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Abstract: The object under investigation is a controllable linear stochastic differential system af-
fected by some external statistically uncertain piecewise continuous disturbances. They are directly
unobservable but assumed to be a continuous-time Markov chain. The problem is to stabilize the
system output concerning a quadratic optimality criterion. As is known, the separation theorem
holds for the system. The goal of the paper is performance analysis of various numerical schemes
applied to the filtering of the external Markov input for system stabilization purposes. The paper
briefly presents the theoretical solution to the considered problem of optimal stabilization for systems
with the Markov jump external disturbances: the conditions providing the separation theorem, the
equations of optimal control, and the ones defining the Wonham filter. It also contains a complex
of the stable numerical approximations of the filter, designed for the time-discretized observations,
along with their accuracy characteristics. The approximations of orders 1

2 , 1, and 2 along with the
classical Euler–Maruyama scheme are chosen for the comparison of the Wonham filter numerical
realization. The filtering estimates are used in the practical stabilization of the various linear systems
of the second order. The numerical experiments confirm the significant influence of the filtering preci-
sion on the stabilization performance and superiority of the proposed stable schemes of numerical
filtering.

Keywords: control of linear differential system; continuous-time Markov chain; quadratic optimality
criterion; Wonham filter; discretized filter

MSC: 93E11

1. Introduction

The theoretical solution to the optimal filtering problem of stochastic differential sys-
tem states with the development of its effective numerical solution is a traditional field of
extensive research [1–4]. The online calculation of the high precise estimates of the system
state given the noisy indirect observations is in demand for navigation [5–7], telecommu-
nications [8–10], finance [11–15], processing in micro- [16] and nano-structures [17], and
many other purposes [18–24]. However, advanced filtering algorithms play a crucial role
in the synthesis of the control in the case of incomplete information [25–29]. The spectrum
of such applications is rather broad [30–33].

When the optimal control depends on the available observation through the optimal
estimate, fulfillment of the separation theorem is presumed [34,35]. The corresponding “good
lucks” are not numerous and primarily include the case of the Linear Quadratic Gaussian
(LQG) systems [36]. When the separation theorem fails for some reason, one can use the
so-called “separation principle”, i.e., find the conditional optimum within the class of
strategies, which are the functions of the state estimate, not of the original observations. So,
the availability of a high precise filtering estimate is a significant factor for the successful
solution to numerous control problems under incomplete information.
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As is known, the optimal in the mean-square sense state estimate coincides with a
conditional mathematical expectation of the state given the available observations. The
estimates, which are optimal in the sense of criteria other than mean-square one, are the
functionals of the corresponding conditional distribution. This, in turn, is a solution to
the Kushner–Stratonovich or Zakai partial stochastic differential equations (SDEs) [29,37–40].
There are only a few cases when the conditional distribution is a solution to some finite-
dimensional closed system of SDSs. The Kalman–Bucy filter [41,42], the Wonham one [2,25],
and some particular cases [43] belong to this class. Development of the stable numerical
realizations of the optimal filters is nontrivial even for the linear Gaussian observation
systems [44].

The aim of this paper is an investigation of how the filtering performance impacts
the quality of the subsequent optimal control with incomplete information. As a testbed,
we choose the stabilization of a linear stochastic differential system affected by some
statistically uncertain external disturbance. This represents a continuous-time Markov chain
(CTMC). The theoretical solution to the stabilization problem is presented in [33], and the
separation theorem is proved. The optimal control strategy needs the optimal estimate,
and the last, in turn, is determined by the Wonham filter. The numerical realization
of the filter is nontrivial: the classical numerical schemes such as the Euler–Maruyama
one [45,46] are unstable in this case. The point is that they do not provide non-negativity
and normalization properties for the estimate approximations. The authors of [47] suggest
a new concept of the stable numerical approximations of the filtering estimates. It is left to
solve the Wonham filter SDE numerically for direct development of the optimal filtering
algorithm by the observations discretized by time. The corresponding estimate is calculated
recursively by a variant of the Bayes formula. The formula contains the integrals, which
are the shift-scale mixtures of Gaussians, and one cannot calculate them analytically. The
author of [48] suggests various numerical schemes of their calculation and the accuracy
characteristics. This paper presents a comparison of the numerical filtering schemas in light
of their influence on the performance of the subsequent stabilization.

The paper is organized as follows. Section 2 presents the investigated control system
affected by the external statistically uncertain piece-wise constant Markov disturbances.
We state the problem of optimal stabilization and present the equations describing the
optimal stabilization strategy. The separation theorem is valid for the system, so the optimal
strategy depends on the observation via the optimal filtering state estimate.

Section 3 introduces the mechanical system, an overhead crane, which serves as a
prototype of the controlled stochastic system used for the comparative numerical analysis.
We present the general properties of the system, its evolution with and without external
disturbances, and the influence of the criterion coefficients on the control character. Section 4
is devoted to the numerical realizations of the Wonham filter. Based on the optimal
filtering estimates of the CTMC given the continuous-time observations, we introduce the
numerical schemas of its approximation of the order 1

2 , 1, and 2 given the time-discretized
observations.

Section 5 plays a vital role in the presentation. It contains the results of the numerical
experiments, illustrating the influence of the estimation stability on the final performance
of the proposed control. We compare the suggested schemas with the classical Euler–
Maruyama one. Sections 5.1–5.3 present the results of the stabilization of the state in the
case of the stable, semistable, and unstable control system. All the examples confirm the
superiority of the proposed schemas of numerical filtering for subsequent stabilization
purposes. Section 6 contains concluding remarks.

2. Problem Formulation and Optimal Control Equations

Below, we briefly present the control problem and its theoretical solution (see [33] for
details).

On the canonical space with filtration (Ω,F ,P ,Ft), t ∈ [0, T], let us consider the linear
SDE

dzt = atytdt + btztdt + ctutdt + σtdwt, z0 = Z. (1)
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Here

• zt ∈ Rnz is a controllable output stochastic process of the second order;
• yt is an uncertain stochastic input which represents a CTMC with the finite-state

space
{

e1; . . . , eny

}
of the unit vectors in the Euclidean space Rny , with the transition

intensity matrix Λt and initial distribution π0 = E{y0};
• wt ∈ Rnw is a standard Wiener process: wt, yt, z0 are mutually independent;
• ut ∈ Rnu is a control, which is a process with a finite second moment;
• at ∈ Rnz×ny , bt ∈ Rnz×nz , ct ∈ Rnz×nu , σt ∈ Rnz×nw are known nonrandom matrix-

valued functions.

The admissible control ut = Ut(zt) represents any function of the output zt. The
optimal control Ut = Ut(z), z ∈ Rnz minimizes the objective function

J
(

UT
0

)
= E

{∫ T

0

|Ptyt + Qtzt+Rtut|2dt + |PTyT + QTzT |2
}

, (2)

where UT
0 = {Ut(z), 0 ≤ t ≤ T}, Pt ∈ RnJ×ny , Qt ∈ RnJ×nz , Rt ∈ RnJ×nu , 0 ≤ t ≤ T are

known bounded matrix-valued functions, x′ is the x transpose, |x| =
√

x′x is the Euclidean
norm.

