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Abstract: Thrust constitutes a pivotal performance parameter for aircraft engines. Thrust, being an
indispensable parameter in control systems, has garnered significant attention, prompting numerous
scholars to propose various methods and algorithms for its estimation. However, research methods
for estimating the thrust of the micro-turbojet engines used in unmanned aerial vehicles are relatively
scarce. Therefore, this paper proposes a thrust estimator for micro-turbojet engines based on DBO
(dung beetle optimization) utilizing bidirectional long short-term memory (BiLSTM) and a convolu-
tional neural network (CNN). Furthermore, the efficacy of the proposed model is further validated
through comparative analysis with others in this paper.

Keywords: dung beetle optimization algorithm; bidirectional long short-term memory; thrust
estimation; micro-turbojet engine

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have witnessed rapid growth
across various sectors, including surveillance, remote control, search and rescue, and
agriculture [1,2]. Owing to their exceptionally high thrust-to-weight ratio, simple structure
in comparison with larger aircraft engines, and compact size, micro-turbojet engines serve
as crucial power sources for UAVs [3]. Micro-turbojet engines have garnered considerable
attention in the commercial aviation sector [4] and are increasingly sought after for UAVs
and remotely operated flying devices [5]. Applications of micro-turbojet engines include
jet-powered flying robots consisting of four engines [6,7], as well as flying robots consisting
of multiple engines, with thrusts of 21 kg and 8 kg, respectively [8]. To ensure stable
operation, thrust control is typically the primary objective for the engines in these aircraft.
However, direct thrust measurement by sensors is often not feasible during operation.
Therefore, thrust needs to be calculated based on the engine’s state and model. However,
most micro-turbojet engines lack comprehensive instrumentation and are only adjusted
based on closely measurable variables, such as RPM [9]. This conservative approach to
thrust control may result in suboptimal performance. Thrust estimators can provide more
intuitive control values, thereby improving operational efficiency [10]. As the primary
power source for UAVs, the thrust of micro-turbojet engines has a significant impact on the
stable operation of UAVs.

Research on the direct thrust of aero-engines has drawn significant attention from
researchers. Henriksson et al. [11] discussed the utilization of two thermodynamic models
for thrust estimation on low-bypass-ratio turbofan engines. Litt et al. [12] employed a new
optimal linear design point method to adjust tuning parameters and estimate performance
parameters, such as thrust. While the aforementioned studies emphasize modeling-based
approaches, the incorporation of additional engine parameters and extensive processing
and measurements becomes necessary for models with difficult-to-determine parameters
and complex, nonlinear, multivariate objects [13,14]. In recent years, data-driven models
have been widely applied to the establishment of engine-performance models [15]. Kr-
ishnaKumar [16] employed neural networks and genetic algorithms as input selectors to
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predict jet engine performance. However, neural networks have limited capacity to fit
nonlinear features. Liu [17] utilized support vector machines (SVMs) [18] for estimating the
thrust of aircraft engines, which can reduce computational complexity. Song et al. [19] com-
bined particle swarm optimization (PSO) [20] and extreme learning machine (ELM) [21].
Li [22] integrated the particle swarm optimization (PSO) algorithm with the thrust esti-
mation of the radial basis function neural network (RBFNN). However, this approach
is susceptible to local minima and instability when adjusting network scale. Zhao [23]
estimated the thrust of aircraft engines under transient conditions based on long short-
term memory (LSTM) networks and gradient enhancement strategies. However, due to
the diverse structures of various networks, they possess their own characteristics and
limitations. For instance, training sequence data in only one direction with LSTM may
result in overfitting [24]. Momin [25] estimated the thrust of the micro-turbojet engine
by constructing a nonlinear state space model, but solely accounted for a single variable,
engine angular velocity. The aforementioned methods are predominantly employed for
predicting thrust in large aircraft engines. However, large aircraft engines are typically
larger in size and comprise multiple components, such as turbine combustors, necessitating
adjustments to the structure and parameters of prediction models. This paper focuses
on establishing thrust prediction models for micro-turbojet engines. These engines are
relatively small in size and lack comprehensive data instruments, posing challenges in
acquiring comprehensive sectional data during operation.

Additionally, many researchers have studied aspects such as the control [26,27], com-
bustion emissions [28,29], power simulation [30], and exhaust nozzles [31] of micro-turbojet
engines. However, there have been fewer studies combining deep learning with thrust pre-
diction for micro-turbojet engines. The data from micro-turbojet engines exhibit time-series
characteristics, being influenced not only by current input variables, but also by the vari-
ables from the previous time step. Therefore, based on the characteristics of micro-turbojet
engines, we attempt to utilize a deep learning approach to establish a thrust-prediction
model, which may further support the development of control for such engines in avia-
tion applications.

Long short-term memory (LSTM) [32] is an improvement upon recurrent neural net-
works (RNNs). LSTM effectively addresses the shortcomings of RNNs during training [33].
Bidirectional LSTM (BiLSTM) is a combination of forward LSTM and backward LSTM,
which can fit the data in both the forward and reverse directions of the sequence, combining
the exchange of information in both the forward and backward directions, which helps
BiLSTM to improve expressiveness and performance. Convolutional neural networks
(CNNs) can be used to extract data features. Many researchers are combining BiLSTM
with CNNs for various fields [34–36], such as recognition [37,38] and prediction [39]. The
selection of hyperparameters is crucial for the performance of the model. Due to the nu-
merous parameters being used in deep learning models, it takes a considerable amount of
time to adjust them [40]. Common techniques for hyperparameter optimization include
manual and automatic search. Manual search relies mainly on individual expertise, but
relying solely on personal experience is insufficient. Optimizing hyperparameters through
optimization algorithms can improve the performance of the model [41,42]. The dung
beetle optimization algorithm [43] possesses advantages such as fast convergence speed
and high accuracy, and it is used as an optimization tool [44].

