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Abstract: Drug-resistant Gram-negative bacterial infections, on average, increase the length of stay
(LOS) in U.S. hospitals by 5 days, translating to approximately $15,000 per patient. We used statistical
and machine-learning models to explore the relationship between antibiotic usage and antibiotic
resistance over time and to predict the clinical and financial costs associated with resistant E. coli
infections. We acquired data on antibiotic utilization and the resistance/sensitivity of 4776 microbial
cultures at a Kaiser Permanente facility from April 2013 to December 2019. The ARIMA (autore-
gressive integrated moving average), neural networks, and random forest time series algorithms
were employed to model antibiotic resistance trends. The models’ performance was evaluated using
mean absolute error (MAE) and root mean squared error (RMSE). The best performing model was
then used to predict antibiotic resistance rates for the year 2020. The ARIMA model with cefazolin,
followed by the one with cephalexin, provided the lowest RMSE and MAE values without signs of
overfitting across training and test datasets. The study showed that reducing cefazolin usage could
decrease the rate of resistant E. coli infections. Although piperacillin/tazobactam did not perform
as well as cefazolin in our time series models, it performed reasonably well and, due to its broad
spectrum, might be a practical target for interventions in antimicrobial stewardship programs (ASPs),
at least for this particular facility. While a more generalized model could be developed with data
from multiple facilities, this study acts as a framework for ASP clinicians to adopt statistical and
machine-learning approaches, using region-specific data to make effective interventions.

Keywords: time series models; ARIMA; neural networks; random forest algorithm; antimicrobial
resistance; antibiotic resistance; length of stay (LOS); antimicrobial stewardship programs (ASPs)

1. Introduction

According to the U.S. Centers for Disease Control and Prevention (CDC), almost 30% of
antibiotics prescribed in acute care hospitals are unnecessary or suboptimal. Inappropriate
use of antibiotics increases the risk of resistance, adverse drug events, and the emergence
of secondary infections [1]. Additionally, evidence shows that patients are often discharged
from hospitals with excess antibiotics, leading to unnecessary use of antibiotics and the
emergence of antibiotic resistance [2].

Research indicates that antibiotic usage is correlated with the emergence of antibi-
otic resistance [3–11]. For example, a statistically significant correlation was shown be-
tween consumption of antibiotics and resistance rates of Pseudomonas [9]. Ryu et al. [12]
showed that the use of beta-lactam/beta-lactamase inhibitor antibiotics such as ampi-
cillin/sulbactam and piperacillin/tazobactam is significantly correlated with increased
rates of piperacillin/tazobactam-resistant Klebsiella pneumoniae [12]. Additionally, broad
spectrum antibiotics have been shown to correlate with the emergence of multi-drug
resistant infections [6,13].
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Resistant infections pose not only clinical challenges, but a financial burden. Hospital
operational costs are increased by patients’ prolonged hospital stays, which are frequently
required to treat resistant diseases. More specifically, a resistant E. coli infection on average
increases the LOS for a patient in the United States by 5 days [9]; this observation can
be extrapolated to other resistant Gram-negative infections such as Klebsiella and Pseu-
domonas [9]. Since overnight hospital stays cost an average of $2883 per day in the U.S. [14],
a resistant Gram-negative infection can cost approximately $14,415, just for the extended
LOS alone.

In addition to reporting correlation coefficients between antibiotic usage and antibiotic
resistance, scientists have used time series models such as the Box–Jenkins method to
document the development of antibiotic resistance over time as a result of antibiotic
usage [11,15–18]. At the same time, machine learning techniques such as artificial neural
networks (ANNs) and random forest algorithms are becoming an integral forecasting tool
in pharmaceutical and healthcare-related research [19,20]. Those ANNs are being applied
in the pharmaceutical arena to predict how novel drug molecules would behave in the
human body [21] and to predict antibiotic resistance [22–24]. Michael Kane, a researcher
and a professor at Yale University, showed that the performance of random forest time
series algorithms can outperform existing time series models for predicting infectious
disease outbreaks [19].

