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Abstract: With reference to the trajectory-based operation (TBO) requirements proposed by the
International Civil Aviation Organization (ICAO), this paper concentrates on the study of four-
dimensional trajectory (4D Trajectory) prediction technology in busy terminal airspace, proposing a
data-driven 4D trajectory prediction model. Initially, we propose a Spatial Gap Fill (Spat Fill) method
to reconstruct each aircraft’s trajectory, resulting in a consistent time interval, noise-free, high-quality
trajectory dataset. Subsequently, we design a hybrid neural network based on the seq2seq model,
named Attention-TCN-GRU. This consists of an encoding section for extracting features from the
data of historical trajectories, an attention module for obtaining the multilevel periodicity in the
flight history trajectories, and a decoding section for recursively generating the predicted trajectory
sequences, using the output of the coding part as the initial input. The proposed model can effectively
capture long-term and short-term dependencies and repetitiveness between trajectories, enhancing
the accuracy of 4D trajectory predictions. We utilize a real ADS-B trajectory dataset from the airspace
of a busy terminal for validation. The experimental results indicate that the data-driven 4D trajectory
prediction model introduced in this study achieves higher predictive accuracy, outperforming some
of the current data-driven trajectory prediction methods.

Keywords: 4D trajectory prediction; deep learning; attention mechanism; temporal convolutional
network (TCN); gated recurrent unit (GRU)

1. Introduction

As the aviation sector expands swiftly and flight frequencies rise, the complexity of
air traffic management is also increasing. The characteristics of air traffic include high
traffic volume, dense flight activities, and small intervals between flights. Europe and
the United States have proposed trajectory-based operations (TBO) to increase airspace
resource utilization and achieve precise flight control. As TBO gain increasing popularity,
the need for highly accurate trajectory prediction is becoming more critical not only for
optimising airspace resources but also for enhancing air traffic management efficiency and
reducing flight delays. This precision in trajectory forecasting is vital for the improvement
of advanced air traffic flow management (ATFM), enabling more effective utilization of
airspace and ensuring smoother, more reliable flight operations. And accurate prediction
of the 4D trajectories (latitude, longitude, altitude, and time) of aircraft in the terminal
airspace of airports can help ATFM make better decisions, including adjusting aircraft
routes and altitudes in order to avoid conflicts and congestion among aircraft, which can
significantly diminish the unpredictability of future trajectories and enhance the foresee-
ability of air traffic. In this context, 4D trajectory prediction in the terminal airspace has
significant research and application value for the aviation field. Significant foundational
research has been conducted in the field of flight trajectory prediction from an early stage.
For instance, Chatterji [1] achieved short-term trajectory prediction by estimating future
states of an aircraft based on its current state. Gong et al. [2] introduced an automatic
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trajectory prediction analysis method that could record, segment, and eliminate outliers in
trajectory data automatically. Lymperopoulos et al. [3] developed a prediction algorithm
for aircraft take-off trajectories, establishing a state estimation model that incorporates
weather and wind direction information. Rentas et al. [4] analysed methods for evaluat-
ing trajectory prediction outcomes and the predictive capabilities of models. Mondoloni
et al. [5] constructed a statistical model for forecasting wind field uncertainties, analysing
the impact of initial conditions such as wind strength on trajectory predictions. Klooster
et al. [6] proposed a control method for four-dimensional time-based operations (TBO) that
integrates temporal controls. Leege et al. [7] employed machine-learning techniques to
build regression prediction models for trajectory prediction. Fablec et al. [8] introduced a
trajectory prediction method based on neural networks, laying the theoretical groundwork
for the numerous neural-network-based trajectory prediction models that are prevalent
today. Overall, these early studies have provided essential technical support for trajectory
prediction. Presently, the primary focus of research on 4D trajectory prediction is grounded
in three types of methods: dynamics modelling, state estimation, and data-driven methods.

The method of trajectory prediction using dynamics modelling mainly regards the
aircraft as a mass point and predicts the possible points of the future trajectory using
the force acting on the aircraft to achieve the 4D trajectory prediction. Thipphavong
et al. [9] enhanced the accuracy of trajectory predictions during an aircraft’s climb phase
by dynamically adjusting the aircraft weight in the dynamic equations, using real-time
trajectory datasets. Han Yunxiang et al. [10] proposed a dynamics model based on each
navigation stage to infer the trajectory using parameters such as aircraft mass and speed.
However, these fixed prediction methods do not consider the uncertainty of the navigation
environment, which reduces the prediction accuracy.

The state estimation method converts the problem of predicting aircraft trajectories
into a state transfer problem in a mathematical model. Liu and Hwang [11] combined
aircraft intent information and proposed a stochastic linear hybrid system that jointly
describes flight mode changes using state-dependent transition models and Markov tran-
sition models, achieving more accurate aircraft prediction results. Ayhan and Samet [12]
employed 4D cubes to represent trajectories by incorporating flight alignment and fusion
processes, and they proposed the Hidden Markov Model (HMM).