Under the standard conditions of (1) and (2) (piecewise continuity and uniform degen-
eracy of R

′
tRt and σtσ

′
t ), the solution to the optimization problem

ÛT
0 =

{
Ût(z), 0 ≤ t ≤ T

}
∈ argmin J

(
UT

0

)
takes the form

ût = −
1
2

(
R
′
tRt

)−1(
c
′
t(2αt ẑt + βtŷt) + 2R

′
t(Ptŷt + Qt ẑt)

)
, (3)

where

dαt

dt
−
(

Mα
t αt + α

′
t(Mα

t )
′)

+ Nα
t − α

′
tct

(
R
′
tRt

)−1
c
′
tαt = 0, αT = Q

′
TQT , (4)

dβt

dt
+ βtΛ

′
t + Mβ

t − Nβ
t βt = 0, βT = 2Q

′
T PT , (5)

dŷt = Λ
′
tŷtdt +

(
diag(ŷt)− ŷtŷ

′
t

)
a
′
t

(
σtσ

′
t

)−1
×

× (dẑt − atŷtdt− btztdt− ctûtdt), ŷ0= E{Y}, (6)

where ẑt denotes the optimal trajectory of the state, i.e., the solution to (1) calculated for the
control ut = ût.

Above, the functions on the right hand side (RHS) of (4) and (5) have the form

Mα
t = Q

′
tRt

(
R
′
tRt

)−1
c
′
t,

Nα
t = Q

′
t

(
I− Rt

(
R
′
tRt

)−1
R
′
t

)
Qt,

Mβ
t = 2

((
a
′
t − P

′
t Rt

(
R
′
tRt

)−1
c
′
t

)
αt + P

′
t

(
I− Rt

(
R
′
tRt

)−1
R
′
t

)
Qt

)
,

Nβ
t =

(
Q
′
tRt + αtct

)(
R
′
tRt

)−1
c
′
t,

where I is an identity matrix of suitable dimensionality. So, the optimal control is a linear
function of the system state zt and the optimal filtering estimate ŷt of the external input yt.
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Note that ŷt is defined by the Wonham filter Equation (6) [2,25]. Moreover, Equation (6)
determines the conditional mathematical expectation (CME) ŷt = E{yt|F z

t } for any control
ut other than the optimal one u∗t . Here, we denote the natural filtration generated by the
state process zt(u), governed by the control u as F z

t = σ{zτ(u), 0 ≤ τ ≤ t}, F z
t ⊆ Ft⊆ F .

The above relations allow construction of the following stabilization algorithm

• to solve numerically ordinary differential equations (4) and (5) (any stable numerical
scheme is valid for this);

• to solve numerically SDE (6), defining the Wonham filter.

The separation theorem is valid in control of a Linear Quadratic Gaussian (LQG)
system under incomplete information. The optimal control coincides with its analog under
complete information, when the unobservable system state is replaced by its Kalman–Bucy
filtering estimate [49]. The realization of the optimal control in the LQG case represents
the numerical solution to a couple of the Riccati ODEs and a system of linear SDEs. The
numerical solution of the Riccati equation can be effectively performed, for example, by the
Runge–Cutta scheme, and the realization of the Kalman–Bucy filter is also well developed.

In contrast with the LQG case, the considered optimal stochastic control problem is
challenging exactly in the numerical realization stage. The separation theorem is valid for
the class of the investigated systems, and the optimal estimate represents the solution to
the system of nonlinear SDEs. It is well known that the CME of the MJP is its conditional
distribution, so the trajectories satisfy the non-negativity and normalization conditions.
Visually, the instability of a numerical scheme of the Wonham filter realization looks
as follows: once an estimate approximation violates the non-negativity, the subsequent
trajectory of the filter “blows up” in a few steps, which makes it impossible to synthesize
the control strategy. We knew this feature, so in the numerical example of [33] we chose
one of the stable numerical schemes [43,47] of the Wonham filter. The point was that the
example played an illustrative role only. The article can be treated as the second part
of [33]: it presents the way for the practical realization of the stated optimal stochastic
control problem.

3. Performance Analysis of Mechanical Actuator

Initially, for the comparative numerical study, we choose a controlled overhead crane
model. The crane trolley with a hoist travels along the H-beam. The loaded trolley has
significant inertia. The goal is to place it above one of the locations (for example, the railway
track). The set of possible locations is known and fixed. The trolley state includes the
current coordinate xt and velocity vt on the beam. The stabilization system includes a
feedback velocity control block, actuated by the couple “coordinate–velocity”. In addition,
the system also includes some external unobservable input yt (the signal, specifying the
number of the requested railway track) and the control ut itself. So, the overhead crane
model has the form

dxt = vtdt, t ∈ (0, T],
dvt = axtdt + bvtdt− cytdt + hutdt +

√
gdwt.

(7)

The external governing signal yt ∈ {e1, e2, e3} represents a homogeneous CTMC with
the rransition intensity matrix (TIM) Λ and initial condition π0 = e1. The constant scalars
a, b, h, g and row vector (c1, c2, c3) are known, and wt is a standard Wiener process. The
term

√
gdwt simulates both an inner inaccuracy of the actuator and the random disturbances

contaminating the governing signal. The initial condition (x0, v0)
′

is a two-dimensional
standard Gaussian vector.

One can see that the system (7) is stable, when b < 0 and b2 + 4a < 0, because b and

b2 + 4a are eigenvalues of the system matrix
(

0 1
a b

)
.
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Initially, we choose the following “basic” values for the system and control problem:

a = −1, b = −0.5, T = 10, h = 10, g = 0.01,

(c1, c2, c3) = (1, 0,−1), Λ =

−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

.
(8)

The vector C = ( c1
a , c2

a , c3
a ) forms the coordinates of the railway tracks, served by

the crane, while the process Cyt represents the desired “ideal” piece-wise continuous
movement of the trolley between the tracks.

We illustrate the crane’s functioning in three stages. To do this, we have to vary the
parameters above to highlight various features of the estimation and/or control algorithms.

First, we consider the system without both the external governing signal yt and control
ut. Second, we model the system with CTMC input yt without the control ut. Third, we
consider the system under the action of both the input yt and control ut.

We solve (7) numerically via the Euler–Maruyama scheme with the time increments
δ = 0.005, 0.001, 0.0001; meanwhile, we model the CTMC yt with the smaller time step,
namely δsmall = 0.01δ.

At the first stage, c1 = c2 = c3 = h = 0.
Figure 1 contains typical paths of the coordinate xt and velocity vt of the crane trolley

in the case where the external input yt is absent.

Figure 1. Typical state trajectory of the model without the drift yt: 1—coordinate xt; 2—velocity vt.