Statistical and machine learning models can be used to better understand the relation-
ship between antibiotic usage and the development of antibiotic resistance over time, and
to predict the clinical and financial cost of using culpable antibiotics. The CDC and the
Healthcare Infection Control Practices Advisory Committee (HICPAC) recommend imple-
menting ASP programs and guidelines for antibiotic use to ensure appropriate selection,
dose, route of administration, and duration of therapy [25]. This study was devised and
executed to kickstart and encourage the application of statistical and machine learning
approaches to region-specific data. The aim is to guide and support local hospital ASPs in
both acute care and discharge settings.

2. Materials and Methods
2.1. Study Aim, Design, and Setting

The aim of the study is to identify the antibiotics that are most strongly associated
with resistant E. coli infections and to explore how changes in antibiotic usage might impact
both resistance rates and the associated costs. This was a data only, observational study for
quality improvement for Kaiser Permanente Vacaville Medical Center, which is a 152-bed
level 2 trauma center located in Vacaville, California. The study included all microbial
cultures of E. coli from all sources of infection (abscess, blood, urine, and wounds) at the
Kaiser Permanente Vacaville Medical Center. We also included total antibiotic utilization
at the facility (reported as days of therapy per 1000 patient days) of cephalosporins, beta
lactams, fluoroquinolones, and aminoglycosides (oral and intravenous routes). Utilizing
data spanning 1 April 2013 to 31 December 2018, we trained our statistical and machine
learning algorithms. Subsequently, data from the year 2019 (1 January 2019 to 31 December
2019) enabled us to test the accuracy of our models and to generate estimates of future
antibiotic resistance at KP Vacaville Medical Center. This observational approach allows us
to identify patterns and associations, though it is critical to understand that these do not
necessarily imply causation between specific antibiotic use and the emergence of resistance.

2.1.1. Study Population

The study population included 4776 microbial cultures that were identified through
Kaiser Permanente’s electronic health record. The inclusion and exclusion criteria of the
study are tabulated in Table 1.
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Table 1. Inclusion and Exclusion Criteria.

Inclusion Criteria

All E. coli cultures (urine, blood, abscess, wound, genital, and GI abscess).

Admission to KP Vacaville between 1 April 2013 and 31 December 2019.

Administration of antibiotics, which include cefazolin; cephalexin; cefadroxil; cefotetan; cefoxitin;
ceftriaxone; cefpodoxime; cefepime; piperacillin/tazobactam; amoxicillin; amoxicillin/clavulanic

acid; ampicillin; ampicillin/sulbactam; moxifloxacin; levofloxacin; ciprofloxacin; gentamicin;
tobramycin; and amikacin. Daily doses were reported as days of therapy per 1000 patient days

(DOT/1000 patient days).

For patients with multiple episodes of antibiotic resistant (indicated by resistance to ceftriaxone)
E. coli infections, only the first episode was included [26].

Exclusion Criterion

Patients not meeting inclusion criteria.

2.1.2. Study Endpoints

The primary outcome of this study was to identify the target antibiotic used by Kaiser
Permanente Vacaville that led to increased antibiotic resistance in E. coli, indicated by
resistance to ceftriaxone. The secondary outcome was resistance rate prediction for the
year 2020.

2.2. Input Feature Selection for Time-Series Models

The antibiotics selected in this section (i.e., Section 2.2 Input Feature Selection for
Time-Series Models) by the correlation analysis, stepwise linear regression, and recursive
feature elimination process were used as exogenous regressors to the time series models
described in Section 2.3.