With the continuous progress of big data theory, data-driven trajectory prediction
models show excellent prediction performance; they can actively recognize and capture
complex patterns and relationships in the data, avoiding the complexity of traditional
model parameter settings and the constraints of environmental adaptability, and have
become key 4D trajectory prediction tools. Such a model transforms the difficult problem
of trajectory prediction into a time-series prediction problem by mining feature information
from a large amount of data and integrating these features to find their internal associations.
Wang et al. [13] proposed a model to solve the problem of predicting short-term trajectories
in terminal airspace using machine-learning techniques, namely trajectory clustering and a
BP (back propagation) neural network. But the model’s oversimplified structure makes
it difficult to capture flight patterns in complex terminal airspace. Hernández et al. [14]
used a traditional integrated machine-learning algorithm for aircraft trajectory prediction.
Barratt et al. [15] developed two separate and related prediction models by dividing the set
of trajectories in airport terminal airspace according to take-off and landing procedures.
The method uses a clustering model to mine flight patterns in ADS-B data and finally
realizes the trajectory prediction. Hong et al. [16] constructed a linear regression function
for the trajectory prediction problem and utilized a multivariate mixed regression model,
combining it with machine learning to achieve the prediction of flight trajectories.

Alligier et al. [17] applied a deep-learning approach to mine the operating laws of
historical trajectories in order to achieve high-precision prediction of aircraft climb phases.
Pang et al. [18] established convolutional neural networks (CNN) and fully connected layer
neural networks (FCNN) using machine-learning theory to achieve high-accuracy trajectory
predictions. Shi et al. [19] proposed a constrained long short-term memory network (LSTM)
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for trajectory prediction using the flight characteristics in each phase of an aircraft flight as
constraints. Fan Zhonghang et al. [20] analysed the relationship between aircraft manoeu-
vring characteristics and trajectory prediction and, based on this, proposed a trajectory
prediction method based on a residual recurrent neural network (RESRNN). Tran et al. [21]
proposed a deep-learning model that reasonably avoids the data effects of aircraft perfor-
mance and meteorological elements, and achieves more accurate trajectory predictions
through modelling and combining aircraft intent information. Wang et al. [22] proposed
a hybrid neural network for long-term prediction of trajectories: the TraNet model. The
model consists of multiple modules that process long- and short-term information, which
can better capture the global trajectory information and thus yield more accurate long-term
trajectory predictions. Zeng Weili et al. [23] introduced the seq2seq theory into trajectory
prediction and proposed a deep long short-term memory network (SS-DLSTM) based on
this theory to achieve higher-accuracy trajectory predictions. Lim Zhi Jun et al. [24] and
Lui, Go Nam et al. [25] considered terminal-area congestion and other anomalies, and
modelled flight speed control for delay prediction and arrival time prediction, respectively.

While numerous experts have proposed a variety of 4D trajectory prediction methods,
current models often struggle to achieve high performance in the complex and busy termi-
nal airspace environment. A critical review of existing literature reveals two predominant
challenges. Firstly, some models do not consider unmodeled behavioural features in histor-
ical trajectories, and the extreme complexity of some models leads to long training periods,
reducing their practicality for real-time applications. Secondly, other models feature simpler
network structures that fail to capture the full complexity of input trajectory sequences.
These models struggle to understand the intricate patterns and dependencies within long
sequences, essential for accurate trajectory predictions. This research aims to address these
shortcomings by developing a balanced approach that optimizes model complexity to
reduce training time while enhancing the model’s ability to grasp the detailed dynamics of
trajectory sequences in busy terminal airspace, thereby improving prediction accuracy and
practical applicability.

In order to solve these problems mentioned above, this paper proposes a 4D trajectory
prediction model for terminal airspace based on Attention-TCN-GRU. This model employs
TCN and GRU neural networks as encoder and decoder, respectively, and incorporates
attention mechanisms. By modelling historical flight data, it achieves the prediction of the 4D
trajectories of aircraft in terminal airspace. The model is capable of effectively understanding
and processing complex patterns in long trajectory sequences. It focuses on the operational
feature information in different parts of the input trajectory sequences, significantly enhancing
the predictive performance in terms of terminal airspace 4D trajectories.

The important contributions of this paper are as follows: (1) Aiming at problems such as
outliers and vacancies in the received raw trajectory set, this study introduces the Spat Fill
method, reconstructing the original trajectories into high-quality data with equal time intervals.
(2) Considering the before-and-after information dependence of the trajectory sequence and
the prediction performance, this paper introduces the Attention-TCN-GRU model, which
is tailored to the characteristics of terminal airspace and is better suited for 4D trajectory
prediction within terminal airspace. (3) For the dataset, this paper divides the trajectory data
according to busy times and idle times, which avoids the mutual interference between busy
time and idle time trajectories and is conducive to improving the prediction performance.