The figure confirms the stable character of the system.
Second, we consider the system with the parameters (8), keeping h = 0. The simulation

is performed for the CTMCs with the two variants of the TIM:

Λ =

−0.05 0.05 0
0.005 −0.01 0.005

0 0.5 −0.5

, and Λ =

 −5 5 0
0.005 −1.005 1.0

0 0.005 −0.005

.

The first TIM provides a long staying in the initial state e1 for the CTMC, while the
second TIM generates the rapid transitions e1 → e2, e2 → e3 and the long staying in the
last state.

The input CTMC yt influences the output zt via the process Cyt, where C =
( c1

a , c2
a , c3

a
)

represent possible drift accelerations.
Figure 2 contains typical paths of the coordinate and velocity of the crane trolley

affected by the CTMC with the corresponding TIMs compared with the desired switching
Cyt.
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Figure 2. Typical state trajectory of the model with the “slow varying” CTMC drift: 1—coordinate xt;
2—velocity vt; 3—drift Cyt.

One can see some stabilization of the real trolley coordinate near the “ideal” position
Cyt without additional control ut, but the stabilization performance looks poor.

Third, the stabilization could be made more effective by the control ut, which mini-
mizes the functional

J
(

UT
0

)
= E

{∫ T

0

(
|Cyt − xt|2 + R|ut|2

)
dt

}
, (9)

where R = 0.01 characterizes the control unit cost.
Figure 3 demonstrates typical paths of the coordinate and velocity of the crane trolley

with and without control ut. The calculations are performed for the parameter set (8): left
subplots correspond to the the controlled case with h = 10, and right subplots stand for the
uncontrolled case h = 0.

Figure 3. Typical state trajectories of the model with and without control ut: 1—coordinate xt;
2—velocity vt; 3—desired “ideal” trolley movement Cyt.

Comparing the results demonstrated in Figure 1–3, it can be seen that the control
remarkably improves the stabilization performance. Without ut the system only “declares
an intension” to pursue the current stabilization position Cyt. By contrast, the assisting
control ut admits a more sharp reaction to the external drift change.

Fourth, we consider the system with the parameter set (8), reducing the value R,
namely R = 0.00001. The example demonstrates a potential stabilization performance in
the case of low control cost.

Figure 4 illustrates the high performance of the coordinate stabilization and high
amplitude oscillating character of the corresponding velocity under the optimal control ut.
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Figure 4. Typical controlled state trajectories with low control cost: 1—coordinate xt; 2—velocity vt;
3—desired “ideal” trolley movement Cyt.

Note that the value R of the unit control cost does not affect the filtering performance
of the external input y and is valuable only in the control procedure. Let us explain this fact
from the physical point of view. The trolley has a positive mass. According to Newton’s
second law, the faster the actuator must react to the external governing signal, the higher the
force applied. However, each resource has its own cost. The coefficient R sets a regulated
trade-off between the inaccuracy of the actuator governance to the external input yt and the
total expenses for the control assistance ut. We can track variation of R even visually. When
R is small enough, the actuator follows the external signal relatively accurately, whereas
the applied assisting control demonstrates high values and oscillating nature (see, e.g.,
Figure 3 (left)). The high unit cost R leads to small assisting control ut values and low
quality concerning how the trolley coordinate follows the input yt. Figure 3 (right) can
serve as an illustration of this fact.

The provided calculations disclose the main issue of the control realization. The point
is that the Euler–Maruyama scheme for the numerical solution to the SDE demonstrates
an instability, which leads to divergence of some estimate trajectories. Regardless of the
step δ, almost each trajectory ŷt contains the points with violated conditions concerning the
non-negativity (ŷt)1 ≥ 0, (ŷt)2 ≥ 0, (ŷt)3 ≥ 0 or normalization (ŷt)1 + (ŷt)2 + (ŷt)3 = 1.
The number of such points varies from single to several thousands, which leads to the
filtering “blowing up” and inability of the control synthesis. The more such defective
estimates there are in the trajectory, the more likely the trajectory diverges rapidly.

If the defects appear rarely, they can be neutralized by a heuristic modification of
the Euler–Maruyama scheme. Once the filtering estimate violates either non-negativity or
normalization conditions ŷti , it is replaced by the CTMC stationary distribution π∞, or by
the estimation at the previous time instant ŷti−1 . These modifications help in some cases
but are not a panacea, and this fact is shown in Section 5. Further in the presentation we
refer to the introduced scheme modifications as ŷlim

ti
and ŷdel

ti
, respectively.

The next section presents a stable realization of the Wonham filter [43,47] required for
the synthesis of the optimal stabilization strategy ût.

4. Stable Filtering Algorithms by Discretized Observations

We realize both the filtering and stabilization algorithms with the same constant time
increment δ, such that t0 = 0, ti = iδ, and T

δ is an integer.
Furthermore, without loss of generality, we suppose for model (1) at ≡ const =

ati , bt ≡ const = bti and σt ≡ const = σti over the discretization intervals (ti−1, ti]; other-
wise, the functions at, bt and σt should be approximated by suitable piece-wise constant
functions.

Let us consider z0
t , which represents a non-anticipated transformation of the observable

input zt:

z0
t =

∫ t

0
(dzτ − (bτzτ + cτuτ)dτ) =

∫ t

0
(aτyτdτ + στdwτ).
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The process z0
t does not depend on the control ut, and due to the identity

F z
t = σ{zτ , 0 ≤ τ ≤ t} ≡ σ

{
z0

τ , 0 ≤ τ ≤ t
}
= F z0

t

the equality ŷt = E{yt|F z
t } = E

{
yt

∣∣∣F z0

t

}
holds.

Since the numerical realization of the control strategy ut presumes its action at the
time instants ti = iδ, we have to estimate the Markovial drift yt at the same moments. We
use the transformed observations z0

t discretized by time with the step δ:

∆z0
ti
=
∫ ti

ti−1

(aτyτdτ + στdwτ).

The discretized observations generate the new family of σ algebras

F∆z0

ti
= σ

{
∆z0

tj
, 1 ≤ j ≤ i

}
.

If µi =
∫ ti

ti−1
yτdτ =

(
µ1

i , . . . , µ
ny
i

)′
is a random vector composed of the occupation

times of yt in each state during the interval (ti−1, ti], andN (z; m, σ2) is a Gaussian probabil-
ity density function with the mean m and variance σ2, then the estimate ŷti = E

{
yt

∣∣∣F∆z0

ti

}
can be calculated by the following recursive procedure [43,47]

ŷti =
(

1q̂
′

ti
ŷti−1

)−1(
q̂
′

ti
ŷti−1

)
, ŷ0 = π0, (10)

where 1 = (1, . . . , 1)
′
∈ Rny is a vector formed by units, and the matrix q̂ti =

∥∥∥q̂ k,j
ti

∥∥∥ny

k,j=1
consists of the random values

q̂ k,j
ti

= E
{
N
(

∆z0
ti

; ati µi, δσti σ
′

ti

)
yj

ti

∣∣∣yti−1 = ek

}
. (11)

