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Abstract: Augmented reality (AR) is vital in education for enhancing learning and motivation
through interactive environments and experiments. This requires teacher training in AR creation and
integration. Research indicates that learning effectiveness relies on thorough preparation, calling
for the development of scoring rubrics for evaluating both educational AR and AR’s educational
integration. However, no current studies provide such a rubric for assessing AR’s pedagogical
implementation. Hence, a scoring rubric, EVAR (Evaluating Augmented Reality in Education), was
developed based on the framework for the analysis and development of augmented reality in science
and engineering teaching by Czok and colleagues, and extended with core concepts of instructional
design and lesson organization, featuring 18 items in five subscales rated on a four-point Likert
scale. To evaluate the validity and reliability of the scoring rubric, AR learning scenarios, designed
by eleven master’s seminar pre-service teacher students at the University of Konstanz, majoring
in biology, chemistry, or physics, were assessed by five AR experts using the newly developed
scoring rubric. The results reveal that a simple classification of AR characteristics is insufficient for
evaluating its pedagogical quality in learning scenarios. Instead, the newly developed scoring rubric
for evaluating AR in educational settings showed high inter-rater reliability and can discriminate
between different groups according to the educational quality of the AR and the implementation of
AR into lesson planning.

Keywords: augmented reality; assessment; rubric; lesson planning; science education; teacher training

1. Introduction

Augmented reality (AR) is a technology that enables the real-time integration of
virtual objects into our physical reality. Virtual objects can be placed in a real environment
using various mobile devices, such as smartphones, tablets, or head-mounted displays
(e.g., special AR glasses) [1]. Applications ranging from medicine to assistance with
technical problems using AR are already common practice. In education, interactive
learning environments can be created and various applications realized, from visualizing
the invisible to expanding educational materials and enabling new experiments [2–4].
Given the pivotal role of schools in preparing students for the future, the integration
of AR in educational settings is becoming increasingly important. Initial studies have
shown positive effects of AR on motivation [5–11], self-efficacy [5,6], self-regulation [12],
enjoyment in experimentation, attitude [5,6,13,14], and learning performance [5,6,14–29],
especially in understanding abstract concepts [14–19,25,26,30–43] or including auxiliary
information [3,24,44–46]. Furthermore, AR improves laboratory skills [13,47,48] and enables
collaborative work [49]. Nevertheless, studies indicate that it is not intended to replace
physical labs but that the experience of a virtual learning environment leads to an improved
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understanding of, for example, chemical concepts [50]. Using AR usually contributes to
a sufficient degree of good learning outcomes and is especially beneficial to long-lasting
learning outcomes [51]. However, simply using AR does not guarantee learning success [51].
Hence, it is crucial to adapt teacher training to align with the requirements and potential
that AR brings to an educational context [52–54]. Teachers should be equipped to create
augmented reality experiences [55] and to select a suitable AR from existing options for
their teaching scenarios [53,56]. The previous experience of pre-service teacher students
gained during their university studies is hypothesized to have a positive influence on the
actual use of media at school [57]. Nevertheless, only a few students come into contact
with augmented reality during their studies [57]. Hence, it is important to offer a learning
opportunity for this as part of the course.

Research in the realm of experimentation has revealed that the effectiveness of student
learning depends on thorough preparation before and follow-up processing after the exper-
imentation. Hence, it is crucial how activities are embedded in the lesson [58,59]. To assess
the structured and didactically sound integration of AR into lessons or lesson plans, a
scoring rubric is needed to allow for objective, reliable, valid, and test-economical measure-
ment during lesson observations, including mock trials, for example. While research-based
frameworks for the analysis and development of augmented reality in science and engi-
neering teaching already exist [32,60], they need to be extended to incorporate aspects of
instructional implementation, as this framework does not include any aspects of embedding
experiments in lessons. However, we know from research on carrying out experiments
that it is precisely the embedding of experiments in the classroom that is of particular
importance for students’ learning success. In addition to the categories from Czok et al.
(namely adaptivity, interactivity, immersion, congruence with reality, content proximity to reality,
game elements, and complexity), we also need aspects of instructional embedding such as
“frictionless function of the AR”, “confidence of the teacher when handling the AR”, “sim-
plicity of handling for the learners”, “promotion of a learning objective through the AR”,
“embedding in the lesson”, “design laws”, and “cognitive load”. Overall, these aspects can
be divided thematically into the following main categories: “Technical Implementation”,
“Fit of the AR”, “Interactivity and Engagement”, “Visualization”, and “Creativity and
Originality”. This leads to the following research questions:

1. Which categorizations, according to Czok et al. [32], can be found in augmented reality
embedded in teaching scenarios created by pre-service teacher students in a master’s
seminar for teacher education?

2. How can the quality of the embedding of augmented reality in teaching be evaluated?
3. To what extent can the deductively derived structuring of the categorizations be

mapped to reliable subscales?
4. To what extent does the quality of an AR learning environment determine the overall

quality of the lesson planning integrating this AR learning environment?

2. Methods and Materials
2.1. Sample

Eleven pre-service teacher students (six female, five male; seven biology, four chem-
istry, and three physics students; multiple answers were possible, as in Germany teacher
students select at least two subjects) voluntarily took part in this study during a master’s
seminar on science education at the University of Konstanz in the summer term of 2023.
The participants were divided into six groups of one to two people (the students were
allowed to choose their own partner).

2.2. Instrument

To assess the characteristics of augmented reality environments, the evaluation criteria
proposed by [32] were used to answer research question one. A new scoring rubric to
evaluate the use of augmented reality in teaching scenarios was developed to examine
the second research question. The rubric is based on core concepts pronounced by Czok
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et al. Based on the design parameters described there, it was checked for each category
which form of lesson embedding is necessary to emphasize this aspect of learning with
AR, and then a corresponding item was formulated. This was done for identifying ways
teachers should use and embed AR in lessons, which are most beneficial. For example, in
the area of interactivity [32], the contribution the quality of AR makes to the lessons was
examined. It is not enough for the AR to be able to interact with the learners. Rather, the
newly developed rubric should record whether it is actually being used in a meaningful
way. The items were thematically grouped into five dimensions: Technical Implementation,
Fit of AR, Interactivity and Engagement, Visualization and Creativity, and Originality of AR Use.
A four-point Likert scale from “1—strongly agree” to “4—strongly disagree” was used.
In addition, the option “no answer possible” could be selected. Notes could be added
to each item to allow for a complementary qualitative assessment. Further, the rubric
was consensually validated by six science education researchers with experience in the
development and implementation of augmented reality in teaching and teacher training.
The scoring rubric, EVAR (Evaluating Augmented Reality in Education), can be found in
Table 1 and downloaded as supplementary material Table S1.

Table 1. The five subscales of the scoring rubric EVAR (Evaluating Augmented Reality in Education)
with the corresponding 18 items. The terms teacher and learner are used in the scoring rubric.
Teachers refer to those who have created or selected the augmented reality (including pre-service
teachers or trainees). Learners here refer to those who act as participants in the teaching scenario
(e.g., fellow students in the seminar context or pupils).

Subscale Item Item text

Technical Implementation

1 The AR in the learning scenario operates smoothly and reliably.
2 The teachers are confident in controlling the AR.
3 The handling of the AR is intuitive and simple for the learners.
4 The functionality of the AR is sufficiently described and explained.
5 The tracking method chosen is appropriate for the teaching scenario.

Fit of the AR

6 The AR supports at least one specific learning goal.
7 There is a connection to previous and subsequent teaching sequences.
8 Relevant references to real situations or applications are made.
9 The AR offers clear benefits compared to conventional visualizations.
10 Potential benefits and challenges of AR use for teaching are discussed.
11 The AR helps learners to develop a better understanding of the content.

Interactivity and Engagement

12 The AR encourages learners to actively engage with the subject matter.
13 There are additional possibilities besides viewing the object, e.g.,

interactivity or individualization.
14 There are feedback mechanisms (analogous or digital) to provide learners

with feedback on their use of AR.