To address the aforementioned issues, this paper proposes a thrust prediction method
for the micro-turbojet engine based on DBO-CNN-BiLSTM. The model consists of the
dung beetle optimization algorithm (DBO), CNN, and BiLSTM. CNN can extract features
from the input engine data sequence. BiLSTM can fully capture the interdependencies
among the input engine data sequences. The DBO conducts hyperparameter optimization
search, which demonstrates strong convergence and accuracy. Consequently, this method
can effectively avoid the issue of BiLSTM neural networks easily falling into local optima,
thereby accomplishing thrust prediction for micro-turbojet engines. The main contributions
of this paper are as follows:
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(1) For thrust prediction of the engine, DBO is combined with CNN-BiLSTM to construct
a predictive model for the thrust of a micro-turbojet engine;

(2) Based on the dung beetle optimization algorithm, the hyperparameters of CNN-
BiLSTM are adjusted utilizing the optimization capability of DBO;

(3) DBO-CNN-BiLSTM is validated for thrust prediction of a micro-turbojet engine, and
its performance is compared with that of other models.

This paper is structured into five sections. Section 2 describes the basics of the CNN,
BiLSTM, and DBO algorithms. Section 3 introduces the DBO-CNN-BiLSTM model for the
micro-turbojet engine thrust prediction and the experimental platform. Section 4 validates
the proposed model by comparing it with other methods. Section 5 summarizes the paper
and outlines future directions.

2. Methodology
2.1. Convolutional Neural Network (CNN)

CNN is a common deep learning algorithm that effectively extracts features from high-
dimensional raw data and mitigates the risk of overfitting [45]. Its remarkable capability
has led to its adoption in tasks such as image recognition and classification [46]. As shown
in Figure 1, a CNN consists of four parts: the input layer, convolutional layer, pooling layer,
dropout layer, and output layer [47]. The convolutional layer captures relevant features
from the input data, which are then collected and forwarded to the next module [48]. In the
pooling layer, it is responsible for selecting features captured by the convolutional layer,
retaining significant features and reducing complexity [49]. However, CNN has limitations
in feature extraction for time-series data in prediction tasks [50]. Therefore, combining
CNN with BiLSTM networks enhances performance.
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2.2. Bi-Directional Long Short-Term Memory Network (BiLSTM)

LSTM is a special type of recurrent neural network (RNN) comprising three com-
ponents: the forgetting gate, input gate, and output gate. LSTM addresses the issues of
vanishing and exploding gradients that traditional RNNs may encounter during learn-
ing [51]. The LSTM model incorporates multiple gate control mechanisms, including the
forget gate. The forget gate selectively retains or forgets key information from the previ-
ous time step, enabling better handling of long sequences and addressing the vanishing
gradient problem in traditional RNNs. An activation function is employed by the forget
gate to determine whether to retain or forget information in the cell state. Thus, even in
long sequences, LSTM can selectively remember information pertinent to the current task
without being hindered by vanishing gradients. However, LSTM still faces challenges in
preserving important information when processing long sequential inputs [52].

BiLSTM comprises both forward LSTM and backward LSTM, enabling it to simultane-
ously capture information from both forward and backward data sequences. It can better
explore the dependency relationships between preceding and succeeding data sequences
in both directions, whereas LSTM can only capture time-related data from one direction.
BiLSTM adds a backward LSTM, enabling it to capture data features and patterns that
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LSTM may overlook [53]. The incorporation of BiLSTM compensates for the limitations of
CNN in engine thrust prediction. Utilizing CNN for data preprocessing helps to filter out
irrelevant information, thereby enhancing the accuracy of thrust prediction. The structure
of BiLSTM is schematically shown in Figure 2 and can be expressed as Equation (1).

→
Gt = g(S1Xt + S2

→
Gt−1 +

→
j )

←
Gt = g(S3Xt + S5
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←
j )
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2.3. Dung Beetle Optimizer (DBO)

Proper optimization methods can achieve the desired solutions by finding variables
that satisfy the constraints to meet the requirements of the objective function [54]. The
parameters of CNN-BiLSTM play a crucial role in determining its final results. This chapter
proposes utilizing the dung beetle optimization (DBO) algorithm to optimize parameters
and enhance the accuracy of thrust prediction.

Inspired by the collective behavior of dung beetles, Xue [43] categorized their behavior
into four types: rolling behavior influenced by celestial cues (such as sunlight), as well as
dancing, spawning, and stealing behaviors. The dung beetle optimization algorithm is
innovative in its approach and has garnered considerable attention since its proposal.

2.3.1. Rolling Behavior

In nature, dung beetles exhibit fascinating behavior in which they roll dung balls to an
optimal location. During this process, they use weather information, such as sunlight or
wind direction, to guide their movement and ensure that they roll the ball in a straight line.
The position is updated as in Equation (2)

xr(t + 1) = xr(t) + β× e× xr(t− 1) + b× ∆x
∆x =

∣∣xr(t)− Xworst
∣∣ (2)
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In this context, xr represents the location of the dung beetle during the rolling behavior.
t indicates the current number of iterations. The deflection coefficient is denoted by e and
its values range from (0, 0.2]. The orientation coefficient, denoted by β, is assigned a value
of either −1 or 1 based on the probability value, indicating the presence or absence of a
deviation from the original orientation. The global worst position is represented by Xworst.
Additionally, ∆x is used to simulate the dung beetle’s perception of changes in sunlight
intensity in the surrounding area. Higher values indicate a weaker light source.

