

1 2 3 4 5 6 7 8 9 10 RMSE STD CS STD

CNN-LSTM
seq.-to-seq. 0.316 0.306 0.311 0.322 0.306 0.326 0.315 0.316 0.316 0.344 0.3280 0.0100 0.8422 0.0096

ConvLSTM
seq.-to-seq. 0.122 0.103 0.099 0.097 0.098 0.102 0.101 0.104 0.105 0.342 0.3400 0.0064 0.8258 0.0119

CNN-LSTM
seq.-to-one / / / / / / / / / 0.359 0.3393 0.0096 0.8259 0.0150

ConvLSTM
seq.-to-one / / / / / / / / / 0.328 0.3199 0.0085 0.8470 0.0099

Figure 3 shows that the regulation methods responded in a timely manner due to fact
that the developed models were slowed down several times and stopped at the appropriate
time during training. In order check the performance and compare the developed models
in an objective way, a validation dataset was used, i.e., a dataset with which the models had
not been previously trained. To calculate the error and STD for the sequence-to-sequence
types, only the last image from the prediction sequence was used, such that the results could
be compared with those from the sequence-to-one types. A comparison of the prediction
errors for the four developed models using the validation dataset is shown as Table 1.

The left side of Table 1 shows the prediction errors (RMSE) for the first set of 10 frames
from the validation dataset. The first nine images of the sequence-to-sequence prediction
had smaller errors than the tenth image; this could be attributed to data leakage. With this
in mind, in further statistical testing, the result of only the tenth image from the prediction
sequence was taken. The tenth image in the output sequence never appeared in the model
input. For sequence-to-one type predictions, only the tenth image was predicted.

From the statistics shown in Table 1, it can be concluded that the all developed models
have similar characteristics, although the ConvLSTM model with the sequence-to-one pre-
diction showed the smallest RMSE and the best CS fit. The sequence-to-sequence prediction
showed better stability in both cases compared to the sequence-to-one predictions. The
statistics of all models showed lower RMSE, higher CS, and better stability for both metrics
than the average random and time step difference of the validation set testing results.

During testing of the prediction speed of the trained models, hardware ablation was
performed, as shown in Table 2. Testing was done on a cloud server separately using the
server GPU and CPU, described as hardware 1 and 2, respectively in Table 2. Hardware
3 comprised a regular business laptop. The testing was done with a test subset, and the
results are presented as mean values.

The results in Table 2 show that the fastest execution of a single prediction was
achieved with the CNN-LSTM sequence-to-sequence model running on the server hard-
ware and the sequence-to-one prediction running on the laptop. It is interesting that even
though ConvLSTM models make slower prediction, they require as little as half of the
space of CNN-LSTM models. The impact of changing the hardware environment on the
prediction errors was checked. It was found that there were no deviations in the results up
four decimal places for RMSE and CS. As such, it makes no sense to display the results here.
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Table 2. Inference speed of one prediction for all developed models on different hardware.

Model Model Size
[GB]

Hardware
Number Hardware Processor Hardware

RAM [GB]
Inference Period

[ms]

CNN-LSTM
seq.-to-seq. 2.102

1 GPU NVIDIA® TESLA® P100 13+16 29.77

2 4 × CPU Intel(R) Xeon(R) CPU @ 2.20 GHz 16 105.18

3 Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz 2.00 GHz 12 351.54

ConvLSTM
seq.-to-seq. 0.968

1 GPU NVIDIA® TESLA® P100 13+16 87.99

2 4 × CPU Intel(R) Xeon(R) CPU @ 2.20 GHz 16 709.32

3 Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz 2.00 GHz 12 1916.66

CNN-LSTM
seq.-to-one 2.108

1 GPU NVIDIA® TESLA® P100 13+16 30.04

2 4 × CPU Intel(R) Xeon(R) CPU @ 2.20 GHz 16 325.58

3 Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz 2.00 GHz 12 246.46

ConvLSTM
seq.-to-one 0.962

1 GPU NVIDIA® TESLA® P100 13+16 47.89

2 4 × CPU Intel(R) Xeon(R) CPU @ 2.20 GHz 16 685.97

3 Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz 2.00 GHz 12 1790.71

By comparing the obtained results with the results from [5], where RMSE = 0.81 for
the CNN architecture and RMSE = 0.68 for the LSTM architecture, the developed models
showed better performance with the dataset from the same MODIS satellite. Another
comparison was made with similar studies (DNN and hourly AOT); their RMSE was
0.112, which indicates better accuracy, as well as overall superior results compared to those
obtained using an SVM, random forest and physical model [21].

The predicted data in the form of images are displayed in Figure 4. More precisely,
Figure 4 shows the predicted images of all of the developed models for the same first image
of the validation set where the original image is the central one under e). Upon comparing
the predicted images visually, it can easily be seen that the ConvLSTM sequence-to-one
prediction model yielded the best results.

The color linear scale is the AOT concentration value; this could be converted into
exact numbers. Dark brown pixels show high aerosol concentrations, yellowish brown
pixels are for lower concentrations, and light-yellow pixels indicate little or no aerosols.
Black represents cases in which the sensor could not make a measurement. An AOT ≤ 0.1
means a clear sky with relatively few aerosols and maximum visibility, whilst a value near
1 indicates high aerosol loads.