The CMEs q̂ k,j
ti

represent the integrals—the shift/scale mixtures of some Gaussians
with the distribution of µi as the mixing one. The issue is that this distribution is not
continuous with respect to the Lebesgue measure, so the integral (11) cannot be calculated
analytically: we have to do it numerically. In this paper, we compare the following
numerical schemes for the calculation of q̂ k,j

ti
:

q̂ k,j
ti
≈
(

q̆δ
1
2

ti

)
kj
= N

(
∆z0

ti
; δati ek, σti σ

′
ti

) (
∆kj + δλkj

)
which is a scheme of the “left” rectangles with the accuracy order 1

2 ,

q̂ k,j
ti
≈
(

q̆δ
ti

)
kj
= ∆kjeλkkδ N

(
∆z0

ti
, δati ek, σti σ

′
ti

)
+

(
1− ∆kj

)
δλkje

δ
2 (λkk+λjj) N

(
∆z0

ti
,

δ

2
ati (ek + ej), σti σ

′
ti

)
which is a scheme of the “midpoint” rectangles with the accuracy order 1,

q̂ k,j
ti
≈
(

q̆δ2

ti

)
kj
= ∆kjeλkkδ N

(
∆z0

ti
, δati ek, σti σ

′
ti

)
+

(1− ∆kj)
δ

2

(
e(λkk−λjj)

(
√

3−1)δ
2
√

3 N
(

∆z0
ti

,
(
√

3− 1)δ
2
√

3
ati ek +

(
√

3 + 1)δ
2
√

3
ati ej, σti σ

′
ti

)
+
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e(λkk−λjj)
(
√

3+1)δ
2
√

3 N
(

∆z0
ti

,
(
√

3 + 1)δ
2
√

3
ati ek +

(
√

3− 1)δ
2
√

3
ati ej, σti σ

′
ti

))
+

∑
i:i 6=j,i 6=k

δ2

6

((
e

δ
6 (λkk−λii)+

δ
6 (λii−λjj)N

(
∆z0

ti
,

δ

6
ati (ek + ei + 4ej), σti σ

′
ti

)
+

e
2δ
3 (λkk−λii)+

δ
6 (λii−λjj)N

(
∆z0

ti
,

δ

6
ati (ek + 4ei + ej), σti σ

′
ti

)
+

e
δ
6 (λkk−λii)+

2δ
3 (λii−λjj)N

(
∆z0

ti
,

δ

6
ati (4ek + ei + ej), σti σ

′
ti

))
which is a Gaussian quadrature scheme with the accuracy order 2 (here and below ∆kj
stands for the Kronecker symbol).

In the system under investigation
(

q̆δ
1
2

ti

)
13

=

(
q̆δ

1
2

ti

)
31

=
(

q̆δ
ti

)
13

=
(

q̆δ
ti

)
31

=(
q̆δ2

ti

)
13

=
(

q̆δ2

ti

)
31

= 0 since λ13 = λ31 = 0, and this fact simplifies calculations sig-
nificantly.

For the comparative study we choose the approximations y̆δ
1
2

ti
, y̆δ

ti
, and y̆δ2

ti
, calculated

by (10) and (11) and the schemes q̆δ
1
2

ti
, q̆δ

ti
, and q̆δ2

ti
, respectively.

5. Comparative Numerical Study

Through a series of numerical experiments, we try to answer the question of how the
accuracy of the filtering approximation affects the total performance of the control of a
linear system (1) or, more precisely (7). The first set of tests is devoted to the control of
the physical system introduced in Section 3. The investigation object of the second set
represents a semi-stable linear system. The third set returns to a consideration of the trolley
functioning under various complications. Finally, the fourth set is directed to the unstable
linear system control.

We perform all experiments with the time increments δ = 0.005, 0.001, 0.0001. On the
one hand, the step δ is inversely proportional to the computational costs of the input yt
filtering. On the other hand, the decrease of δ improves the filtering accuracy and raises the
control performance. Hence, the value of δ is a trade-off between the computational costs
and reasonable losses of the control quality. However, in some applied problems, the step δ
is constrained from below by the frequency of the actual measuring sensors.

We simulate 1000 random trajectories of the Wiener process wt and CTMC yt, which
are the same for all experiments. Then we synthesize the optimal stabilization strategy ût
by use of various approximations of the Wonham filter estimates and various time steps
δ. Finally, the control performance index is a result of the Monte-Carlo sampling over the
simulated trajectories.

We present the obtained results both in the tables and figures. For convenient analysis,
the headers of all tables contain the system parameters, and we mark the important results

in bold font. To characterize the quality of the estimates ŷti , y̆δ
1
2

ti
, y̆δ

ti
, y̆δ2

ti
, we calculate

the values

D̂(ỹti = ŷti ), D̂
(

ỹti = y̆δ
1
2

ti

)
, D̂

(
ỹti = y̆δ

ti

)
, D̂

(
ỹti = y̆δ2

ti

)
,

D̂(ỹti ) = Ê

 δ

T

T
δ

∑
i=1

(cyti − cỹti )
2

,

where Ê denotes averaging over the simulated trajectories.
In the case of the Euler–Maruyama scheme divergence for ŷti , we use its stable versions

ŷlim
ti

and ŷdel
ti

, suggested in Section 3.
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To analyse the stabilization quality, we calculate the performance functionals

Ĵ(ûti ), Ĵ
(

ŭδ
1
2

ti

)
, Ĵ
(

ŭδ
ti

)
, Ĵ
(

ŭδ2

ti

)
,

where ûti , ŭδ
1
2

ti
, ŭδ

ti
, ŭδ2

ti
are optimal control strategies calculated with the use of the estimates

ŷti , y̆δ
1
2

ti
, y̆δ

ti
, y̆δ2

ti
, respectively, and

Ĵ(uti ) = Ê

δ

T
δ

∑
i=1

(
(Cyti − xti )

2 + R(uti )
2
).

5.1. Stable System

We perform the first numerical experiment with the trolley model, which has the
parameters (8), to compare the modified Euler–Maruyama scheme and the stable ones (10)
and (11). The calculation results are accumulated in Table 1.

Table 1. The results of the first numerical experiment.

a = −1, b = −0.5, T = 10, h = 10, g = 0.01, R = 0.01,

(c1, c2, c3) = (1, 0,−1), Λ =

 −0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5


D̂(ŷti ) Ĵ(ûti )

δ ŷti = ŷlim
ti

D̂(y̆δ
1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) ŷti = ŷlim

ti
Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

ŷti = ŷdel
ti

ŷti = ŷdel
ti

∞ ∞
0.005 0.2269 0.0496 0.0496 0.0496 3.1876 1.5909 1.5913 1.5912

0.3954 4.5370

∞ ∞
0.001 0.0539 0.0485 0.0485 0.0485 1.6035 1.5576 1.5576 1.5575

0.0492 1.5631

0.0001 0.0493 0.0492 0.0492 0.0492 1.5432 1.5431 1.5431 1.5431

We do not supply the example with an extra illustration, because Figure 3 can serve
this purpose.

The results of the first experiment can lead to the following conclusions.