2.2.1. Correlations and Time-Lag Identification

Correlations between each type of antibiotic usage and its corresponding antibiotic
resistance rate were examined. In line with the criteria employed by Ryu et al. (2018)
and Hsu et al. (2010), we selected antibiotics for which the correlation with resistance
rates had a p-value less than 0.05 and R-squared value greater than 0.3; these antibiotics
were further analyzed in our time series studies presented in Section 2.3 [12,27]. If no
antibiotics met those criteria, then antibiotics whose p-values are simply less than 0.05 were
selected. Because the usage of antibiotics might not immediately lead to the emergence of
antibiotic resistance, cross-correlation analysis was conducted to identify potential ‘time-
lags’ between when an antibiotic is used and when the emergence of antibiotic resistance
can be observed. For the cross-correlation analysis, monthly lags of up to 1 year in both
directions were applied to the antibiotic resistance series. The most likely time-lag at
which antibiotic usage is significantly associated with antibiotic resistance rates was then
determined. This determination was based on the strength of the correlation coefficient
values at each given time-lag and its statistical significance [12,28].

2.2.2. Stepwise Linear Regression and Time-Lag Identification

The stepwise linear regression was performed by using all the antibiotics as predictor
variables; the stepAIC() function in R 3.6.2 was used to execute stepwise model selection, in
which the model with the lowest Akaike Information Criterion (AIC) was picked. From this
reduced model, the top independent variables were chosen, defined as those with p-values
less than 0.05. Cross-correlation analysis was conducted on those chosen antibiotics to
identify the most likely time-lag at which antibiotic usage is significantly associated with
antibiotic resistance rates. Independent variables whose p-values are less than 0.05 and the
adjusted R-squared value of the model are reported in the Section 3.
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2.2.3. Recursive Feature Selection with the Random Forest Algorithm and Time-Lag
Identification

The most important features were iteratively identified and retained, based on their
contribution to the model as measured by their percent increase in mean squared error
(%IncMSE) [29]. This recursive feature selection was performed using the random forest
algorithm with the rfe() function of the ‘caret’ library in R 3.6.2. Subsequently, cross-
correlation analysis was conducted on the selected features, in this case antibiotics, to
identify the most likely time-lag at which antibiotic usage is significantly associated with
antibiotic resistance rates.

2.3. Time Series Modeling

The auto.arima() function in R 3.6.2 was used to build ARIMA models. Neural
networks were built using the nnetar() function in R 3.6.2. This function builds simple
neural networks with a single hidden layer and takes in non-seasonal lags as inputs. The
number of inputs and the number of nodes in the hidden layer were modified to identify
the most optimal model, whose performance was measured by MAE and RMSE. Finally,
random forest algorithm regression time series models were built using the RandomForest
package in R 3.6.2 [19]. Parameter tuning for the random forest algorithm focused on the
‘mtry’ parameter, which represents the number of variables considered for splitting at each
tree node. We utilized the ‘caret’ package’s ‘train’ function with a time-slice approach,
employing a ‘trainControl’ method with a ‘timeslice’ option. This method simulated a
realistic forecasting scenario by keeping a fixed validation window at the end of the training
dataset, spanning the forecast horizon of twelve months. The tuning grid was established
with three ‘mtry’ values: the total number of predictors, a third of this number, and the
square root of the number of predictors, following common random forest heuristics.

The top predictors, i.e., antibiotics, selected in Section 2 by the correlation analysis, step-
wise linear regression, and recursive feature elimination process were used as exogenous
regressors to the ARIMA, neural network, and random forest time-series models [12,27].

2.4. Assessing Performance and Making Predictions

The performance of the time-series models was measured by MAE and RMSE [15,30,31].
The best performing model that showed the least signs of overfitting or underfitting, as
measured by the ratio of performance on training data to test data, was used to predict the
antibiotic resistance rates over the next 12 months, from January 2020 to December 2020,
based on the expected usage of the identified antibiotics.