As shown in the color scale, very high AOT concentrations (≈1) were observed in the
south of the Sahara Desert and in the Arabian Desert, which was attributed to sand.

As a practical example of an application of the ConvLSTM models, a forecast of global
AOT for the next eight days was performed. The predicted image was processed and
filtered in order to locate spots with the highest aerosol concentrations on a global map; see
Figure 5.

In order to make predictions using images with higher resolution, more powerful
hardware will be needed. In addition, the developed models could be trained and used
in specific regions rather than globally, i.e., spatial downscaling [19]. The accuracy of
AOT depends on factors such as clouds and snow, i.e., bright surfaces which may lead to
missing data. Additionally, the CNN requires full images for training, feature extraction
and predictions [19]. However, since aerosol measurements can be used as tracers to study
how the Earth’s atmosphere moves, the developed DL models can give global insights, i.e.,
regarding global atmospheric circulation. Remote sensing of AOT will be very useful for
the validation of climate models [22].
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Particulate matter (PM), especially fine particulate matter, i.e., PM2.5 (diameter ≤ 2.5 µm),
is one of the most dangerous forms of air pollution, with a negative influence on air quality
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and human health. In [23], the authors describe the empirical relationship between PM2.5
and AOT derived from the MODIS dataset. They found that a linear regression equation
can be used for ground-level PM2.5 estimations with the AOT results obtained from the
developed models.

5. Conclusions and Future Research

The conventional mathematical models for atmospheric predictions, which describe
physical phenomena based on the presence of chemicals, have not changed much lately.
However, new possibilities appeared with ML and modeling using DL with Big Data to
capture non-linear and unknown relationships and patterns. The basis of ML is mathe-
matics, applying differential calculus, like the gradient descent algorithm, in ANNs. The
authors developed two DL models based on two methodologies, i.e., ConvLSTM and
CNN-LSTM, for two types of predictions, i.e., sequence-to-sequence and sequence-to-one,
as a new approach for atmospheric forecasts in order to better understand and improve
global climate change resulting from environmental pollution.

The interaction of aerosols with clouds is one of the largest sources of uncertainty
in climate modeling. Satellite remote sensing for observations of the global atmosphere
makes it possible to monitor the long-range transport of pollutants, albeit with some
limitations. The advantage of satellite-based remote sensing is that it provides an aerial
view. Determining the altitude of aerosol layers in the atmosphere requires cross verification
with ground survey data. According to the authors of [24], it is difficult to detect the impact
of AERONET when combined with MODIS in regional and global verification statistics
due to the much greater spatial coverage of MODIS. In [25], the authors presented a new
meteorological photo classification system based on a multichannel CNN and improved
Frame Difference Method (FDM). The authors intend to carry out future research on the
classification of clouds and AOT pixels, and then to predict AOT. Furthermore, a deep
transfer learning method could be used for classifications. Transfer learning involves
applying the knowledge gained while solving one problem to a different but related
problem. In [26], the authors reported experimental results with above 90% accuracy. In
that study on facial diagnoses, a CNN was deemed to be the most appropriate deep transfer
learning method for cases with small datasets.

During our evaluation of the developed DL models, it was determined that all models
met the initial criterion of predicting the next image of AOT over the next 8 day based on the
last snapshot in the input database. The initial criterion was that the metrics of the predicted
images should be better than those obtained by examining the input image database. In this
way, the average differences between randomly selected images and between two adjacent
images were examined, given that the images were arranged temporally in a sequence.

The obtained results showed small RMSE values, higher CS values and better stability
for both metrics than the average random and time step difference of the validation set
testing results. The authors believe that the optimal metric for comparing images is CS
in combination with RMSE, since it gives much better insights into the moment when the
model begins to overfit.

By comparing the developed models, it was determined that ConvLSTM sequence-
to-one had the best prediction results according to the criteria of the smallest RMSE error
and the best matching of the predicted image compared to the original image using the
CS method. During the testing of the prediction speed and hardware ablation, it was
determined that the CNN-LSTM models have advantages but require more space than the
ConvLSTM models; the ConvLSTM models occupy less than 1 GB, making them suitable
for use on weaker hardware architectures. The CNN-LSTM models showed lower inference
periods and lower STD error dissipation with the aforementioned metrics. The inference
period was in milliseconds; therefore, all of the developed models had prediction speeds of
less than one or two seconds. Based on that, it can be concluded that all models predicted
almost immediately, i.e., in real time. Considering that the snapshots were collected over
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8 days, the difference in prediction speed was not so important, and as such, we recommend
the use of the ConvLSTM model with sequence-to-one type predictions.

The developed DL models can be used on PCs provided that the model is trained with
commands compile and fit and saved in the hdf5 format on the edge servers (which require
significant computational resources). After that, with the load and predict commands, the
model forecasts the next sequence of AOT in milliseconds.

With trajectory forecasts, the developed DL models can provide information about
aerosol concentration trends, albeit with some limitations. Further steps should involve the
implementation of meteorological parameters in order to improve the global AOT forecast
accuracy. To increase the size of the input dataset, it should use daily global AOT instead
of 8 days, with goal of improving the predictive performance of the models.

The developed DL models are original and innovative, and the obtained results can be
taken as a contribution to the scientific community. Furthermore, the models could also be
used for other satellite remote sensing datasets for transfer learning. The reader is invited
to contact the authors for the relevant code.
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