The rest of the paper is organized as follows. Section 2 describes the analysis and
preprocessing of the data. Section 3 describes the data-driven prediction method for
4D trajectories. Section 4 analyses the performance of the model in this paper through
experiments and compares and analyses it with other mainstream models. Finally, the
results are summarized in Section 5.

2. Data Analysis and Processing

The automatic broadcast-dependent surveillance system (ADS-B) [26] used in this pa-
per is a new satellite-based air traffic control paradigm for connecting aircraft with ground
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stations. The system utilizes satellites to automatically and continuously provide 4D posi-
tion data (latitude, longitude, and time), while altitude, speed, and heading information
are provided by onboard aircraft equipment. Subsequently, these data are transmitted to
ground receiving stations via ADS-B signals and saved by the ground receiving stations.
These historical ADS-B data are key to 4D trajectory prediction using data-driven meth-
ods. Each data item consists of several attributes including flight number, time, latitude,
longitude, altitude, speed, heading, and aircraft type. Considering the problem that the
prediction performance of the deep-learning model for time-series data decreases with the
length of the data, in this paper, position measurements within the centre of the airport
that are less than 20 km distant and less than 6000 feet in altitude are retained. The data
range starts from the tail end of the initial approach phase and completely includes the
intermediate and final approach phases.

In the field of civil aviation, an aircraft undergoes seven distinct flight phases during a
single operation: take-off, climb, departure, enroute flight, arrival, approach, and landing.
For arriving aircraft, the focus is primarily on the arrival, approach, and landing phases,
with some aircraft requiring a go-around phase.

• Arrival Phase: The arrival phase marks the transition of the aircraft from enroute
to the terminal area boundary, culminating at the initial approach fix (IAF), where
the aircraft changes its mode of air travel. Aircraft at different altitudes can intersect
with the same arrival route, with each aircraft utilising different flight levels. This
phase requires adherence to both vertical and horizontal separation standards, with
the majority of sequencing completed during this stage.

• Approach Phase: This phase encompasses the initial, intermediate, and final approach.
Aircraft descend from the IAF, reducing altitude and speed according to prescribed
approach procedures. Adjustments to horizontal separation are made based on inter-
secting flight paths to avoid conflicts, aiming first for the intermediate fix (IF) point,
then maintaining altitude and speed without deviating from the course to reach the
final approach fix (FAF) point, and finally landing on the runway.

• Landing and Go-Around Phase: Aircraft that do not meet landing criteria or fail to
land successfully undergo a go-around procedure. The aircraft will either fly back
to the IAF for another approach, circle in a designated holding area, or climb to a
minimum safe altitude for another landing attempt.

For departing aircraft, the take-off and departure phases are considered.

• Take-off Phase: This phase marks the commencement of the flight. The aircraft
accelerates on the runway until it reaches sufficient speed to generate the necessary
lift for take-off. The take-off process involves complex control and system checks to
ensure safe departure.

• Departure Phase: Once airborne, the aircraft enters the departure phase, following
predetermined flight paths to leave the vicinity of the airport. This stage may involve
changes in direction, altitude, and speed to smoothly integrate the aircraft into higher
airspace traffic flows. Air traffic control (ATC) plays a crucial role during this phase,
guiding the aircraft to avoid conflicts with other flights and ensuring it follows the
planned route.

For arriving aircraft, the arrival phase altitude ranges from 30,000 to 3000 feet, with
the approach phase below 3000 feet, including the altitude range for go-arounds. Departing
aircraft typically operate within a 5000 to 6000 feet range during the departure phase. Con-
sidering the diminishing predictive performance of deep-learning models with increasing
data length, a height range of 0–6000 feet and a latitude and longitude range of 20 km are
selected. The arrival trajectory covers the end of the arrival phase and the entire approach
phase, enabling 4D trajectory prediction from the initial approach fix onwards for both the
terminal end of the arrival phase and the entire approach phase. For departing trajectories,
it is possible to predict the 4D trajectory of aircraft from runway take-off to leaving the
terminal area and entering the climb phase. This research holds practical significance for fu-
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ture conflict resolution, enhancing terminal area operational efficiency, and adjustments to
flight procedures and approach fixes. The data used in this article come from a real terminal
area, with latitude between 38 and 42◦ north and longitude between 115 and 120◦ east. The
ADS-B track data coordinate system used in this paper is the World Geodetic System-84
(WGS-84) coordinate system. Figure 1 shows a visualization of the historical trajectory
within the terminal area after the dataset is divided into take-off and landing trajectories.
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2.1. Data Collection

Flight trajectories are influenced by a multitude of complex processes including flight
dynamics, avionics, operational constraints, decisions made at the Air Navigation Service
Provider (ANSP) level, and weather conditions. Our data-driven 4D trajectory prediction
model significantly reduces the complexity of parameters, avoiding the use of actual
operational parameters such as flight dynamics, and is entirely based on historical ADS-B
data to achieve high-precision trajectory predictions.