3. Results
3.1. Correlations and Time-Lag Identification

Correlations between each type of antibiotic use and corresponding antibiotic resis-
tance rates for the train data are depicted in Figure 1 and tabulated in Table 2. As Table 2
shows, both amoxicillin and cefazolin met one of the selection criteria defined in Section 2:
their correlations with drug resistance had p-values less than 0.05. However, none of
the R-squared values in Table 2 were greater than 0.3. In the cross-correlation analyses,
amoxicillin exhibited a 5-month lag with a cross correlation value of 0.322 (p < 0.05), and
cefazolin showed no lag.

Table 2. Correlations between ‘Drug Resistance’ and Antibiotics Usage.

Antibiotics Correlation p-Value

Drug Resistance amoxicillin 0.313 0.009

Drug Resistance cefazolin 0.2423 0.0450

Drug Resistance gentamicin 0.225 0.063

Drug Resistance all beta lactams 0.218 0.0715
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Table 2. Cont.

Drug Resistance all cephalosporins 0.206 0.0888

Drug Resistance cephalexin 0.193 0.113

Drug Resistance piperacillin/tazobactam 0.186 0.127

Drug Resistance ampicillin 0.146 0.232

Drug Resistance ampicillin/sulbactam 0.1396 0.253

Drug Resistance cefadroxil 0.126 0.302

Drug Resistance ceftriaxone 0.115 0.345

Drug Resistance cefepime 0.103 0.398

Drug Resistance cefpodoxime 0.0835 0.495

Drug Resistance moxifloxacin 0.083 0.499

Drug Resistance cefoxitin 0.057 0.644

Drug Resistance ciprofloxacin 0.046 0.709

Drug Resistance amikacin 0.000 0.999

Drug Resistance tobramycin −0.018 0.885

Drug Resistance amoxicillin/clavulanic acid −0.094 0.440

Drug Resistance levofloxacin −0.097 0.428

Drug Resistance cefotetan −0.113 0.356
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3.2. Stepwise Linear Regression and Time-Lag Identification

As shown in Table 3, from the stepwise linear regression of all predictor variables,
amoxicillin, cefotetan, and cephalexin were identified as antibiotics significantly associated
with antibiotic resistance, as indicated by their p-values less than 0.05 (i.e., 0.00289, 0.01918,
and 0.03301, respectively). Approximately 16.4% variations associated with resistant
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E. coli can be explained by cephalexin, amoxicillin, cefotetan, and amoxicillin/clavulanic
acid usage. No significant cross-correlation time-lag was found for both cefotetan and
cephalexin [28].

Table 3. Stepwise Linear Regression results.

Coefficients: Estimate Std. Error t Value Pr (>|t|)

(Intercept) 5.095 × 10−2 1.087 × 10−2 4.685 0.000 ***

cephalexin 9.309 × 10−7 4.272 × 10−7 2.179 0.033 *

cefotetan −1.341 × 10−6 5.581 × 10−7 −2.403 0.019 *

amoxicillin 2.004 × 10−6 6.469 × 10−7 3.098 0.003 **

amoxicillin/clavulanic acid −4.869 × 10−7 3.024 × 10−7 −1.610 0.112

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Residual standard error: 0.025 on 64 degrees of freedom

Multiple R-squared: 0.213, Adjusted R-squared: 0.164

F-statistic: 4.339 on 4 and 64 DF, p-value: 0.004

3.3. Recursive Feature Selection with the Random Forest Algorithm and Time-Lag Identification

Recursive feature selection with the random forest algorithm reported amoxicillin,
cefazolin, and piperacillin/tazobactam as the top three factors associated with antibiotic
resistance, as shown in Figure 2. Because amoxicillin and cefazolin already were picked
from correlation analyses and stepwise linear regression, piperacillin/tazobactam was
picked as one of our candidates. Under cross-correlation analysis, no significant time-lag
was identified for piperacillin/tazobactam.
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3.4. Time Series Modeling

RMSE and MAE of ARIMA, neural networks, and the random forest time series
models, with cephalexin, amoxicillin, cefazolin, cefotetan, and piperacillin/tazobactam as
exogenous regressors at corresponding time-lags identified by cross correlation analyses,
are in Tables 4–8 as follows:

Table 4. Performance of time-series models with cephalexin as an external regressor.