When dung beetles roll dung balls, they may encounter obstacles in their environment,
which can make it difficult for them to determine the correct direction. In such scenarios,
dung beetles use dancing as a means to regain their rolling direction and find an alternate
path. The new forward direction of the dung beetle will be selected by the tangent function.
Equation (3) simulates the position update during the encounter with the obstacle.

xr(t + 1) = xr(t) + tan α|xr(t)− xr(t− 1)| (3)

where α represents the angle of the direction chosen following the dancing behavior and
takes values within the range of [0, π]. If α equals 0, π/2, or π, then the dung beetle will
move in the original direction, resulting in no update. Additionally, |xr(t)− xr(t− 1)|
represents the difference in distance between two generations of individuals

2.3.2. Reproductive Behavior

In the natural world, dung beetles tend to choose safe and secure locations for laying
their eggs. The female dung beetle chooses a safe area as in Equation (4)

Ls = max
{

Xbest × (1− A), Lb
}

,

Us = min
{

Xbest × (1 + A), Ub
} (4)

In the equation, Ls and Us are the boundaries of the spawning area for female selection.
Xbest denotes the current local optimal position. Tmax in A = 1 − T/Tmax denotes the
maximum number of iterations. Female dung beetles choose a safe spawning area around
Xbest. The position at this point is defined as in Equation (5).

xB(t + 1) = Xbest + B1 × (xB(t)− Ls) + B2 × (xB(t)−Us) (5)

where B1 and B2 denote D-dimensional independent vectors and D denotes the dimension
of the search space.

2.3.3. Foraging Behavior

After hatching and transforming into young dung beetles, they emerge from under-
ground and commence their search for food. Dung beetles choose foraging areas that lack
potential threats in order to minimize the risk of encountering predators. The foraging area
is defined as Equation (6):

L f = max
{

XGbest × (1− A), Lb
}

,

U f = min
{

XGbest × (1 + A), Ub
} (6)

where XGbest denotes the global best location. Uf and Lf denote the boundaries of the safe
foraging area chosen by young dung beetles, respectively. The locations of the foraging
young dung beetles are as follows:

xY(t + 1) = xY(t) + Q1 × (xY(t)− L f ) + Q2 × (xY(t)−U f ) (7)

where Q1 denotes a random number and Q2 denotes a 1 × D random vector belonging to
[0, 1].
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2.3.4. Stealing Behavior

Within dung beetle populations, certain individuals engage in the act of pilfering dung
balls from their counterparts. To simulate the dung beetle’s stealing behavior, XGbest is
considered the most favorable food source globally, thus assuming that positioning oneself
around the perimeter of XGbest offers the best opportunity for food competition. The dung
beetle exhibiting the aforementioned stealing behavior is shown in Equation (8).

xS(t + 1) = XGbest + S× E× (
∣∣xs(t)− Xworst∣∣+ ∣∣∣xs(t)− XGbest

∣∣∣) (8)

where xs represents the theft of dung beetle positional information, S is a constant with a
value of 0.5, and E represents a random vector of size 1× D following a normal distribution.

Dung beetle populations adjust their movement paths based on food information
to find optimal food sources. During the training process of the model, the setting of
hyperparameters affects the performance of the model, and there may be problems with
local optima during the training process [55]. This paper utilizes the searching capability of
the dung beetle optimization algorithm to allow dung beetles to search within the parameter
space. By using the fitness function, dung beetles adjust their movement direction during
the search, avoiding being trapped in local optima and gradually approaching the optimal
position, thus selecting the hyperparameter of the model.

3. Model and Data Processing

This section provides the DBO-CNN-BiLSTM prediction model. An overview of the
engine experimental platform is provided, as well as the data preparation phase and the
data processing phase.

3.1. DBO-CNN-BiLSTM Prediction Model

CNN’s ability to extract local features from data is utilized, and these features are
shared with BiLSTM. BiLSTM learns the temporal dependencies in the data. During the
optimization process, the dung beetle is employed to determine the optimal parameters.
The initialization position of the DBO population is within the upper and lower limits
of specified parameters (such as the number of hidden layer nodes and learning rate),
representing the search space of the dung beetle population. The fitness function is used to
measure the performance of parameter configurations searched by individual dung beetles.
In this paper, the fitness function of the DBO algorithm will consider the mean square error
(MSE) [56] of network training, which needs to be minimized during model training. MSE
is shown in Equation (9)

Fitness =
1
s

s

∑
j=1

(Tj − qj)
2

(9)

Select the position XGbest of the best individual in the search population based on the
fitness function. The exchange of information between populations is used to select the
next updated position. As the population moves towards the optimal point, it ensures that
it does not fall into local optima. During the training phase, initialization is performed
through DBO to obtain the best predictive parameters. DBO considers parameters with
the minimum MSE as the parameter scheme and provides the best parameters to the
predictive model.

The selection of hyperparameters has a significant impact on the performance of model
training and thrust prediction. Therefore, it is necessary to adjust hyperparameters, such as
the size and number of convolutional kernels, the number of hidden neurons, learning rate,
batch size, and number of iterations. For complex network models, selecting parameters
based on experience may lead to overfitting or underfitting. Therefore, we use the DBO
algorithm to optimize the training hyperparameters of the model to prevent the occurrence
of the above phenomena caused by empirical parameter settings.
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The update speed of the model is influenced by the learning rate. While a higher
learning rate accelerates the parameter updates of the model, setting it excessively high
can induce instability during training, possibly resulting in non-convergence; therefore,
the learning rate should not be set too high. Conversely, too small a learning rate slows
down the model parameter update rate, resulting in slower convergence of the loss func-
tion. Adjusting epochs during training can impact the model’s performance. Insufficient
epochs may result in the model failing to learn adequate features, leading to underfitting.
Conversely, if the number of epochs is too high, the model may overfit the training data, re-
sulting in high prediction bias on the test set. Increasing the number of epochs provides the
model with additional opportunities to learn patterns and features in the data, potentially
enhancing performance. However, overtraining may lead to decreased performance, and a
large number of iterations may prolong training times. Thus, selecting an appropriate num-
ber of epochs is crucial for enhancing the model’s performance. In this paper, we choose
the number of hidden layer nodes, epoch, and learning rate as optimization objectives.

The flowchart of DBO-CNN-BiLSTM is shown in Figure 3.
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Step 1: Normalize the experimental data and generate the experimental data into
sequences to generate the dataset.

Step 2: Shuffle the sequences and partition the shuffled dataset into training and
testing sets.

Step 3: Initialize the search for dung beetle individuals in the DBO-CNN-BiLSTM
algorithm.

Step 4: Input the hyperparameters optimized by DBO (learning rate, hidden layer
nodes, and epochs) into the CNN-BiLSTM network.