1. The utilization of the suggested numerical filtering schemes, based on the time dis-
cretization of the observations, provides stability to the filtering procedure for all
experimental conditions. The superiority is obvious for large steps δ. The offered
stable modifications of the Euler–Maruyama scheme demonstrate the expectable be-
havior. There are many “divergent” filtering trajectories; they need correction for
large δ, so both modifications provide a low filtering quality. When δ decreases, the
number of the “divergent” trajectories also decreases, and both modifications provide
the acceptable filtering quality. They lose to the suggested stable schemes. When δ
decreases, the probability that the “divergent” filtering trajectory vanishes too and
the quality of all considered numerical filtering schemes are identical.

2. In general, one “divergent” trajectory is enough to make the value D̂(ŷti ) arbitrarily
huge. The absence of such trajectories in the sample of 1000 trajectories for δ = 0.0001
does not guarantee their absence in the large samples. We detect the “divergent”
trajectories in the samples of the size 107. Note that the modified Euler–Maruyama
schemes provide the acceptable filtering quality in the case of the small δ values.
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3. On the set of 1000 simulated trajectories, all suggested stable numerical schemes
demonstrate very close performance.

4. The absolute values of all D̂ and Ĵ are small enough. The reason might be the small
noise intensity g = 0.01. The calculation error and moderate sample size seem to
make the main contribution to the performance index comparing with the theoretical
properties of all considered estimates.

The second numerical experiment differs from the first one only in that the parameter
g value is increased by 10 times: g = 0.1. The calculation results are collected in Table 2.

Table 2. The results of the second numerical experiment.

a = −1, b = −0.5, T = 10, h = 10, g = 0.1, R = 0.01,

(c1, c2, c3) = (1, 0,−1), Λ =

 −0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 0.1857 0.1861 0.1861 0.0496 2.7371 2.7409 2.7411 2.7411
0.001 0.1827 0.1828 0.1828 0.1828 2.6836 2.6845 2.6845 2.6845

0.0001 0.1860 0.1861 0.1861 0.1861 2.7126 2.7128 2.7128 2.7128

The results of the second experiment can lead to the following conclusions.

1. There are no divergent filtering trajectories ŷti among the simulated sample for any
considered step δ. This does not imply their absence in the samples of the greater size;
however, the modifications ŷlim

ti
and ŷdel

ti
give an opportunity to neutralize divergence

without significant loss of the estimate accuracy.
2. All estimates have moderate quality because of relatively high noise intensity g. We

can conclude that under a low signal–noise ratio the performance of all considered
estimates becomes similar for any considered step δ.

The numerical experiments above indicate that the reasonability of the stable numerical
filtering scheme usage is questionable. To highlight their utility, we have to involve the
models with more delicate examples, which help to expose the value of the stable numerical
schemes.

5.2. Semi-Stable System

We impair the model quality and consider a semi-stable dynamic system. Let us
remind the reader that trolley model (7) keeps its stability for any a, b > 0. The equalities
a = b = 0 determine the stability bound of the system, and we investigate this case.
Obviously, the formula C =

( c1
a , c2

a , c3
a
)

for the stable states is not valid in this situation. We
also make the following changes to the parameters: c = (−1.5,−0.5, 0.5), C = (−1, 0, 1),
g = 0.01. The calculation results are collected in Table 3.

The results of the third experiment can lead to the following conclusions.

1. The proposed stabilization strategy demonstrates good performance even in the
semi-stable case.

2. The proposed stable numerical schemes of the state filtering demonstrate remarkable
superiority compared with the Euler–Maruyama scheme and its modifications. This
situation can be seen for all considered time steps δ.

3. There were five divergent filtering trajectories in the simulated sample, which did
not affect the filtering performance dramatically in the case δ = 0.0001. Nevertheless,
even the fact of their existence justifies the usage of the stable filtering scheme.

4. The experiment demonstrates no significant difference in the performance of the

stable numerical schemes y̆δ
1
2

ti
, y̆δ

ti
and y̆δ2

ti
.
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Table 3. The results of the third numerical experiment.

a = 0, b = 0, T = 10, h = 10, g = 0.01, R = 0.01,

(c1, c2, c3) = (−1.5,−0.5, 0.5), C = (−1, 0, 1), Λ =

 −0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5


D̂(ŷti ) Ĵ(ûti )

δ ŷti = ŷlim
ti

D̂(y̆δ
1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) ŷti = ŷlim

ti
Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

ŷti = ŷdel
ti

ŷti = ŷdel
ti

∞ ∞
0.005 0.6776 0.0557 0.0558 0.0557 4.4154 1.6670 1.6672 1.6671

1.1360 5.1079

∞ ∞
0.001 0.3500 0.0528 0.0528 0.0528 1.6035 1.6135 1.6135 1.6135

0.0742 1.5631

0.0001 0.0527 0.0523 0.0523 0.0523 1.6168 1.6158 1.6158 1.6158

Figure 5 contains typical state trajectories for the semi-stable case, governed by the
same control law ûti , but calculated by the various drift estimates ŷlim

ti
, ŷdel

ti
, and control

law ŭδ
1
2

ti
.

Figure 5. Typical controlled state trajectories with low control cost in the semi-stable system: (left) 1—

coordinate xt, controlled by ûti (ŷ
lim
ti

); 2—coordinate xt, controlled by ŭδ
1
2

ti
; 3—drift Cyt; (right) 1—

coordinate xt, controlled by ûti (ŷ
del
ti

); 2—coordinate xt, controlled by ŭδ
1
2

ti
; 3—drift Cyt.

Figure 6 contains the uncontrolled variant of the same trajectory.

Figure 6. Typical trajectory “coordinate–velocity” in the uncontrolled case of the semistable system:
1—coordinate xt; 2—coordinate vt; 3—drift Cyt.

The numerical experiments with the chosen parameters make it possibile to expose the
behaviour of the offered heuristic modernizations of the Euler–Maruyama scheme ŷlim

ti
and
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ŷdel
ti

in comparison with the stable scheme y̆δ
1
2

ti
, when the original Euler–Maruyama scheme

diverges. For the case δ = 0.001, Figure 7 makes it possibile to compare the estimates

cŷlim
ti

, cŷdel
ti

, cy̆δ
1
2

ti
with the true values cyti visually. Figure 8 contains corresponding state

trajectories governed by the controls ûti (ŷ
lim
ti

), ûti (ŷ
del
ti
) and ŭδ

1
2

ti
.

Figure 7. The heuristic modification of the Euler–Maruyama scheme with respect to the stable one

and true input: (left) 1—heuristic estimate ŷlim
ti

; 2—stable estimate y̆δ
1
2

ti
; 3—true value cyti ; (right) 1—

heuristic estimate ŷdel
ti

; 2—stable estimate y̆δ
1
2

ti
; 3—true value cyti .

Figure 8. State trajectories governed by the various controls: (left) 1—system state, controlled by

ûti (ŷ
lim
ti

); 2—system state, controlled by y̆δ
1
2

ti
; 3—drift Cyti ; (right) 1—system state, controlled by

ûti (ŷ
del
ti

); 2—system state, controlled by y̆δ
1
2

ti
; 3—drift Cyti .