ADS-B historical track data are discontinuous and are broadcast almost every second
from equipped aircraft. The ADS-B data used in this paper come from a large airport
(approximate location provided due to confidentiality: north latitude range 38–42, east lon-
gitude range 115–120), totalling more than four thousand take-off and landing trajectories.

The problem of predicting airplane flight trajectories is defined as a regression problem.
In this research task, it is assumed that the set of historical trajectories T consists of N
historical trajectories; it is represented by the following equation:

T = {M1, M2, · · · , MR, · · · , MN} (1)

where MR is the number R track in M. Assuming that each trajectory has n waypoints, it is
represented by the following equation:

MR = {C1, C2, · · · , Ci, · · · , Cn} (2)

where Ci is the number i waypoint in MR. Assuming that each waypoint contains p
attributes, it is represented by the following equation:

Ci =
{

Ci1, Ci2, · · · , Cij, · · · , Cip
}

(3)

where Ci denotes the number j attribute of the point. In this paper, we are using ADS-B
data from a large airport containing the following track characteristics: Ci = {time, flight
number, latitude, longitude, altitude, speed, heading, pitch, roll}.
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2.2. Data Preprocessing

In practice, ADS-B data may have various quality defects, such as bias in position
information or missing data. This paper primarily addresses two key issues with the
original flight trajectories in the ADS-B dataset. Firstly, certain trajectory data at specific
time points may contain anomalies due to reasons such as noise. Secondly, the length of the
time intervals is not constant. Efficient trajectory prediction requires high-quality data with
equal time intervals as a foundation. The goal of trajectory reconstruction is to generate
high-quality trajectories from low-quality ones. This paper introduces a method named
“Spatial Gap Fill” (Spat Fill) for trajectory reconstruction. This method can discard outliers
and reconstruct missing data based on their neighbouring points for all vacant values.

For the receiving trajectory F and the high-quality trajectory H, where H ∈ RN denotes
the high-quality track containing N equally spaced track points and F ∈ RM denotes the
receiving track containing M equally spaced track points, the following relationship exists
between the two:

H = QF − n (4)

where Q denotes the sampling matrix and n denotes outliers such as noise and outliers. The
trajectory reconstruction is to recover F to a high-quality track H. However, we cannot get
the high-quality track directly from the above linear relationship, so the Spat Fill method is
used for the trajectory reconstruction. The specific method is as follows:

For the treatment of outliers and other anomalies in trajectory sequences, this paper
defines the point correlation of trajectory sequences. For each trajectory point in the
sequence, we set a distance threshold “a” for its neighbourhood “G”, the “a” parameter
serving to define the maximum accepted distance between data points. For each data point,
we calculate the distance between it and all trajectory points within the neighbourhood and
mark those exceeding the distance threshold as anomalies. Additionally, this paper defines
the connectivity of trajectory points in different neighbourhoods to prevent two points
with overly long distances on the trajectory sequence from being identified as outliers. The
related formulaic expression is as follows.

G neighbourhood is a region of distance G from the data point Fi in the trajectory
sequence, and the data points Fj contained in the region are considered to be in the neigh-
bourhood of Fi:

NG(Fi) =
{

Fj ∈ D/d(Fi, Fj) ≤ G, d(Fi, Fj) = ∥Fi − Fj∥2

}
(5)

Two points are defined as having a trajectory sequence point correlation if the point Fj
in the neighbourhood of G and the centre point Fi satisfy the following conditions.

Fj ∈ NG(Fi), NG(Fi) ≥ a (6)

If there is a track point, Fk, that is correlated with the otherwise uncorrelated data
points Fi and Fj, then the data points Fi and Fj are also correlated and belong to the same
track sequence points and will not be recognized as outliers. After point correlation is
identified for all track sequence points of a track sequence, the remaining points that are
not attributed to correlation with this track sequence are identified as outliers.