Step 5: Input the experimental data into the CNN-BiLSTM network for training and
testing. Calculate and return the fitness function.

Step 6: The DBO updates the positions of dung beetle individuals in the search space
based on the fitness values obtained from the hyperparameter search.

Step 7: If the algorithm satisfies the termination condition, output the optimization
results; otherwise, repeat the process from Step 4.

3.2. Experimental Setup

The experimental platform used to collect data from the micro-turbojet engine is
shown in Figure 4. It mainly includes a control system electronic control unit, a force sensor,
a control computer, a fuel pump, and a fuel tank, among others. The small turbojet engine
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consists primarily of a single-stage centrifugal compressor, an annular combustion chamber,
a single axial turbine, and an exhaust pipe, among other components. The micro-turbojet
engine is mounted on a sliding platform with linear bearings, and a thrust-measuring
device is installed on the sliding platform for thrust measurement. The engine used in
this paper has a maximum thrust of 130 N. The thrust sensor has a measurement range
of 0–200 N, a sampling frequency of 50 Hz, and a measurement error of 0.03%. After the
engine stabilizes, data are collected for 10–15 s and averaged to reduce errors. The fuel
output by the pump enters the engine through a fuel flowmeter, with the flow sensor
having an accuracy of ±0.5% of the full range. Engine speed and turbine inlet temperature
are measured by built-in sensors in the engine, with a sampling frequency of 500 ms. The
experimental platform inputs pulse–phase modulation (PPM) signals through an external
computer, with the signal range being 1000–2000. A signal of 1000 represents the idle state,
while 2000 represents full throttle, with the fuel pump supplying fuel to the engine. Due to
the short running time of the micro-turbojet engine, it is currently difficult to obtain data
on engine deterioration, so the factor of engine deterioration is not considered in this paper.
Since the micro-turbojet engine cannot start by itself, during the startup phase, our engine
needs to be driven by a motor as a starter before entering the working state. Once the
starter motor speed reaches the set speed, the engine can maintain its operation without a
starter. In our experiment, the startup period is not considered.
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3.3. Data Collection and Processing

The signal is input to the engine in order to obtain the relevant experimental data
when the engine is running. During the process of collecting experimental data, as the
experimental platform is located indoors on the ground, the operating environment is
relatively stable. Therefore, this paper did not select environmental temperature and
pressure as inputs. This paper selected parameters during engine operation as the dataset,
including the micro-turbojet’s speed, turbine inlet temperature, and fuel flow rate. The fuel
flow rate is one of the primary factors affecting the thrust generated by the micro-turbojet
engine, with the fuel supply determining the speed of fuel combustion and the resulting
output thrust. The intake airflow determines the oxygen content in the engine’s combustion
chamber, thereby affecting combustion efficiency. The compressor speed influences the
compression ratio and airflow of the intake air, thereby affecting fuel combustion efficiency
and thrust output. The turbine inlet temperature reflects the temperature of the air before
entering the turbine. These parameters reflect the operational status of the engine during
its operation.
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Experiments on the engine were conducted under various input conditions to prevent
the training dataset from being overly homogeneous, increase dataset diversity, mitigate
overfitting risks, and thus enhance the model’s generalization capability. In the experiments,
the engine was subjected to step input signals of 10% and 5%, along with random signal
inputs to prevent overfitting phenomena. Figure 5 illustrates the engine input signals
during the experiments. Upon receiving the input signals, the micro-turbojet engine
acquires operational parameters, such as the engine speed (N) (rpm/min) and exhaust gas
temperature before the turbine (EGT) (◦C), as depicted in Figure 6.
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During the model training process, if the numerical ranges of different features differ
significantly, the model tends to assign greater weights to features with larger numerical
ranges and smaller weights to features with smaller numerical ranges, leading the model to
be biased toward features with larger numerical ranges. Therefore, data normalization can
help the model to consider each feature more evenly. In this paper, the data collected from
experiments will be normalized. After normalization, the original data will be transformed
into dimensionless values, avoiding the influence of significant dimensional differences,
which is conducive to predicting the thrust of the engine and comprehensively evaluating
the training results. Due to the significant differences in the unit magnitudes among various
parameters of the engine, it is necessary to normalize the experimental data.

Normalize the input data as per Equation (10) as follows.

x∗ = (xi − ximin)/(ximax − ximin) (10)

In the equation, x* represents the value after normalization, ximax and ximin denote the
maximum and minimum values before normalization, respectively, and xi represents the
data to be normalized. In this study, the entire engine dataset is divided into training and
test sets in a ratio of 7:3.
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In this study, data from engines operating above idle speed are chosen as inputs. This
includes fuel flow rate, exhaust gas temperature, and engine speed, with thrust serving as
the output.

f (t + 1) = g[N(t), N(t− 1), N(t− 2), . . . , N(t− k),
temp(t), temp(t− 1), temp(t− 2), . . . , temp(t− k),
W(t), W(t− 1), W(t− 2), . . . , W(t− k)]

(11)

In the equation, t denotes the current time, t − k denotes the k-th past moment, g
represents the network mapping, and f (t + 1) represents the prediction of thrust at the next
time step. The input data consist of the speed sequence N(t), N(t − 2), . . . N(t − k), the
exhaust temperature sequence temp(t), temp(t − 1), . . . temp(t − k), and the fuel flow rate
sequence W(t), W(t − 1), . . . W(t − k).

4. Experimental Results and Discussion
4.1. Experimental Environment Introduction

All experiments were conducted on the MATLAB 2022 platform using a PC with an
Intel (R) Core (TM) i5 CPU @ 3.70 GHz, 16 GB RAM, and an NVIDIA GeForce RTX 3060Ti
graphics card.

Based on the above foundation, the hyperparameters are searched as dung beetle
individuals within the specified range, selecting the combination of hyperparameters with
the minimum fitness function. The algorithm parameters are set as follows: the population
size of DBO is 10 and the maximum number of iterations is 10. The hyperparameter search
range is as follows: the range of epochs is from 40 to 100; the range of learning rate is from
0.0001 to 0.001; the range of hidden layer nodes is from 10 to 40. The hyperparameters of
the proposed model are shown in Table 1.