Cephalexin with No Lag RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.0223 0.030 0.024

Neural Network 0.023 0.019 0.032 0.027

Random Forest 0.051 0.041 0.040 0.035

Table 5. Performance of time series models with amoxicillin with a 5-month lag as an external regressor.

Amoxicillin with
5 Months Lag RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.022 0.033 0.026

Neural Network 0.022 0.018 0.035 0.029

Random Forest 0.060 0.048 0.042 0.036

Table 6. Performance of time series models with cefazolin as an external regressor.

Cefazolin with No Lag RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.022 0.027 0.024

Neural Network 0.024 0.019 0.029 0.025

Random Forest 0.046 0.037 0.019 0.017

Table 7. Performance of time series models with cefotetan an external regressor.

Cefotetan with No Lag RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.029 0.022 0.034 0.027

Neural Network 0.025 0.019 0.034 0.027

Random Forest 0.054 0.043 0.051 0.043

Table 8. Performance of time series models with piperacillin/tazobactam as an external regressor.

Piperacillin/Tazobactam
with No Lag RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.022 0.031 0.026

Neural Network 0.025 0.020 0.030 0.025

Random Forest 0.048 0.039 0.056 0.050

Although the random forest model with cefazolin (no lag) as an exogenous regressor
performed the best in the test dataset, the underfitting observed in the training data set
disqualifies this model as the optimal representation of reality. The ARIMA model with
cefazolin (no lag), followed by the ARIMA model with cephalexin (with no lag), performed
the best in terms of RMSE and MAE values across both the train and test data sets.

Therefore, using the ARIMA model with cefazolin as an external regressor, and as-
suming the same rate of cefazolin usage as in 2019, we concluded that the predicted rate of
resistant E. coli infections in 2020 was 6.2%, with its 95% prediction interval being 0.9% to
11.5%. When a 50% reduction is made in cefazolin usage, the predicted rate of resistant
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E. coli in 2020 was 4.52%, with its 95% prediction interval being −0.1% to 9.8%. With a 25%
reduction in cefazolin usage, the predicted rate of resistant E. Coli in 2020 was 5.36%, with
its 95% prediction interval being 0% to 10.7%.

4. Discussion

It is interesting to note that cefazolin and cephalexin, both first-generation cephalosporins
with similar spectrums of activity, were found to be closely associated with the resistant
E. coli infections we observed. Cefazolin is frequently used in perioperative settings and
in long-term bacteremia treatments, representing 11.2% of all antibiotics usage observed
in our data set. On the other hand, cephalexin is usually used in outpatient settings, and
represents only 0.57% of the observed inpatient antibiotics usage. Given the relatively
narrower spectrums of activity of cefazolin and cephalexin compared to other antibiotics,
targeting these two antibiotics for ASP interventions is often challenging. We encounter
this scenario because antibiotics stewardship programs try to limit the use of unnecessarily
broad-spectrum antibiotics under the assumption that they exert Darwinian pressure,
generating antibiotics-resistant microorganisms.

At the same time, although piperacillin/tazobactam, a broad-spectrum antibiotic, did
not perform as well as cefazolin and cephalexin, it performed fairly well in the ARIMA
and neural network time series models, ranking right after cefazolin and cephalexin.
Had we picked piperacillin/tazobactam to make our predictions, the predicted rate of
resistant E. coli in 2020, according to the ARIMA model, and assuming the same rate of
piperacillin/tazobactam usage as in 2019, was 5.52%, with its 95% prediction interval being
0.14% to 10.9%. When a 50% reduction is made in piperacillin/tazobactam usage, the
predicted rate of resistant E. coli in 2020 was 4.31%, with its 95% prediction interval being
−1.1% to 9.7%. With a 25% reduction in piperacillin/tazobactam usage, the predicted rate
of resistant E. coli was 4.91%, with its 95% prediction interval being −0.47% to 10.3%.