The trajectory sequences, after removing the outliers, still have issues with varying
time intervals and missing values. In this paper, we employ cubic spline interpolation
to fill in the latitude, longitude, altitude, speed, and heading in the flight trajectories.
After compensating for the missing values, we obtain high-quality trajectory data with
equal time intervals, which facilitates the calculation of time errors through trajectory
length. It also benefits the process of feeding these trajectory sequence features into the
neural network model. By utilising neural networks to learn the operating patterns of
trajectories in air routes, we achieve high-precision 4D trajectory predictions. As illustrated
in Figure 2, a set of representative trajectories with anomalies and their reconstructed
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schematics are provided. Clearly, the reconstructed trajectories can handle anomalies and
process trajectory time intervals effectively.
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3. Methodology
3.1. 4D Trajectory Prediction Process

The use of data-driven approaches to machine learning is becoming more and more
common due to the increasing demand for prediction tools. Realising efficient and accurate
predictions of 4D trajectories in terminal airspace requires full consideration of the trajectory
data characteristics, understanding the correlation among trajectories, and designing a
reasonable deep model structure based on the trajectory characteristics. In this paper,
we design an Attention-TCN-GRU model with a seq2seq structural framework for 4D
trajectory prediction in terminal airspace. The overall prediction approach is depicted in
Figure 3 and mainly consists of three stages:

1. Trajectory processing and categorization phase. Firstly, we renumber each trajectory
under a specific flight number to ensure that each flight number corresponds to only
one trajectory. Then, we filter trajectories based on a range within 20 km of the
airport’s central point and below an altitude of 6000 feet. This filtering step aims to
remove cruising and abnormal trajectories. Subsequently, we apply a Spatiotemporal
Filling (Spat Fill) process to each trajectory to eliminate outliers and fill missing values,
resulting in a high-quality trajectory dataset with consistent time intervals.

2. Data set grouping training phase. We categorise the preprocessed high-quality trajec-
tory dataset based on traffic density and different take-off and landing procedures.
Therefore, we divide the trajectory dataset into take-off and landing groups and
subject each group to traffic density analysis, resulting in datasets for busy and idle
time periods. We divide each trajectory sequence into input and output sequences
based on time. Due to variations in the duration of take-off and landing procedures,
the lengths of input and output sequences for take-off and landing trajectories differ.
Consequently, we train separate 4D trajectory prediction models for take-off and land-
ing trajectories by inputting the trajectory sequences of each group into the designed
Attention-TCN-GRU model.

3. 4D trajectory prediction phase. For the required take-off or landing flights, we judge
the busyness of the terminal airspace based on flight schedules. Subsequently, we
input the trajectory sequences into the respective trained 4D trajectory prediction
models to perform 4D trajectory predictions.



Aerospace 2024, 11, 313 8 of 21

Aerospace 2024, 11, x FOR PEER REVIEW 8 of 22 
 

 

on time. Due to variations in the duration of take-off and landing procedures, the 
lengths of input and output sequences for take-off and landing trajectories differ. 
Consequently, we train separate 4D trajectory prediction models for take-off and 
landing trajectories by inputting the trajectory sequences of each group into the de-
signed Attention-TCN-GRU model. 

3. 4D trajectory prediction phase. For the required take-off or landing flights, we judge 
the busyness of the terminal airspace based on flight schedules. Subsequently, we 
input the trajectory sequences into the respective trained 4D trajectory prediction 
models to perform 4D trajectory predictions. 

Trajectory 
Dataset

3D 
position

The well-trained overall 
trajectory prediction model.

The busy takeoff 
trajectory dataset.

Trajectory prediction 
model 1

Trajectory prediction 
model 2

Trajectory prediction 
model 3

Trajectory prediction 
model 4

Inputting the 
sequence of 

trajectories.

Determining the 
trajectory's affiliation 

with a specific trajectory 
dataset.

Speed

Course

Time

Trajectory Screening 
and Rejection

Trajectory dataset 
analysis

Trajectory outlier 
handling

Handling of missing 
value filling

Landing and take-off 
trajectory 

classification

Busy Trajectory 
Classification

The idle takeoff 
trajectory dataset.

The busy landing 
trajectory dataset.

The idle landing 
trajectory dataset.

Outputting the 
sequence of 

trajectories.

 
Figure 3. 4D trajectory prediction flowchart. 

3.2. Attention-TCN-GRU Modeling 
The model designed in this paper adopts the seq2seq architecture [27], and the fol-

lowing features indicate that this model architecture is particularly suitable for the 4D 
trajectory prediction problem in terminal airspace. 

Initially, for 4D trajectory predictions in busy terminal airspace, since the aircraft has 
to follow certain flight procedures during take-off and landing, and each trajectory is a 
sequence of trajectories composed of a series of trajectory points, the trajectory prediction 
problem is introduced into the sequence-to-sequence architecture for processing and solv-
ing. Consequently, the seq2seq architecture can solve the length difference between the 
input and output trajectory data, which is just enough to fulfil the method of inputting 
short trajectory sequences to predict long trajectory sequences. Finally, the internal struc-
tures of the encoder and decoder are independent of each other. This suggests that they 
can be designed to perform different tasks. Thus, the encoder is trained to identify hidden 
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Figure 3. 4D trajectory prediction flowchart.

3.2. Attention-TCN-GRU Modeling

The model designed in this paper adopts the seq2seq architecture [27], and the fol-
lowing features indicate that this model architecture is particularly suitable for the 4D
trajectory prediction problem in terminal airspace.