Table 1. The hyperparameters.

Methods Value

DBO-CNN-BiLSTM
optimal hyper-parameter combination is obtained by DBO.
activation function (RELU).
pooling layer activation function (RELU)

CNN-BiLSTM

batch size (128)
learning rate (0.001)
hidden nodes (100)
activation function (RELU)
pooling layer activation function (RELU)

CNN

batch size (128)
learning rate (0.001)
activation function (RELU)
pooling layer activation function (RELU)

LSTM

batch size (128)
hidden nodes (100)
learning rate (0.001)
activation function (RELU)

GRU

batch size (128)
hidden nodes (100)
learning rate (0.001)
activation function (RELU)

4.2. Performance Indicators

In order to evaluate the predicted results after training, several metrics are adopted
as standards for assessing the predictive performance of the model. These metrics in-
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clude the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of
determination (R2). The specific definitions of these metrics are as follows:

RMSE =

√√√√1
s

s

∑
j=1

(Tj − qj)
2

(12)

MAE =
1
s

s

∑
j=1

∣∣Tj − qj
∣∣ (13)

R2 = 1−

s
∑

j=1

(
Tj − qj

)2

s
∑

j=1

(
Tj − qj

)2
(14)

In the equations, T, q, and q represent the true value, predicted value, and mean value,
respectively. RMSE represents the square root error between the model’s predicted thrust
and the actual thrust, and is often used as a measure of prediction accuracy. MAE is used to
evaluate the deviation between the predicted and actual thrust values. R2 is used to assess
the correlation between actual and predicted values, with a value closer to 1 indicating
a better fit of the model to the data. Therefore, this paper integrates the aforementioned
statistical indicators to evaluate the predictive performance.

4.3. Forecast Results and Discussion

In this study, DBO-CNN-BiLSTM is compared with various methods, such as CNN-
BiLSTM, LSTM, GRU [57], and CNN. Also, all the methods were trained on the collected
dataset five times and the average of performance metrics were calculated based on the
results on the dataset. Table 2 demonstrates the experimental data results. Figure 7 shows
the variation in the fitness value curve of DBO-CNN-BiLSTM.

Table 2. Comparison results with other models.

Evaluation Metrics DBO-CNN-
BiLSTM GRU LSTM CNN CNN-BiLSTM

RSME 0.0502 0.0647 0.0587 0.0636 0.0625
MAE 0.0391 0.0486 0.0429 0.0492 0.0508

R2 0.9924 0.9834 0.9901 0.9885 0.9884
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Table 2 presents the experimental data results. The table presents the results of utilizing
DBO-CNN-BiLSTM, GRU, LSTM, CNN, and CNN-BiLSTM to calculate the RMSE, MAE,
and R2 of the micro-turbojet engine dataset. A higher R2 value and lower RMSE and MAE
values indicate better overall performance. The results demonstrate that the proposed
DBO-CNN-BiLSTM in this paper achieved an RMSE value of 0.0502, which was 19.68%
lower than that of CNN-BiLSTM (0.0625), 14.48% lower than that of LSTM (0.0587), 22.41%
lower than that of GRU (0.0647), and 20.98% lower than that of CNN (0.0636). For the MAE
value, the performance improvement was significant, with DBO-CNN-BiLSTM achieving
a value of 0.0391, which was the smallest among the compared models, representing
reductions of 19.54%, 8.86%, 20.45%, and 23.14% compared with those of GRU, LSTM,
CNN, and CNN-BiLSTM, respectively. Additionally, DBO-CNN-BiLSTM achieved an R2

value of 0.9924, which was the highest compared with the others, indicating a higher level
of prediction stability.

In order to better evaluate the thrust estimation of DBO-CNN-BiLSTM, engine experi-
mental data at different time points of engine operation were introduced in this study to
evaluate the performance of the model. In Experiment A, a large step signal was input to
the engine to obtain experimental data for approximately 184 s. Figure 8 shows the thrust
prediction results of DBO-CNN-BiLSTM and other models. The figure plots the actual
test thrust values and the predicted values of each model. The black color represents the
actual values tested on the test stand, while the red color represents the predictions made
by DBO-CNN-BiLSTM.
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Figure 8 illustrates that, after the input of a larger step signal, the thrust value rose
rapidly and then stabilized at a certain level. Fluctuations occurred in the predictions of all
models during the rising phase. During the subsequent steady-state phase, the predicted
values of DBO-CNN-BiLSTM were closer to the experimental test values. The fluctuations
may have been due to unstable data changes in a rapidly changing state. To better evaluate
the predictive performance of the model, we introduced MAE and RMSE, mean error,
and maximum error as evaluation metrics. The percentage error was calculated as the
percentage absolute value of a fraction of the maximum thrust achievable by the turbojet
engine. As shown in Table 3, in this experiment, the MAE value of DBO-CNN-BiLSTM
was 0.0406, 7.11% lower than that of CNN-BiLSTM (0.0437), approximately 10.57% lower
than that of LSTM (0.0454), and 25.37% lower than that of CNN. For RMSE, the value of
DBO-CNN-BiLSTM in this experiment was 0.0651, the lowest among other methods, with
the largest decrease compared with GRU (0.0840) being 22.5%. The mean error obtained
by DBO-CNN-BiLSTM was 2.01%, and the maximum error was 8.71% in the face of larger
state transitions, which rose little in comparison with the other models. The error rose at
larger state transitions, possibly caused by faster state transitions that resulted in unstable
temperature changes inside the engine.
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Table 3. Results from experiment A.