Visualization
15 The complexity of the AR (cf. [60]) fits the learning goal addressed (in

terms of cognitive load [61]).
16 The design laws [62] are taken into account.

Creativity and Originality
17 The lesson design demonstrates an original and creative use of AR to

support the learning process.
18 The AR was created by the teachers themselves.

As part of the expert survey, items 7, 8, and 9 were shortened and simplified: (changes
crossed out) “Integration into the teaching process: There is a connection to previous and
subsequent teaching sequences.” (I7). “Integration into the course of the lesson: Relevant
references to real situations or applications are made.” (I8). “Added Value and educational
benefits: The AR offers clear benefits compared to conventional visualizations.” (I9). Item
11 was assigned to “Fit of the AR”; before the expert survey, it was thematically assigned
to “Visualization”. Items 13 and 15 were supplemented with examples or references for
precision (extension in brackets): “There are additional possibilities besides viewing the
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object (e.g., interactivity or individualization.)” (I13) and “The complexity of the AR (cf. [62])
fits the learning goal addressed (in terms of cognitive load [63]).” (I15). Finally, item 16 was
newly added.

2.3. Study Design

Six groups of pre-service teachers presented self-created lessons in a 45-min presenta-
tion. Parts of the lessons were also carried out with fellow students in a mock trial. The
subject areas were specified by the experts to ensure that the topic was fundamentally suit-
able for the use of AR. Five observing AR experts in the field of science education research
participated during the presentation and applied the developed rubric EVAR (live and on
site). Subsequently, Czok’s questionnaire was applied to the submitted AR materials.

2.4. Context

The study was conducted during a master’s seminar [63,64], especially targeted at
the development of digital competencies for teaching in science education, and took place
in the summer term of 2023 at the University of Konstanz. This seminar was divided
into three phases (see Figure 1). In the first part, the basics of teaching with digital media
were introduced and practiced in alternating theory and voluntary on-site exercises with
a team of tutors following the DiKoLAN framework [65,66]. DiKoLAN is a competency
framework that defines seven digital core competency areas that science education students
should have acquired by the end of their studies.
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phase, and final presentation.

DiKoLAN is divided into two sections: general competency areas, encompassing
documentation, presentation, communication/collaboration, and information search and evaluation,
as well as competency areas specific to the natural sciences, including data acquisition, data
processing, and simulation and modeling. In the context of this seminar, particular emphasis
was placed on the application of AR as an example of simulation and modeling, as well as
the creation of AR content [64]. Here, students acquire essential knowledge about models,
their development, and the application of AR. AR is explained through the lens of seven
design parameters, according to [32]. Each parameter has different levels or indicators
that enable a comparison between different AR implementations. These parameters are
adaptivity, interactivity, immersion, congruence with reality, content proximity to reality, game
elements, and complexity. Adaptivity describes the program’s ability to adjust to various
situations by reacting to activities, events, or changes in situations. Interactivity refers to
the intended interaction between the user and the digital media components and includes
six levels of interaction. According to [32], immersion is understood as the ability of
digital media to influence human senses, and the degree of immersion increases as more
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senses are engaged. Congruence with reality assesses the plausibility and realism of AR
implementations in terms of social and perceptual realism. Content proximity to reality
examines the plausibility of AR content regarding causal, spatial, and temporal factors,
as well as the tracking method’s appropriate use. The incorporation of game elements in
education can enhance interactivity and motivation. For this parameter, eight indicators
are provided. Lastly, complexity reflects the content-related and cognitive structures of
AR functions, whereby achieving a higher level of complexity is associated with a higher
demand on the user or more extensive cognitive activity. In general, the aim of the seminar
is to promote the future-oriented and didactically sound use of digital tools in science
lessons. Therefore, students are trained to create AR content themselves and analyze
suitable tools. Hence, AR is not viewed merely as a technical gimmick but as a powerful
tool for future educators, which could change teaching science in school.