Initially, for 4D trajectory predictions in busy terminal airspace, since the aircraft has
to follow certain flight procedures during take-off and landing, and each trajectory is a
sequence of trajectories composed of a series of trajectory points, the trajectory prediction
problem is introduced into the sequence-to-sequence architecture for processing and solving.
Consequently, the seq2seq architecture can solve the length difference between the input
and output trajectory data, which is just enough to fulfil the method of inputting short
trajectory sequences to predict long trajectory sequences. Finally, the internal structures
of the encoder and decoder are independent of each other. This suggests that they can
be designed to perform different tasks. Thus, the encoder is trained to identify hidden
information and patterns within the trajectory data. These pieces of information are
outputted by the encoder as fixed-length context vectors, which are then dynamically
linked by the decoder to output the predicted trajectories. The prediction model Attention-
TCN-GRU in this paper is based on the theory of seq2seq models. It uses a TCN (temporal
convolutional network) with better performance in processing long sequences as the
encoder and a GRU (gated recurrent unit) with higher operational efficiency as the decoder,
and it adds an attention mechanism to help the model pay better attention to important
information in the fixed-length vectors output by the encoder. The methodology and
overall architecture of the model are shown in Figure 4. Each part of the model is described
in detail below.
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3.2.1. Trajectory Prediction Encoder TCN

The main function of the encoder designed in this paper is to learn and recognize
the hidden patterns in aircraft input trajectory sequences. These hidden patterns contain
information about aircraft characteristics under different operating environments, which is
crucial for the prediction of the trajectory sequences. As a branch of convolutional networks,
TCN is primarily employed for temporal data processing. This paper firstly employees a
TCN network as an encoder for the task of 4D trajectory prediction in terminal airspace. It is
adept at accurately learning both long and short dependencies within trajectory sequences,
boasting ample memory capacity [28]. Thus, it retains more information and delivers
enhanced encoding performance.

Figure 5 depicts the causal convolution and dilated convolution structures of the TCN.
Among them, subgraph (a) shows the overall structure of TCN, the subgraph (b) represents
the causal convolution within a single residual block. Causal convolution ensures the
integrity of the input trajectory sequences, ensuring that the prediction value at moment
t + 1 is only associated with the values of the previous t moments. On the other hand,
dilated convolution allows the TCN to achieve a broader receptive field with fewer layers.
The filters of dilated convolution can process input data in jumps, enabling the capture
of input information farther from the current step. This approach enables the model
to accommodate longer trajectory sequence data and effectively tackle the issue of long-
distance dependencies in trajectory sequence data. At the same time, this paper employs the
RELU activation function, dropout, and an identity mapping network to assist the model
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in learning more complex patterns and preventing neural network overfitting, resolving
the issues of gradient vanishing and exploding in neural networks. Consequently, these
implementations render the network more adept at deep learning, accelerating training
speed and boosting the accuracy of trajectory predictions.
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Specifically, assume the model input X ∈ Rn, f ∈ Rk represents a one-dimensional
dilated causal convolution kernel; then the result after the dilated causal convolution
operation is expressed as follows:

F(s) = (X·d f )(s) =
k−1

∑
i=0

f (i)·Xs−d·i (7)

where d is the dilation rate; k is the kernel size; and s − d·i represents the position point
corresponding to the input sequence. When using dilated convolution, d usually increases
exponentially with the depth of the network layer i specifically as d = O(2i). This variation
ensures that the receptive domain of the TCN expands rapidly when the convolutional
kernel size k is changed. This allows the convolutional kernels at higher levels in the
network to cover all valid inputs to the input track sequence, resulting in better fusion of
information.

3.2.2. Attention Layer

The attention mechanism mainly plays the role of filtering out the most important
information for the current task from a large amount of information and highlighting
important features. Attention mechanisms are valuable in terminal airspace trajectory
prediction. In 4D trajectory prediction, the flight data may include large changes, such
as the sudden change of flight direction or the rapid rise or fall of the aircraft’s altitude.
In these cases, the attention mechanism can help the model to pay more attention to
these critical moments instead of focusing only on the recent flight data. In this paper,
we introduce the attention mechanism to calculate the weights of the vectors output at
different moments in the TCN network, which can effectively highlight the features that
have a greater impact on the predicted value of the trajectory.

The data are extracted by the TCN network and output T, Tt is the number t feature
vector output by the TCN network. We input it into the attention layer to get the initial



Aerospace 2024, 11, 313 11 of 21

state vector dt, and then give it the weight coefficient αt to get the final output state vector
Y. The specific calculation process is as follows:

et = tanh(ωtat + bt) (8)

αt = exp(et)/
t

∑
i=1

et (9)

Y =
n

∑
t=1

αtdt (10)

where et represents the energy value corresponding to at; ωt and bt represent the weight
coefficient and bias corresponding to the number t eigenvector, respectively.