Evaluation
Metrics

DBO-CNN-
BiLSTM GRU LSTM CNN CNN-BiLSTM

MAE 0.0406 0.0509 0.0454 0.0544 0.0437
RSME 0.0651 0.0840 0.0717 0.0762 0.0662

Mean Error 2.01% 2.52% 2.21% 2.69% 2.16%
Maximum Error 8.71% 11.79% 10.58% 11.50% 9.76%

In Experiment B, we input a smaller step signal to the engine for a duration of about
200 s. The results of each model for the Experiment B data are shown in Figure 9. The
corresponding evaluation metrics are shown in Table 4. With the smaller step input, both
MAE and RMSE showed a decrease compared with Experiment A. Specifically, DBO-
CNN-BiLSTM achieved an MAE of 0.0410, which was 13.87% lower than that of GRU
(0.0476), and decreases of 9.49% and 9.89% compared with those of CNN-BiLSM (0.453)
and LSTM (0.455), respectively. In terms of RMSE, there was a maximum reduction of
17.55% compared with GRU (0.587). The mean error of DBO-CNN-BiLSTM was 2.03%,
which was 9.78% lower than that of GRU (2.35%). The maximum error of the model in this
paper was also kept lower than other models under smaller state changes.
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Table 4. Results from experiment B.

Evaluation
Metrics

DBO-CNN-
BiLSTM GRU LSTM CNN CNN-BiLSTM

MAE 0.0410 0.0476 0.0455 0.0469 0.0453
RSME 0.0484 0.0587 0.0549 0.0548 0.0554

Mean Error 2.03% 2.35% 2.25% 2.32% 2.24%
Max Error 8.05% 9.49% 10.14% 10.67% 8.91%

For Experiment C, involving continuous acceleration and deceleration of the engine
for approximately 107 s, the predictive results of each model are shown in Figure 10.
Based on the evaluation metrics in Table 5, it is observed that both MAE and RMSE
increased compared with the previous two experiments. The MAE value of the proposed
method was 0.0478 compared with the other methods. Although the RMSE obtained in this
experiment also increased compared with the experiments with continuous step inputs, the
proposed method showed a decrease of 9.13% compared with CNN-BiLSTM and 10.47%
compared with LSTM. The mean error of DBO-CNN-BiLSTM was less variable compared
with other models.
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Table 5. Results from experiment C.

Evaluation
Metrics

DBO-CNN-
BiLSTM GRU LSTM CNN CNN-BiLSTM

MAE 0.0478 0.0632 0.0569 0.0627 0.0521
RSME 0.0608 0.0759 0.0679 0.1048 0.0669

Mean Error 2.10% 3.13% 2.81% 3.10% 2.57%
Max Error 8.24% 9.67% 9.31% 10.07% 9.08%

The data indicate that, when faced with irregular controls, DBO-CNN-BiLSTM ob-
tained lower MAE and RMSE values compared with other algorithms. This indicates that
the model could capture local features within the input sequences, thereby enhancing its
performance in the face of complex variations. Three experiments compared the predictive
performance of the model under different conditions and compared it with other models.
Among several evaluation metrics, DBO-CNN-BiLSTM achieved better results than the
other models. The models fluctuated when faced with acceleration and deceleration state
switching with fast speeds, which may have been due to the unstable changes during the
state transition while the temperature distribution inside the engine was uneven or the
transfer of the temperature change rate was relatively slow, as well as the vibration caused
by the changes in the engine at high speeds.

5. Conclusions

The paper proposes a CNN-BiLSTM network optimized by DBO for thrust estimation
of micro-turbojet engines. CNN can better extract latent features from the data of the
engine, while BiLSTM analyzes the dependency between the data, thereby improving
the model’s ability to capture the time-series characteristics of the micro-turbojet engine
data. DBO optimizes the training hyperparameters of the model, further enhancing the
model’s performance prediction capability and accuracy for the micro-turbojet engine.
DBO-CNN-BiLSTM was compared with other models on the test dataset, and metrics such
as RMSE and R2 were used to evaluate the model. In addition, the model was tested under
different step inputs and analyzed by four metrics: MAE, RSME, mean error, and maximum
error, and the data showed that the optimum was obtained in three experiments. The mean
error was lower than that of the other models. Although the MAE and RSME of all models
increased in response to continuous input variations, DBO-CNN-BiLSTM outperformed
the other models under irregular input testing, achieving lower MAE and RMSE values. In
future work, we will consider additional factors, including environmental conditions such
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as ambient pressure, and adjust the model to incorporate these factors in order to further
improve its predictive accuracy under different environmental conditions.
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2. Kikutis, R.; Stankūnas, J.; Rudinskas, D. Evaluation of UAV autonomous flight accuracy when classical navigation algorithm is

used. Transport 2018, 33, 589–597. [CrossRef]
3. Large, J.; Pesyridis, A. Investigation of Micro Gas Turbine Systems for High Speed Long Loiter Tactical Unmanned Air Systems.

Aerospace 2019, 6, 55. [CrossRef]
4. Oppong, F.; Van Der Spuy, S.J.; Diaby, A.L. An overview on the performance investigation and improvement of micro gas turbine

engine. R D J. S. Afr. Inst. Mech. Eng. 2015, 31, 35–41.
5. Turan, O. Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy

2012, 46, 51–61. [CrossRef]
6. Nava, G.; Fiorio, L.; Traversaro, S.; Pucci, D. Position and Attitude Control of an Underactuated Flying Humanoid Robot.

In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9
November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9.

7. Mohamed, H.A.O.; Nava, G.; L’Erario, G.; Traversaro, S.; Bergonti, F.; Fiorio, L.; Vanteddu, P.R.; Braghin, F.; Pucci, D. Momentum-
Based Extended Kalman Filter for Thrust Estimation on Flying Multibody Robots. IEEE Robot. Autom. Lett. 2022, 7, 526–533.
[CrossRef]

8. Fu, M.; Guo, Q.; Cheng, Z. Structural Design and Finite Element Analysis of a Vortex Jet Power Vehicle. In Proceedings of the
2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI 2019), Shanghai, China, 20–22
September 2019; pp. 706–711.

9. Jie, M.S.; Mo, E.J.; Hong, G.Y.; Lee, K.W. Fuzzy logic controller for turbojet engine of unmanned aircraft. In Knowledge-Based
Intelligent Information and Engineering Systems; Part 1, Proceedings; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4251,
pp. 29–36.