In the second part of the seminar, students planned teaching sequences for upper-
level classes in groups of two, incorporating AR. The prospective teachers were given a
predetermined topic from the field of molecular orbital theory, including core chemistry,
underlying physics concepts, and biological contexts. The students could choose one of
these secondary 2 / undergraduate science topics for which AR visualization is promising.
It was, therefore, not a matter of investigating whether AR makes sense in general. It can be
assumed that the prerequisites for (meaningful) AR are given in principle. Clear guidelines
are provided by the instructors after diagnosing the potential of AR. The students had
around four weeks to plan a teaching unit, select or develop an AR, and implement it into
a teaching unit (i.e., a lesson plan). To enhance the clarity and understanding of the results,
the created teaching sequences are presented in Table 2. The educational offerings included
lectures, exercises, and DiKoLAN sessions with individual supervision [63]. Additionally,
the opportunity to enhance their education was offered through self-learning units on the
DiBaNa website (DiBaNa: Digitale Basiskompetenzen in den Naturwissenschaften, German
for Digital Basic Competencies for Science Teachers), an online platform for acquiring digital
teaching competencies [67].

Table 2. Topics of teaching sequences, learning goals, and AR implementation by group.

Group Topic Learning Goals AR

1 Construction of Amino Acids Learners determine the concept of chirality
through the structure of amino acids.

AR model of L-alanine for
comparison with the model built
using the model kit (Tools:
TinkerCAD [68] and Zapworks
Designer [69])

2 Properties of Enzymes
Illustrated Using the
Bioluminescence of Fireflies

Learners describe the structure and
properties of an enzyme, explaining its
mechanism using appropriate models: the
key–lock principle and induced fit model.

AR model of key–lock principle
(TinkerCAD [68] and Zapworks
Designer [69])

3 Introduction to Chirality Learners can explain the chirality of a
molecule based on the presence of an
asymmetrically substituted carbon atom.

Aligning AR models of chiral or
achiral substances with the model kit
(TinkerCAD [68] and zapworks
designer [69])

4 Introduction to Orbital Theory Learners recognize the relationship
between a wave function and an orbital
representation

AR model of the orbital
representation (Geogebra [70])

5 Bond Formation by Orbital
Overlap

Learners apply their knowledge of orbital
models to simple atomic bonds.

AR model of the molecules and first
simple connection (leARnchem [71])

6 Superposition Principle Learners can explain wave phenomena
such as the path difference and
constructive and destructive interference
with the superposition principle.

AR simulation of the interference
pattern of transversal waves with two
emitters (Geogebra [70])
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In the third phase, each group of pre-service teachers presented their planned lessons,
and a written elaboration was handed in.

2.5. Statistical Analysis

For many of the items, a bimodal distribution of responses was expected (separating
agreement and disagreement). In addition, all items were positively worded so that
students would desirably achieve a positive rating with their unit after the training measure.
This leads to the expectation of a one-sided distribution. In the evaluation, therefore,
statistical measures such as Cohen’s kappa [72], Fleiss’ kappa [73], or Krippendorff’s
alpha [74] were not applicable since these are known to be problematic with a one-sided
distribution, especially for small sample sizes [75]. Instead, a graphical method was used
for the evaluation of the inter-rater reliability, and a frequency map was created with the
statistical software R [76]. In order to compare the results of the two parts of the research,
the mean value across all seven areas according to [32] was compared with the mean
value across all 18 self-generated items for each group using Excel [77]. To check the scale
reliability, Guttman’s lambda 4 and lambda 6 [78] were calculated with R. Cronbach’s
alpha [79] was unsuitable since no normal distribution was expected due to the assumed
polarization of the responses.

3. Results
3.1. Characteristics of the AR Used

For each augmented reality presented by the students, a classification of characteristic
features was performed based on [32,60]. The results of the seven categories for all six
groups were plotted on a spider web plot. As the different categories have different
maximums of scores, the values reached in each category were normalized. The results are
shown in Figure 2.