3.2.3. Trajectory Prediction Decoder GRU

Currently, seq2seq models mostly use RNN or LSTM as the encoder or decoder,
but RNN has problems with, for example, gradient vanishing. GRU and LSTM are two
derivatives of RNN, both of which are designed to solve the problems of gradient vanishing
and exploding in traditional recurrent neural networks, but the GRU network is simpler
and runs more efficiently than the LSTM network.

The GRU continuously updates information through its gated recurrent units. It
integrates the forget gate and input gate into a single update gate, eliminating the need
for a separate memory gate unit. By using the reset gate unit, the GRU simultaneously
achieves both “selective forgetting” and “selective remembering” functionalities. This
design effectively reduces the number of parameters in the network units, shortens the
model training time, and mitigates the issues of gradient vanishing and exploding.

In the 4D trajectory prediction task within the terminal airspace, the GRU serves as
the decoder to sequentially output a trajectory prediction sequence over n steps. Figure 6
illustrates the fundamental decoding process, where the decoder receives intermediate
vectors processed by the attention mechanism. Each subsequent GRU unit takes in the
current input and the previous hidden state, recursively generating GRU outputs until the
complete trajectory sequence is generated.
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Training Process Description: As depicted in Figure 6, the key components of the GRU
network are the update gate and reset gate. The essential features during model training
include the current input xt, the state vector of the previous moment ht−1, the state vector of
the current moment ht, the candidate state vector of the current moment h′

t, the state vector
of the update gate rt, and the state vector of the reset gate zt. The internal computation
process is as follows: 

zt = σ(wz · [ht−1, xt])
rt = σ(wr · [ht−1, xt])
h′t = tanh(wh′ · [rt × ht−1, xt])
ht = (1 − zt)× ht−1 + zt × h′t

(11)
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where wz, wr, wh′ denote the parameter matrices to be learned; σ denotes the sigmoid
function, whose function is to transform the input value into a value in the range of (0, 1)
and then use this value as a gating signal. The main purpose of the hyperbolic tangent
function (tanh) is to transform the input value into a value in the range (−1, 1).

3.2.4. Model Training

The purpose of model training is to reduce the level of error between predicted
trajectories and actual trajectories. While the seq2seq framework is primarily used for text
translation problems, considering the distinct nature of trajectory prediction, the model’s
cost function has been modified to mean square error from posterior probability. The
Adam optimizer is employed for parameter optimization. The detailed training process is
as follows:

Firstly, we prepare the dataset by using the Spat Fill method to reconstruct the trajec-
tory data, resulting in high-quality trajectory data that serve as our input. Next, we make
initial parameter selections for the model. This includes determining the lengths of the
input and output sequences, specifying the number of layers in the encoding and decoding
networks, setting the number of neurons, defining the batch size, specifying the number
of epochs, setting the stop criterion threshold, and establishing the initial learning rate.
The lengths of the encoding and decoding sequences are determined based on the actual
trajectory prediction task, while we optimize the other parameters within certain ranges.
Following that, we train the model based on the loss function until predefined thresholds
are met or until the training process reaches the specified number of epochs. Finally, we
perform validation using a validation dataset. We input this dataset into the trajectory
prediction model trained with the corresponding training data, conducting evaluation and
fine-tuning.

4. Experimentation
4.1. Experimental Setup

Tables 1 and 2 describe the specific settings and hyperparameters for implementing the
4D flight trajectory prediction model based on Attention-TCN-GRU. We use a grid search to
determine the relevant parameters and use MSE as the loss function; the relevant parameter
ranges are shown in Table 3. The experimental environment is run on the TensorFlow
framework (developed by Google, Mountain View, CA, USA) for Windows and uses a
GTX3060 GPU (manufactured by NVIDIA Corporation, Santa Clara, CA, USA) to accelerate
the computation. The dataset used for the experiments has a total of 4049 take-off and
landing trajectory sequences. For take-off and landing trajectories, the trajectories under
abnormal conditions with excessive time were deleted, and then all other trajectories were
populated with final state point data based on the longest trajectory in the normal range
among the remaining normal trajectories. For the selected take-off and landing trajectories
within the terminal area, it was found that the take-off time was around 200 s and the
landing time was around 800 s. We set the input sequence lengths for take-off and landing
to 50 s and 200 s respectively, while the output sequence covers the remaining lengths.
During the prediction phase, we truncate the final continuous unaltered state points and
retain only the first two repeated points, ensuring that our high-precision predictions align
with the actual lengths of flight trajectories in civil aviation.

Table 1. Setting of landing trajectory parameters.