The numerical experiments with the semi-stable system allow us to conclude that
the proposed stable filtering estimates are very effective for stabilization control synthesis.
The differences between the proposed schemes are still minor in the semi-stable case. The
subsection below discusses the situation when the choice of the stable numerical scheme
makes some sense.

5.3. Stable System with High-Frequency Changing Drift

The numerical experiments of the last subsection demonstrate that the modified
estimates ŷlim

ti
and ŷdel

ti
do not “blow up” at any trajectory. Nevertheless, in some cases, they

“lose” the CTMC yt, as we can see in Figure 7. Hence, we hold for the comparative study
the original Euler–Maruyama scheme, keeping in mind the possibility of its “blowing up”
divergence.

The experiments above expose several realistic cases, for which the proposed stable
numerical estimates demonstrate remarkable superiority for the stabilization strategy
synthesis compared with the Euler–Maruyama scheme and its modifications. Nevertheless,
we still do not present a situation when the suggested stable schemes deliver different
estimation quality. To do this, we complicate the conditions of the trolley functioning.
Namely, we increase the intensity of the CTMC transitions. We do this to confirm the
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hypothesis that the proposed schemes show different precision when the probability that
the CTMC yt has more than one transition during (ti−1, ti] is significant. To meet this
condition, we have to increase the elements of TIM Λ. The frequent input signal transitions
lead to more “active” control. If the control cost R is rather high, then the optimal control is
minor and does not affect the system state. Hence, in this experiment, we set R = 0.00001,
as in Section 3 (see Figure 4). Tables 4 and 5 contain the results of the numerical experiments,
performed with the transition intensities 10 and 50, respectively.

The results of Table 4 correspond to expectations. For δ = 0.005 and δ = 0.001,
the quality of estimates of discretized filters is built in accordance with their theoretical
convergence rate. It should be noted that the distinction is quite small and can be seen only
in the third or fourth significant digit. The case with δ = 0.0001 can already be considered
marginal. Assuming that the difference may show an upward trend with an increase in
the intensity of the jumps, we will continue to complicate the operating conditions of the
actuator.

Table 4. The results with transition intensities 10.

a = −1, b = −0.5, T = 10, h = 10, g = 0.1, R = 0.00001,

(c1, c2, c3) = (−1.5,−0.5, 0.5), Λ =

 −10 10 0
10 −20 10
0 10 −10


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 ∞ 0.3744 0.3735 0.3733 ∞ 7.1539 7.1169 7.1146
0.001 ∞ 0.3430 0.3430 0.3430 ∞ 6.4908 6.4894 6.4894

0.0001 0.3354 0.3357 0.3357 0.3357 6.3079 6.3095 6.3095 6.3095

Table 5. The results with transition intensities 50.

a = −1, b = −0.5, T = 10, h = 10, g = 0.1, R = 0.00001,

(c1, c2, c3) = (−1.5,−0.5, 0.5), Λ =

 −50 50 0
50 −100 50
0 50 −50


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 ∞ 0.7582 0.7470 0.7461 ∞ 10.7081 10.6590 10.6558
0.001 ∞ 0.6474 0.6470 0.6470 ∞ 10.3166 10.3149 10.3149
0.0001 0.6260 0.6277 0.6277 0.6277 10.2395 10.2415 10.2415 10.2415

Figure 9 illustrates the results corresponding to the transition intensities 10. It contains

the typical state trajectory governed by the strategy ŭδ
1
2

ti
, indistinguishable from ŭδ

ti
and

ŭδ2

ti
. We compare it with the trajectory governed by the “ideal” control u∗ti

synthesized
with the complete information about the input yt [50]. The figure shows that the potential
enhancement of the stabilization performance is possible only through the increasing of the
filtering accuracy.
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Figure 9. The results with transition intensities 10: 1—system state, controlled by ŭδ
1
2

ti
; 2—system

state, controlled by u∗ti
; 3—drift Cyti .

The plots corresponding to the system with the transition intensities 50 are given in
Figure 10.

Figure 10. The results with transition intensities 50: 1—system state, controlled by ŭδ
1
2

ti
; 2—system

state, controlled by u∗ti
; 3—drift Cyti .

The calculation presented in Table 5 meets the expected results to the same extent
as the previous one. For δ = 0.005, the distinction in the quality of the estimates of the
discretized filters and the corresponding stabilization strategies can be seen in the second
or third significant digit. For δ = 0.001, there is the same difference and the same hierarchy
of algorithm quality, but already by the third or fourth significant digit. This means that
the order of the transition intensities of the input yt for such sampling steps provides
quite a lot of implementations of more than one jump in the interval δ, which gives an
advantage to higher-order filters. Having achieved this result, it should be noted that
according to Figure 10, the effectiveness of the stabilization strategy itself, even in the case
of complete information about the state of the input yt, is extremely low. This is the result
of the deterioration of the operating conditions of the actuator to completely unrealistic
parameters. The slight superiority of the Euler–Maruyama scheme ŷti in the case δ = 0.0001
is illusory: in fact, the sample of the trajectories does not contain the divergent ones.

5.4. Influence of MJP Dimensionality on Control Performance

The dimensionality of the CTMC state space can also indirectly affect the filtering
and stabilization performance. Let us repeat the experiments of the last subsection but
increase the CTMC dimensionality: ny = 4. As in the subsection above, we consider values
of the transition rate: 10 and 50. The numerical results of the experiments are given in
Tables 6 and 7, respectively.
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Table 6. The results with the CTMC dimensionality 4 and transition intensities 10.

a = −1, b = −0.5, T = 10, h = 10, g = 0.01, R = 0.00001,

(c1, c2, c3, c4) = (−1.5,−0.5, 0.5, 1.5), Λ =


−10 10 0 0
10 −20 10 0
0 10 −20 10
0 0 10 −10


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 ∞ 0.3349 0.3345 0.3345 ∞ 6.3259 6.2977 6.2952
0.001 ∞ 0.3126 0.3125 0.3126 ∞ 5.7229 5.7219 5.7219

0.0001 ∞ 0.3063 0.3063 0.3063 ∞ 5.5687 5.5687 5.5687

Table 7. The results with the CTMC dimensionality 4 and transition intensities 50.

a = −1, b = −0.5, T = 10, h = 10, g = 0.01, R = 0.00001,

(c1, c2, c3, c4) = (−1.5,−0.5, 0.5, 1.5), Λ =


−50 50 0 0
50 −100 50 0
0 50 −100 50
0 0 50 −50


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 ∞ 0.7011 0.6973 0.7011 ∞ 11.9747 11.8980 11.9165
0.001 ∞ 0.6431 0.6425 0.6429 ∞ 11.1556 11.1533 11.1544
0.0001 ∞ 0.6258 0.6258 0.6258 ∞ 11.0219 11.0219 11.0219

Figures 11 and 12 contain the corresponding typical trajectories.