While one might be tempted to build a time series model with both cefazolin and
piperacillin/tazobactam—excluding cephalexin because it is rarely used in inpatient
settings—such a model does not perform better than cefazolin alone, as shown in Table 9:

Table 9. Performance of time series models with cefazolin and piperacillin/tazobactam as external
regressors.

Cefazolin and
Piperacillin/Tazobactam,

No Lags
RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.022 0.027 0.025

Neural Network 0.022 0.018 0.030 0.027

Random Forest 0.044 0.034 0.033 0.025

Although the variance inflation factor (VIF)—a measure to quantify the severity of
multicollinearity in an ordinary least squares regression analysis—value for cefazolin
and piperacillin/tazobactam is 1.39, which is not particularly concerning for collinearity,
the performance of a linear model combining these two factors is less than satisfactory.
Specifically, the adjusted R-value for a model with piperacillin/tazobactam and cefazolin
together is 0.03477, which is lower than the 0.0446 adjusted R-value for a model with
cefazolin alone. This lower adjusted R-value suggests that the combined model does not
explain the variance in the dependent variable as well as the cefazolin-alone model does.
Moreover, the moderate increase in the adjusted R-value from a piperacillin/tazobactam-
only model (which is 0.02) to a piperacillin/tazobactam and cefazolin combination model
(which is 0.03477) does not seem sufficient to justify the time series model that includes
both piperacillin/tazobactam and cefazolin as regressors.

An interesting analysis can be made with amoxicillin and cephalexin, whose inpatient
use is negligible at 0.15% and 0.57%, respectively. Those figures might underestimate
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the actual use of amoxicillin and cephalexin, as those two oral antibiotics are frequently
prescribed just before patient discharge. Although patients might receive those medica-
tions for only one or two days during their inpatient stay, the therapy usually extends
much longer post-discharge. Those two antibiotics became notable because of the step-
wise linear regression shown in Table 3, in which the usage of four antibiotics amox-
icillin, cefotetan, cephalexin, and amoxicillin/clavulanic acid explain a non-negligible
amount—more specifically, 16.4%—of variations associated with resistant E. coli. Of those,
the use of amoxicillin, cefotetan, and cephalexin demonstrated significant correlations with
the emergence of antibiotic resistance, with respective p-values of 0.00289, 0.01918, and
0.03301. After excluding cefotetan, an intravenous antibiotic that is rarely (i.e., 0.032%)
used, and then primarily in perioperative settings, we built a linear model of the two
oral antibiotics, amoxicillin and cephalexin. That linear model explains 9.5% of variations
associated with observed resistant E. coli cases, with a p-value of 0.01369. Therefore, it
might be worthwhile to consider those two antibiotics as external regressors when building
time-series models.

The performance of those models, tabulated in Table 10 (with amoxicillin at lag 5 and
cephalexin at lag 0), is not particularly outstanding. However, the best of them, the ARIMA
model, was used to make predictions in recognition of the potential significance of those
two antibiotics, as indicated by the strength of their linear model.

Table 10. Performance of time-series models with amoxicillin (lag 5) and cephalexin as external
regressors.

Amoxicillin Lag 5 and
Cephalexin, No Lags RMSE (Train) MAE (Train) RMSE (Test) MAE (Test)

ARIMA 0.027 0.022 0.033 0.026

Neural Network 0.021 0.017 0.034 0.028

Random Forest 0.053 0.043 0.050 0.045

Using the ARIMA model with amoxicillin at lag 5 and cephalexin at lag 0 as external
regressors, we concluded that the predicted rate of resistant E. coli infections in 2020,
assuming the same rate of amoxicillin and cephalexin usage as in 2019, was 5.5%, with a
95% prediction interval of 0.31% to 10.7%. When a 50% reduction is made in amoxicillin
and cephalexin usage, the predicted rate of resistant E. coli in 2020 was 4.56%, with a 95%
prediction interval of −0.61% to 9.72%. With a 25% reduction in amoxicillin and cephalexin
usage, the predicted rate of resistant E. coli in 2020 was 5.0%, with a 95% prediction interval
of −0.15% to 10.2%.