When looking over the spider webs, it is clear that for the implementation of each
group, there are differences in which category is the most pronounced and whether the
degree of pronouncement is rather the same across all categories or rather fluctuating. Only
the groups represented by Figure 2c,d show the same values over all categories. In general,
as a common feature, it can be found that all of the featured AR have low values for game
elements (GE) as well as low immersion (Imm) values. For five out of six, the relative value
for congruence with reality (CwR) is about 0.6; still, two-thirds of the apps have a relative
value of 0.4 in terms of content proximity to reality (CPtR), and half of them have the same
values for complexity (Comp) and interactivity (Int), but for the other categories, the spider
webs show different figures.

3.2. Evaluation of the Teaching Scenarios including AR

The aim is to verify whether the newly developed scoring rubric can serve as an
evaluation basis for the instructional context in which augmented reality was used. For
this purpose, the inter-rater reliability is presented below.

For the representations of groups 3, 5, and 6, the raters ranked the majority of items
very similarly high (cf. Figure 3). For groups 1 and 4, the scatter is wider, while for group 2,
the scatter of the ratings is the widest. The variance in the scatter can be easily recognized
in the heat map.

In addition to the significant differences between the groups, it is also striking that
for items 4, 10, 13, and 14, the answers are distributed over three to four neighboring scale
levels, or there is contrasting checkbox behavior for at least three groups, indicating a low
level of agreement among the raters.
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Figure 2. The results of the classifications according to [32] from (a) group 1 to (f) group 6 in the
seven categories: adaptivity (Adapt), interactivity (Int), immersion (Imm), congruence with reality
(CwR), content proximity to reality (CPtR), game elements (GE), and complexity (Comp).
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3.3. Reliability of the Rubric and Its Theoretically Derived Subscales

Based on the concepts from Czok [32], the scale was divided thematically into sub-
scales. To check the meaningfulness of this division, Guttman’s lambda-4 and lambda-6
were calculated for the main scale and the five dimensions Technical Implementation, Fit of the
AR, Interactivity and Engagement, Visualization, and Creativity and Originality. The results are
illustrated in Table 3. Further, the absolute frequencies of the individual response options
for each item across all groups and the relative frequencies are shown. For the main scale, a
lambda-4 of 0.93 and a lambda-6 of 0.99 were reached.

Table 3. The counted answers for each item across all groups as absolute values and as relative values.
The last columns contain the calculated values for lambda-4 and lambda-6 for each subscale.

Subscale Item Item text 1 2 3 4 NA 1 2 3 4 NA λ6 λ4

Technical
Implementation

1 The AR in the learning scenario
operates smoothly and reliably.

22 4 3 0 1 73% 13% 10% 0% 3% 0.85 0.89

2 The teachers are confident in
controlling the AR.

21 4 2 0 3 70% 13% 7% 0% 10%

3 The handling of the AR is intuitive and
simple for the learners.

16 9 1 0 4 53% 30% 3% 0% 13%

4 The functionality of the AR is
sufficiently described and explained.

16 6 6 2 0 53% 20% 20% 7% 0%

5 The tracking method chosen is
appropriate for the teaching scenario.

23 3 2 1 1 77% 10% 7% 3% 3%

Fit of the AR 6 The AR supports at least one specific
learning goal.

25 5 0 0 0 83% 17% 0% 0% 0% 0.88 0.92

7 There is a connection to previous and
subsequent teaching sequences.

27 3 0 0 0 90% 10% 0% 0% 0%

8 Relevant references to real situations or
applications are made.

19 5 1 0 5 63% 17% 3% 0% 17%

9 The AR offers clear benefits compared
to conventional visualizations.

23 5 2 0 0 77% 17% 7% 0% 0%

10 Potential benefits and challenges of AR
use for teaching are discussed.

19 5 4 0 2 63% 17% 13% 0% 7%

11 The AR helps learners to develop a
better understanding of the content.

24 5 1 0 0 80% 17% 3% 0% 0%

Interactivity and
Engagement

12 The AR encourages learners to actively
engage with the subject matter.

26 2 1 1 0 87% 7% 3% 3% 0% 0.48 0.67

13 There are additional possibilities
besides viewing the object, e.g.,
interactivity or individualization.

16 1 4 8 1 53% 3% 13% 27% 3%

14 There are feedback mechanisms
(analogous or digital) to provide learners
with feedback on their use of AR.

5 5 0 17 3 17% 17% 0% 57% 10%

Visualization 15 The complexity of the AR fits the
learning goal addressed (in terms of
cognitive load).