Figure 11. The results with the CTMC dimensionality 4 and transition intensities 10: 1—the system

state, controlled by ŭδ
1
2

ti
; 2—the system state, controlled by u∗ti

; 3—the drift Cyti .

Figure 12. The results with the CTMC dimensionality 4 and transition intensities 10: 1—the system

state, controlled by ŭδ
1
2

ti
; 2—the system state, controlled by u∗ti

; 3—the drift Cyti .
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The obtained results emphasize the necessity of using the stable numerical filtering
schemes: even for the minimal time step δ = 0.0001, the Euler–Maruyama approximation
of the Wonham filter “blows up”. The differences between the various stable numerical
filtering schemes are still minor.

5.5. Unstable System

To analyze the bundle “stable numerical filtering scheme–optimal stabilization strat-
egy” exhaustively, we finally omit the requirement that system (7) be stable. This means
that inequalities b < 0 and b2 + 4a < 0 are not valid. The numerical experiments in this
subsection have no physical sense; they just illustrate the applicability of the stabilization
strategy calculated with the aid of the stable numerical filtering scheme.

Note that the linearity of (7) admits the control synthesis without requiring system
stability. If vt is an optimal strategy for the stable system with a < 0 and b < 0, then
−vt is optimal for the unstable system with “the mirror parameters” a = −a > 0 and
b = −b > 0, and the minimal value of the criterion remains the same as for the stable
system (see Tables 1–3). Hence, we have to consider the case when the parameters a and
b have different signs. We perform a numerical experiment with the parameters a = −1,
b = 5, (c1, c2, c3) = (−2.5,−1.5, 1); the rest of parameters coincide with ones in (8). Table 8
contains the filtering and stabilization results for various time-discretization steps.

Table 8. The stabilization of the unstable system.

a = −1, b = 5, T = 10, h = 10, g = 0.01, R = 0.01,

(c1, c2, c3) = (−2.5,−1.5, 1), Λ =

 −0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5


δ D̂(ŷti ) D̂(y̆δ

1
2

ti
) D̂(y̆δ

ti
) D̂(y̆δ2

ti
) Ĵ(ûti ) Ĵ(ŭδ

1
2

ti
) Ĵ(ŭδ

ti
) Ĵ(ŭδ2

ti
)

0.005 ∞ 0.0645 0.0646 0.0646 ∞ 4.6579 4.6602 4.6595
0.001 ∞ 0.0604 0.0604 0.0604 ∞ 4.4521 4.4525 4.4525
0.0001 ∞ 0.0594 0.0594 0.0594 ∞ 4.4753 4.4754 4.4754

Figure 13 contains the typical system trajectories both in the controlled and uncon-
trolled cases.

Figure 13. Typical trajectories of the unstable system: 1—system state, controlled by ŭδ
1
2

ti
; 2—

uncontrolled system state; 3—drift Cyti .

The calculations confirm the effectiveness of the proposed stabilization strategy in the
case of an unstable system. When the system is uncontrolled, its state diverges rapidly:
the absolute values of the state attain 1019–1020 at the termination moment T = 10. The
Euler–Maruyama scheme is also unstable in this system. All the proposed stable schemes
of numerical filtering demonstrate the same performance.



Mathematics 2022, 10, 3381 18 of 20

6. Conclusions

The object of investigation in the paper is a stabilization of an overhead crane affected
by the uncertain external Markov piece-wise constant disturbances. The goal is to analyze
the potential application of the stable approximations of the Wonham filter [2,25] to the
system state stabilization in the case of incomplete information. Their utilization should
have neutralized the problem of the instability of the Wonham filter approximations
delivered by the Euler–Maruyama numerical scheme. A large number of the fulfilled
numerical experiments lead to the following conclusions.

1. The rational choice of the stable numerical scheme preventing filter divergence is
a natural trade-off between the accuracy requirements and the level of statistical
uncertainty. In the case of small noise and high-frequency time discretization of
the observations, the computational cost of the high-order schemas could exceed its
accuracy gain.

2. One should not underestimate the divergence of the unstable filtering schemas. There
is a multiplicity of mathematical models for which any Euler–Maruyama filtering
trajectory diverges.

3. All stable schemas demonstrate consistency, i.e., converge to the theoretic Wonham
filter as the time-discretization step infinitely vanishes.

4. The complex numerical experiments suggest the schema of the “middle” rectangles
of the order 1 as the preferable one.
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12. Cvitanić, J.; Liptser, R.; Rozovskii, B. A filtering approach to tracking volatility from prices observed at random times. Ann. Appl.

Probab. 2006, 16, 1633–1652. [CrossRef]
13. Ang, A.; Timmermann, A. Regime Changes and Financial Markets. Annu. Rev. Financ. Econ. 2012, 4, 313–337. [CrossRef]
14. Paulsen, J. Risk theory in a stochastic economic environment. Stoch. Process. Their Appl. 1993, 46, 327–361.

[CrossRef]
15. Christiansen, M. Multistate models in health insurance. AStA Adv. Stat. Anal. 23012, 96, 155–186. [CrossRef]
16. Akishin, P.; Akishina, E.; Akritas, P.; Antoniou, I.; Ioannovich, J.; Ivanov, V. Stochastic filtering of digital images of skin

micro-structure. Comput. Phys. Commun. 2000, 126, 1–11. [CrossRef]
17. Bechhoefer, J. Hidden Markov models for stochastic thermodynamics. New J. Phys. 2015, 17, 075003. [CrossRef]
18. Krogh, A.; Brown, M.; Mian, I.; Sjölander, K.; Haussler, D. Hidden Markov Models in Computational Biology: Applications to

Protein Modeling. J. Mol. Biol. 1994, 235, 1501–1531. [CrossRef] [PubMed]
19. Huelsenbeck, J.P.; Larget, B.; Swofford, D. A Compound Poisson Process for Relaxing the Molecular Clock. Genetics 2000,

154, 1879–1892. [CrossRef] [PubMed]
20. Papadopoulos, C.T.; Li, J.; O’Kelly, M.E. A classification and review of timed Markov models of manufacturing systems. Comput.