Overall, our analyses suggest that while making interventions for cefazolin might not
be practical in light of its relatively narrow spectrum, and the focus of many ASP programs
that primarily target the use of broad-spectrum antibiotics, judiciously reducing the use of
piperacillin/tazobactam in inpatient settings and the use of amoxicillin and cephalexin at
discharge could lower E. coli-resistant infection rates [6,13]. Both time series models with
either piperacillin/tazobactam or amoxicillin and cephalexin showed about a 0.5% drop in
antibiotic resistance rates, from approximately 5.5 to 5%, when the use of either group of
antibiotics was reduced by 25%. In 2019, there were 1009 total E. coli infection cases at the
Kaiser Vacaville facility in the U.S., and this number on average increased by 81 cases every
year. Extrapolating, we can expect 1090 cases in 2020. Therefore, a 0.5% drop in antibiotic
resistance rates achieved via an ASP program could translate to approximately $80,000 per
year in savings for E. coli infections alone, because each Gram-negative resistant infection
extends the LOS of a patient by 5 days on average [9] and the average cost of inpatient
stay per day is $2883 [14]. Considering many other Gram-negative infections caused by
other organisms, such as Klebsiella, Pseudomonas, and Acinetobacter, we could anticipate
multiples of $80,000 in savings per year per hospital.
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It is noteworthy that the ARIMA model outperformed both the neural network and
the random forest models. This is in line with a systematic review published in 2019,
which found a lack of evidence to support the superiority of machine learning algorithms
over logistic regression in clinical prediction models [32]. At the same time, one of the
reasons the neural network model did not perform as well as we initially expected might
be attributed to the limitations associated with the rather simple nnetar() function in R that
we used.

The results of this study are based on longitudinal data collected from one Kaiser
Permanente facility located in a somewhat rural region with relatively low population
migration. In the future, a broader study could be conducted using data from multiple
facilities. Additionally, while the performance of the statistical and machine learning
models was evaluated against the test dataset from the final year in our data set, 2019, a
follow-up study could be carried out to validate the predictions made for 2020 using actual
data from that year. However, conducting such a study is currently beyond our scope, as
this study was approved by Kaiser Permanente for a pharmacist resident project in 2021,
utilizing data spanning from 2013 to 2019.

Finally, while this study identifies significant correlations between antibiotic usage
and the emergence of resistant E. coli infections, it is crucial to recognize that these findings
do not establish direct causation. The inherent limitations of observational data in confirm-
ing causal relationships necessitate caution in interpretation. Consequently, our results
highlight the need for further research, including experimental or more comprehensive
longitudinal studies, to rigorously explore causality.

5. Conclusions

While cefazolin might be most significantly associated with drug-resistant E. coli
infections, its relatively narrow spectrum makes it a difficult intervention target. Although
piperacillin/tazobactam, a broad-spectrum antibiotic, did not perform as well as cefazolin
in our time series models, it performed fairly sufficiently. Even though amoxicillin and
cephalexin are not frequently used in hospitals, they seem to have a significant association
with the rates of drug-resistant E. coli. Practical interventions for amoxicillin and cephalexin
can be made at the point of discharge. For follow-up studies, one could develop models
for other Gram-negative infections, and furthermore include outpatient antibiotics use
data. Moreover, as discussed earlier, conducting a follow-up study with data from multiple
Kaiser Permanente facilities and from the year 2020 could be beneficial. This research
provides a foundational structure that encourages ASP clinicians to integrate statistical and
machine-learning methodologies, leveraging local data to develop targeted interventions.
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