10. Amirante, R.; Catalano, L.A.; Tamburrano, P. Thrust Control of Small Turbojet Engines Using Fuzzy Logic: Design and
Experimental Validation. J. Eng. Gas Turbines Power 2012, 134, 121601. [CrossRef]

11. Henriksson, M.; Grönstedt, T.; Breitholtz, C. Model-based on-board turbofan thrust estimation. Control Eng. Pract. 2011, 19,
602–610. [CrossRef]

12. Litt, J.S. An optimal orthogonal decomposition method for Kalman filter-based turbofan engine thrust estimation. J. Eng. Gas
Turbines Power 2008, 130, 011601. [CrossRef]

13. Zhu, Y.; Huang, J.; Pan, M.; Zhou, W. Direct thrust control for multivariable turbofan engine based on affine linear parameter-
varying approach. Chin. J. Aeronaut. 2022, 35, 125–136. [CrossRef]

14. Simon, D.L.; Borguet, S.; Leonard, O.; Zhang, X.F. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results. J.
Eng. Gas Turbines Power 2014, 136, 041201. [CrossRef]

15. De Giorgi, M.G.; Quarta, M. Hybrid Multigene Genetic Programming—Artificial neural networks approach for dynamic
performance prediction of an aeroengine. Aerosp. Sci. Technol. 2020, 103, 105902. [CrossRef]

16. KrishnaKumar, K.; Yachisako, Y.; Huang, Y. Jet engine performance estimation using intelligent system technologies. In
Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001; p. 1122.

17. Liu, Y.N.; Zhang, S.X.; Zhang, C. Aero engine thrust estimator design based on kernel method. J. Propuls. Technol. 2013,
34, 829–835.

18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Song, H.Q.; Li, B.W.; Zhang, Y.; Jiang, K.Y. Aero-engine thrust estimator design based on clustering and particle swarm

optimization extreme learning machine. Tuijin Jishu/J. Propuls. Technol. 2017, 38, 1379–1385.
20. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.

https://doi.org/10.3390/drones6060147
https://doi.org/10.3846/transport.2018.2608
https://doi.org/10.3390/aerospace6050055
https://doi.org/10.1016/j.energy.2012.03.030
https://doi.org/10.1109/LRA.2021.3129258
https://doi.org/10.1115/1.4007372
https://doi.org/10.1016/j.conengprac.2011.02.004
https://doi.org/10.1115/1.2747254
https://doi.org/10.1016/j.cja.2021.09.018
https://doi.org/10.1115/1.4025482
https://doi.org/10.1016/j.ast.2020.105902
https://doi.org/10.1007/BF00994018


Aerospace 2024, 11, 344 16 of 17

21. Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [CrossRef]
22. Li, Z.; Zhao, Y.; Cai, Z.; Xi, P.; Pan, Y.; Huang, G.; Zhang, T. A proposed self-organizing radial basis function network for

aero-engine thrust estimation. Aerosp. Sci. Technol. 2019, 87, 167–177. [CrossRef]
23. Zhao, Y.; Chen, Y.; Li, Z. A proposed algorithm based on long short-term memory network and gradient boosting for aeroengine

thrust estimation on transition state. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2182–2192. [CrossRef]
24. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of

the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway,
NJ, USA; pp. 3285–3292.

25. Momin, A.J.A.; Nava, G.; L’Erario, G.; Mohamed, H.A.O.; Bergonti, F.; Vanteddu, P.R.; Braghin, F.; Pucci, D. Nonlinear Model
Identification and Observer Design for Thrust Estimation of Small-scale Turbojet Engines. In Proceedings of the 2022 IEEE
International Conference On Robotics and Automation (ICRA 2022), Philadelphia, PA, USA, 23–27 May 2022; pp. 5879–5885.

26. Tang, W.; Wang, L.; Gu, J.; Gu, Y. Single Neural Adaptive PID Control for Small UAV Micro-Turbojet Engine. Sensors 2020, 20, 345.
[CrossRef] [PubMed]

27. Shehata, A.M.; Khalil, M.K.; Ashry, M.M. Adaptive Fuzzy PID Controller applied to micro turbojet engine. J. Phys. Conf. Ser. 2021,
2128, 012030. [CrossRef]

28. Altarazi, Y.S.M.; Abu Talib, A.R.; Gires, E.; Yu, J.; Lucas, J.; Yusaf, T. Performance and exhaust emissions rate of small-scale
turbojet engine running on dual biodiesel blends using Gasturb. Energy 2021, 232, 120971. [CrossRef]

29. Balli, O.; Kale, U.; Rohács, D.; Karakoc, T.H. Exergoenvironmental, environmental impact and damage cost analyses of a micro
turbojet engine (m-TJE). Energy Rep. 2022, 8, 9828–9845. [CrossRef]

30. Xu, Y.; Gao, L.; Cao, R.; Yan, C.; Piao, Y. Power Balance Strategies in Steady-State Simulation of the Micro Gas Turbine Engine by
Component-Coupled 3D CFD Method. Aerospace 2023, 10, 782. [CrossRef]

31. Cican, G.; Frigioescu, T.; Crunteanu, D.; Cristea, L. Micro Turbojet Engine Nozzle Ejector Impact on the Acoustic Emission, Thrust
Force and Fuel Consumption Analysis. Aerospace 2023, 10, 162. [CrossRef]

32. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
34. Lu, W.; Li, J.; Wang, J.; Qin, L. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741–4753.