Ind. Eng. 2019, 128, 219–244. [CrossRef]
21. Karchin, R.; Cline, M.; Mandel-Gutfreund, Y.; Karplus, K. Hidden Markov models that use predicted local structure for fold

recognition: Alphabets of backbone geometry. Proteins Struct. Funct. Bioinform. 2003, 51, 504–514. [CrossRef]
22. Cauchemez, S.; Carrat, F.; Viboud, C.; Valleron, A.J.; Boëlle, P. A Bayesian MCMC approach to study transmission of influenza:

application to household longitudinal data. Stat. Med. 2004, 23, 3469–3487. [CrossRef]
23. Allen, L.J. An introduction to stochastic epidemic models. In Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany,

2008; pp. 81–130.
24. Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y. Discrete-time Markov chain approach to contact-based disease

spreading in complex networks. EPL (Europhys. Lett.) 2010, 89, 38009. [CrossRef]
25. Wonham, W.M. Some Applications of Stochastic Differential Equations to Optimal Nonlinear Filtering. SIAM J. Control 1965,

2, 347–369. [CrossRef]
26. Kushner, H.; Dupuis, P.G. Numerical Methods for Stochastic Control Problems in Continuous Time; Stochastic Modelling and Applied

Probability Series; Springer: New York, NY, USA, 2001; Volume 24. [CrossRef]
27. Bertsekas, D.P. Dynamic Programming and Optimal Control; Athena Scientific: Cambridge, MA, USA, 2013.
28. Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Stochastic Modelling and Applied Probability Series;

Springer: New York, NY, USA, 1975; Volume 1. [CrossRef]
29. Mortensen, R.E. Stochastic Optimal Control with Noisy Observations. Int. J. Control 1966, 4, 455–464. [CrossRef]
30. Cipra, B.A. Engineers look to Kalman filtering for guidance. SIAM News 1993, 26, 8–9.
31. Johnson, A. LQG applications in the process industries. Chem. Eng. Sci. 1993, 48, 2829–2838. [CrossRef]
32. Mäkilä, P.; Westerlund, T.; Toivonen, H. Constrained linear quadratic gaussian control with process applications. Automatica

1984, 20, 15–29. [CrossRef]
33. Borisov, A.; Bosov, A.; Miller, G. Optimal Stabilization of Linear Stochastic System with Statistically Uncertain Piecewise Constant

Drift. Mathematics 2022, 10, 184. [CrossRef]
34. Wonham, W.M. On the Separation Theorem of Stochastic Control. SIAM J. Control 1968, 6, 312–326. [CrossRef]
35. Georgiou, T.T.; Lindquist, A. The Separation Principle in Stochastic Control, Redux. IEEE Trans. Autom. Control 2013, 58, 2481–2494.

[CrossRef]
36. Athans, M. The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design. IEEE Trans. Autom.

Control 1971, 16, 529–552. [CrossRef]
37. Stratonovich, R.L. Conditional Markov Processes. Theory Probab. Appl. 1960, 5, 156–178. [CrossRef]
38. Kushner, H.J. On the differential equations satisfied by conditional probability densities of Markov processes with applications. J.

Soc. Ind. Appl. Math. Ser. A Control 1964, 2, 106–119. [CrossRef]
39. Duncan, T.E. On the Absolute Continuity of Measures. Ann. Math. Stat. 1970, 41, 30–38. [CrossRef]
40. Zakai, M. On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1969, 11, 230–243. [CrossRef]
41. Kálmán, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [CrossRef]
42. Bucy, R.S.; Joseph, P.D. Filtering for Stochastic Processes with Applications to Guidance; American Mathematical Soc.: Providence, RI,

USA, 2005; Volume 326.
43. Borisov, A.V. Wonham Filtering by Observations with Multiplicative Noises. Autom. Remote Control 2018, 79, 39–50. [CrossRef]

http://dx.doi.org/10.1109/AUV.2018.8729708
http://dx.doi.org/10.1016/S0166-5316(00)00027-4
http://dx.doi.org/10.1007/s11122-005-0020-8
http://dx.doi.org/10.3390/math9141632
http://dx.doi.org/10.1007/978-3-642-13694-8
http://dx.doi.org/10.1214/105051606000000222
http://dx.doi.org/10.1146/annurev-financial-110311-101808
http://dx.doi.org/10.1016/0304-4149(93)90010-2
http://dx.doi.org/10.1007/s10182-012-0189-2
http://dx.doi.org/10.1016/S0010-4655(99)00476-2
http://dx.doi.org/10.1088/1367-2630/17/7/075003
http://dx.doi.org/10.1006/jmbi.1994.1104
http://www.ncbi.nlm.nih.gov/pubmed/8107089
http://dx.doi.org/10.1093/genetics/154.4.1879
http://www.ncbi.nlm.nih.gov/pubmed/10747076
http://dx.doi.org/10.1016/j.cie.2018.12.019
http://dx.doi.org/10.1002/prot.10369
http://dx.doi.org/10.1002/sim.1912
http://dx.doi.org/10.1209/0295-5075/89/38009
http://dx.doi.org/10.1137/0302028
http://dx.doi.org/10.1007/978-1-4613-0007-6
http://dx.doi.org/10.1007/978-1-4612-6380-7
http://dx.doi.org/10.1080/00207176608921439
http://dx.doi.org/10.1016/0009-2509(93)80030-T
http://dx.doi.org/10.1016/0005-1098(84)90061-X
http://dx.doi.org/10.3390/math10020184
http://dx.doi.org/10.1137/0306023
http://dx.doi.org/10.1109/TAC.2013.2259207
http://dx.doi.org/10.1109/TAC.1971.1099818
http://dx.doi.org/10.1137/1105015
http://dx.doi.org/10.1137/0302009
http://dx.doi.org/10.1214/aoms/1177697185
http://dx.doi.org/10.1007/BF00536382
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1134/S0005117918010046


Mathematics 2022, 10, 3381 20 of 20

44. Kloeden, P.; Platen, E. Numerical Solution of Stochastic Differential Equations; Stochastic Modelling and Applied Probability;
Springer: Berlin/Heidelberg, Germany, 1992. [CrossRef]

45. Gang George, Y.; Zhang, Q.; Liu, Y. Discrete-time approximation of Wonham filters. J. Control Theory Appl. 2004, 2, 1–10.
[CrossRef]

46. Kushner, H.J. Probability Methods for Approximations in Stochastic Control and for Elliptic Equations; Academic Press: New York, NY,
USA, 1977.

47. Borisov, A.; Sokolov, I. Optimal Filtering of Markov Jump Processes Given Observations with State-Dependent Noises: Exact
Solution and Stable Numerical Schemes. Mathematics 2020, 8, 506. [CrossRef]

48. Borisov, A.V. L1-optimal filtering of Markov jump processes. II: Numerical analysis of particular realizations schemes. Autom.
Remote Control 2020, 81, 2160–2180. [CrossRef]

49. Davis, M. Linear Estimation and Stochastic Control; A Halsted Press Boo; Chapman and Hall: London, UK, 1977.
50. Bosov, A.V. Stabilization and Trajectory Tracking of Linear System with Jumping Drift. Autom. Remote Control 2022, 83, 520–535.

[CrossRef]

http://dx.doi.org/10.1007/978-3-662-12616-5
http://dx.doi.org/10.1007/s11768-004-0017-7
http://dx.doi.org/10.3390/math8040506
http://dx.doi.org/10.1134/S0005117920120024
http://dx.doi.org/10.1134/S0005117922040026

	Introduction
	Problem Formulation and Optimal Control Equations
	Performance Analysis of Mechanical Actuator
	Stable Filtering Algorithms by Discretized Observations
	Comparative Numerical Study
	Stable System
	Semi-Stable System
	Stable System with High-Frequency Changing Drift
	Influence of MJP Dimensionality on Control Performance
	Unstable System

	Conclusions
	References