20 7 3 0 0 67% 23% 10% 0% 0% 0.03 0.07

16 The design laws are taken into account. 10 12 1 0 7 33% 40% 3% 0% 23%

Creativity and
Originality

17 The lesson design demonstrates an
original and creative use of AR to
support the learning process.

17 10 0 3 0 57% 33% 0% 10% 0% 0.67 0.80

18 The AR was created by the teachers
themselves.

21 2 0 5 2 70% 7% 0% 17% 7%

3.4. Relevance of the Quality of an AR Learning Environment for the Overall Quality of the
Lesson Planning

For further consideration, the mean value of each group with regard to the classi-
fication in all seven areas according to [32] was compared with the mean value of each
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group with regard to the classification in all seven areas of the developed rubric. The
results are shown in Figure 4. A slight correlation can be seen between achieving a high
score according to [32] and a higher evaluation of teaching commitment. Around 19.4%
of the variance in the evaluation of lesson planning can be explained by the quality of the
integrated AR learning environment.
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4. Discussion
4.1. Characteristics of the AR Used

As a common feature, it can be seen that low immersion values are often achieved.
Furthermore, all ARs contain only a few or even no game elements. Apart from that, no
specific preferred trend can be identified for the other areas. This clearly reflects the seminar
content. On the one hand, only the immersion of further senses except the optical one was
treated in the seminar. Likewise, game elements played no role in the design of the seminar
unit on AR and therefore are not found in the environments designed by the students. On
the other hand, no specific training was conducted with the aim of achieving particularly
high scale levels in the other categories, which explains well the different high values for
these categories.

The AR of group 5 stands out with high or higher item ratings in all areas. This
can be attributed to the fact that this group used a very comprehensive augmented reality
application, leARnCHEM [80], developed at the University of Toronto that already included
many features, e.g., for individualization and different levels of complexity. In contrast, the
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ARs of groups 1 to 4 focused on a specific problem that was needed in the teaching setting
being worked on. For this, no more functions than necessary were included.

4.2. Evaluation of the Teaching Scenarios including AR

To verify that the rubric created is a way to evaluate AR in an instructional context,
the inter-rater reliability was first examined. Basically, for the relatively high number of
five raters in the six groups, a high level of agreement could be achieved for many of
the items (see Figure 3). The different results for the different groups seem to allow a
conclusion to be drawn about the technical quality of the AR used. While the AR worked
very well for groups 3, 5, and 6, the realization was technically rather challenging for
group 2. Nonetheless, group 2 delivered a very convincing and thoughtful instructional
concept for the use of their AR in the classroom. Further research is needed to confirm this
assumption. In addition, the students’ challenges in the technical realization of AR seemed
to make the ratings more ambiguous. This had to be addressed by making the raters aware
of the issue and finding ways to address it. It may also be beneficial to provide advanced
training to experts who offer advice, helping them determine whether to prioritize the
technical implementation or the quality of the idea, particularly in cases where a good idea
is compromised by poor technical execution.

Summarizing the results of the frequency map (Figure 3), items 4 (“The functionality of
the AR is sufficiently described and explained.”), 10 (“Potential benefits and challenges of
AR use for teaching are discussed.”), 13 (“There are additional possibilities besides viewing
the object, for example, interactivity or individualization”, and 14 (“Feedback mechanisms
(analogous or digital) are in place to provide learners with feedback on their use of AR.”)
were assessed differently by the raters. A possibility to counteract this would be a more
detailed coding guide to train the rating experts.