[CrossRef]
35. Antonius, F.; Sekhar, J.C.; Sreenivasa Rao, V.; Pradhan, R.; Narendran, S.; Fernando Cosio Borda, R.; Silvera-Arcos, S. Unleashing

the power of Bat optimized CNN-BiLSTM model for advanced network anomaly detection: Enhancing security and performance
in IoT environments. Alex. Eng. J. 2023, 84, 333–342. [CrossRef]

36. Ramshankar, N.; Joe Prathap, P.M. Automated sentimental analysis using heuristic-based CNN-BiLSTM for E-commerce dataset.
Data Knowl. Eng. 2023, 146, 102194. [CrossRef]

37. Muhammad, K.; Mustaqeem; Ullah, A.; Imran, A.S.; Sajjad, M.; Kiran, M.S.; Sannino, G.; de Albuquerque, V.H.C. Human action
recognition using attention based LSTM network with dilated CNN features. Future Gener. Comput. Syst. 2021, 125, 820–830.
[CrossRef]

38. Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning—BiLSTM network: A novel approach for
COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [CrossRef] [PubMed]

39. Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energ.
2021, 172, 276–288. [CrossRef]

40. Guo, X.; Bi, Z.; Wang, J.; Qin, S.; Liu, S.; Qi, L. Reinforcement learning for disassembly system optimization problems: A survey.
Int. J. Netw. Dyn. Intell. 2023, 2, 1–14. [CrossRef]

41. Kim, T.; Cho, S. Optimizing CNN-LSTM neural networks with PSO for anomalous query access control. Neurocomputing 2021,
456, 666–677. [CrossRef]

42. Sekhar, C.; Dahiya, R. Robust framework based on hybrid deep learning approach for short term load forecasting of building
electricity demand. Energy 2023, 268, 126660. [CrossRef]

43. Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79,
7305–7336. [CrossRef]

44. Zhang, R.; Zhu, Y. Predicting the Mechanical Properties of Heat-Treated Woods Using Optimization-Algorithm-Based BPNN.
Forests 2023, 14, 935. [CrossRef]

45. Yoo, Y.; Baek, J. A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet
Transform and Convolutional Neural Network. Appl. Sci. 2018, 8, 1102. [CrossRef]

46. Ilesanmi, A.E.; Ilesanmi, T.O. Methods for image denoising using convolutional neural network: A review. Complex Intell. Syst.
2021, 7, 2179–2198. [CrossRef]

47. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

48. Swapna, G.; Kp, S.; Vinayakumar, R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate
signals. Procedia Comput. Sci. 2018, 132, 1253–1262.

https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.ast.2019.01.033
https://doi.org/10.1177/0954410021993303
https://doi.org/10.3390/s20020345
https://www.ncbi.nlm.nih.gov/pubmed/31936223
https://doi.org/10.1088/1742-6596/2128/1/012030
https://doi.org/10.1016/j.energy.2021.120971
https://doi.org/10.1016/j.egyr.2022.07.157
https://doi.org/10.3390/aerospace10090782
https://doi.org/10.3390/aerospace10020162
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1007/s00521-020-05532-z
https://doi.org/10.1016/j.aej.2023.11.015
https://doi.org/10.1016/j.datak.2023.102194
https://doi.org/10.1016/j.future.2021.06.045
https://doi.org/10.1016/j.asoc.2020.106912
https://www.ncbi.nlm.nih.gov/pubmed/33230395
https://doi.org/10.1016/j.renene.2021.02.166
https://doi.org/10.53941/ijndi0201001
https://doi.org/10.1016/j.neucom.2020.07.154
https://doi.org/10.1016/j.energy.2023.126660
https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.3390/f14050935
https://doi.org/10.3390/app8071102
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1007/s10462-020-09825-6


Aerospace 2024, 11, 344 17 of 17

49. Kamalov, F. Forecasting significant stock price changes using neural networks. Neural Comput. Appl. 2020, 32, 17655–17667.
[CrossRef]

50. Zhang, G.; Bai, X.; Wang, Y. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention
mechanism. Mach. Learn. Appl. 2021, 5, 100064. [CrossRef]

51. Kim, T.; Cho, S. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [CrossRef]
52. Cheng, H.; Ding, X.; Zhou, W.; Ding, R. A hybrid electricity price forecasting model with Bayesian optimization for German

energy exchange. Int. J. Electr. Power 2019, 110, 653–666. [CrossRef]
53. Wu, K.; Wu, J.; Feng, L.; Yang, B.; Liang, R.; Yang, S.; Zhao, R. An attention-based CNN-LSTM-BiLSTM model for short-term

electric load forecasting in integrated energy system. Int. Trans. Electr. Energy Syst. 2021, 31, e12637. [CrossRef]
54. Gao, W.; Liu, S. Improved artificial bee colony algorithm for global optimization. Inf. Process Lett. 2011, 111, 871–882. [CrossRef]
55. Sun, R. Optimization for Deep Learning: An Overview. J. Oper. Res. Soc. China 2020, 8, 249–294. [CrossRef]
56. Abou Houran, M.; Salman Bukhari, S.M.; Zafar, M.H.; Mansoor, M.; Chen, W. COA-CNN-LSTM: Coati optimization algorithm-

based hybrid deep learning model for PV/wind power forecasting in smart grid applications. Appl. Energ. 2023, 349, 121638.
[CrossRef]

57. Cho, K.; Merrienboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
Using RNN Encoder-Decoder for Statistical Machine Translation; Cornell University Library: Ithaca, NY, USA, 2014. Available online:
https://arxiv.org/abs/1406.1078 (accessed on 18 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00521-020-04942-3
https://doi.org/10.1016/j.mlwa.2021.100064
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1016/j.ijepes.2019.03.056
https://doi.org/10.1002/2050-7038.12637
https://doi.org/10.1016/j.ipl.2011.06.002
https://doi.org/10.1007/s40305-020-00309-6
https://doi.org/10.1016/j.apenergy.2023.121638
https://arxiv.org/abs/1406.1078

	Introduction 
	Methodology 
	Convolutional Neural Network (CNN) 
	Bi-Directional Long Short-Term Memory Network (BiLSTM) 
	Dung Beetle Optimizer (DBO) 
	Rolling Behavior 
	Reproductive Behavior 
	Foraging Behavior 
	Stealing Behavior 


	Model and Data Processing 
	DBO-CNN-BiLSTM Prediction Model 
	Experimental Setup 
	Data Collection and Processing 

	Experimental Results and Discussion 
	Experimental Environment Introduction 
	Performance Indicators 
	Forecast Results and Discussion 

	Conclusions 
	References