Romano et al. [56] have already called for the creation of augmented reality by preser-
vice teachers, and several studies have discussed the advantages of using them in teaching
scenarios [5–9,15–19,31,53–55]. However, none of these studies included a scoring rubric to
determine the pedagogical quality of the augmented reality implementation.

4.3. Reliability of the Rubric and Its Theoretically Derived Subscales

The calculated lambda-6 values for the technical implementation and fit of the AR sub-
scales are between 0.8 and 0.9 and thus show that the subscales formed on the basis of
theory can be very well implemented. A still acceptable value is achieved for the inter-
activity and engagement subscales. It is only the combination of items 15 and 16 on the
visualization subscale that cannot be confirmed by the calculation of Guttman’s lambda.
However, when looking at the cross-tabulation of the answers given, this summary cannot
be refuted either (see Table 4).

Table 4. Comparison of the answers for items 15 and 16.

Item V15

1 2 3 4 NA valid total

V16

1 7 1 2 0 0 10 10

2 7 5 0 0 0 12 12

3 0 1 0 0 0 1 1

4 0 0 0 0 0 0 0

NA 6 0 1 0

valid 14 7 2 0

total 20 7 3 0
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4.4. Relevance of the Quality of an AR Learning Environment for the Overall Quality of the
Lesson Planning

Even though a slight connection between the two different ratings, the evaluation
according to [32] and with the instrument EVAR, was found, it is clear to see that evaluating
the design options according to [32] is an important factor but not a reliable indicator
of good teaching embedding. This clearly requires a specific rubric for evaluating lesson
embedding. In groups 3 and 4, for example, which were assessed in the same way according
to [32], the assessment of AR in teaching embedding differs noticeably. This clearly shows
why a pure classification based on different characteristics is not sufficient for the evaluation
of AR in a teaching context since neither the occurrence of many different characteristics
nor a focus on a few characteristics is better or worse without a teaching context.

4.5. Limitations

This study focuses on the validation of the rubric. Therefore, based on the available
data, no statement can be made about the occurrence of certain characteristics of the
population due to the small sample. A larger sample is necessary for this.

Considering the agreement between the raters, a subjective interpretation cannot be
ruled out. The evaluation of the selected AR application was carried out individually
during each presentation and the introduction of each lesson and was not revised after the
end of each presentation. Therefore, finding a consensus among the raters can be ruled out,
as the raters did not discuss the material.

The rubric was developed in order to evaluate the use of AR in the classroom for given
topics that were classified by a team of experts as beneficial for the use of AR. Therefore, no
items can be found that assess whether the selected topics are suitable for the use of AR
at all.

5. Conclusions

EVAR fills a gap that gives teacher educators a tool that can be used to evaluate a
teaching sequence on augmented reality. It offers the possibility of adding an assessment
to some of the features beyond just looking at them. The use of the grid is useful when
selecting an AR to determine whether it is conducive to the teaching purpose. By guiding
the questions that the teacher has to ask the AR, the selection of the AR is made easier.
The evaluation grid was further developed to provide teachers with an instrument that
they can use to make a reflective decision as to whether creating a tool is worthwhile or
whether an already-created tool or another alternative can fulfil the same learning objective.
For example, it assesses whether the additional work involved in creating the tool could
be worthwhile because it reduces the workload elsewhere, whether the desired learning
objective can be achieved, or whether another alternative can achieve the same learning
objective with less effort. It was shown that around 20% of the responses were already
predicted in terms of the quality of the augmented reality. There is therefore an opportunity
to carry out further investigations with an even larger sample, for example, to determine the
influence of individual design parameters according to Czok on the individual subscales
of EVAR.

6. Declaration of AI and AI-Assisted Technologies in the Writing Process

During the preparation of this work, the authors used DeepL (www.deepl.com, ac-
cessed on 29 January 2024) and Grammarly (www.grammarly.com, accessed on 29 January
2024) in order to improve the readability and language of single sentences. After using these
tools, the authors reviewed and edited the content as needed and take full responsibility
for the content of the publication.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/educsci14030264/s1: Table S1: Scoring rubric, EVAR.
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