Parameters Retrieve a Value Parameters Retrieve a Value

sliding window 10 TCN convolutional kernel 3
learning rate 0.001 expansion factor [1, 2, 4]

batch size 64 GRU neurons 250/150/120
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Table 2. Setting of take-off trajectory parameters.

Parameters Retrieve a Value Parameters Retrieve a Value

sliding window 30 TCN convolutional kernel 5
learning rate 0.001 expansion factor [1, 2, 4, 8]

batch size 128 GRU neurons 250/150/120/100

Table 3. Range of parameter choices for the model.

Parameters Grid Search Parameter Ranges

sliding window 5, 10, 15, 20, 25, 30, 35, 40
learning rate 0.0001, 0.001, 0.002, 0.005, 0.01

batch size 16, 32, 64, 128, 256
TCN convolutional kernel 2, 3, 4, 5, 6, 7

expansion factor 1, 2, 4, 8, 16, 32
GRU neurons 100, 120, 150, 180, 200, 220, 250, 300

4.2. Test Indicators

In the Attention-TCN-GRU model, we evaluate the performance of the trajectory
prediction model using two common metrics: root mean square error (RMSE) and mean
absolute error (MAE). A lower value of these metrics indicates higher precision of the model
in handling experimental data. The RMSE is calculated as the square root of the average
of the squares of the differences between the predicted and observed values, serving as a
measure of the average magnitude of errors. The MAE is the average of the absolute errors
between the predicted and observed values, providing a more accurate representation
of the true prediction error. We employ these two metrics to assess the effectiveness of
Attention-TCN-GRU, with calculation methods as follows:

RMSE =

√
1
n

n
∑

i=1
(Fi − fi)

2

MAE = 1
n

n
∑

i=1
|Fi − fi|

(12)

where Fi denotes the real trajectory and fi denotes the predicted trajectory at moment i.
In order to be able to fully test the performance of the Attention-TCN-GRU model, the
prediction results of Attention-TCN-GRU are subsequently compared with a single LSTM
network and SS-DLSTM.

4.3. Forecast Results and Comparative Analysis

The main aspects of the analysis are the prediction of busyness divisions, model
complexity, comparative analysis, and comparison of assessment error values.

4.3.1. Assessment of Forecasting Results for Busyness Classification

For the processed take-off and landing dataset, we initially divide it into two categories
based on take-offs and landings. We then identify busy periods during the operational
dates of the flights and divide the take-off and landing datasets into busy and idle trajectory
periods. This study extracts the data of all operating flights within a single day, from 0:00
to 24:00, and segments it into intervals of two hours each. Figure 7 illustrates the number
of flights during each interval for both take-offs and landings. For departing flights, we
define the busy period as 6:00 to 22:00. For arriving flights, we define the busy period as
8:00 to 0:00. We finally divide each of the partitioned datasets into a training set, a testing
set, and a validation set in the ratio of 7:2:1.
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This study trains the designed Attention-TCN-GRU model on two sets of data: one
that distinguishes between levels of busyness and another that does not. This process
yields two distinct predictive models, each offering unique insights into flight operations.
We subject both models to evaluations using an identical test set to ensure a uniform basis
for performance comparison, with the detailed results presented in Table 4.

Table 4. Error Evaluation of Busyness Index.

Citing the Busyness Index? Dimension RMSE MAE

NO

Latitude/(◦) 0.0027 0.0022
Longitude/(◦) 0.0166 0.0113

Height/ft 156.7 107.4
Time/s 1.96 1.58

YES

Latitude/(◦) 0.0022 0.0019
Longitude/(◦) 0.0138 0.0091

Height/ft 131.4 96.5
Time/s 1.86 1.47

As shown in the above table, the prediction error of the prediction model trained by
grouping the trajectory data using the busyness index is significantly lower than that of the
prediction model without the busyness index. In addition, in order to facilitate a unified
evaluation of the overall latitude, longitude, and altitude, we calculated the relative errors
in the three dimensions. The latitude, longitude, and altitude errors using the busyness
index were 1.01%, 3.09%, and 1.78%, respectively, while the latitude, longitude, and altitude
errors without the busyness index were 1.58%, 3.61%, and 2.12%, respectively. It can be
seen that grouping the levels of busyness has improved the prediction accuracy in all three
dimensions to a certain extent. The landing and take-off trajectories grouped according to
busyness can avoid the mutual interference between the busy time trajectories and the idle
time trajectories, so that the model in each time period only learns the trajectory operation
mode in the corresponding time period and realizes more accurate 4D trajectory predictions
in the terminal area. The model that incorporates the busyness index predicts latitude,
longitude, altitude, and time with lower errors and achieves a level of accuracy that meets
the TBO requirements. Consequently, the Attention-TCN-GRU model, with the integrated
busyness index, demonstrates enhanced predictive performance, boasting higher accuracy
in predicting 4D trajectories within the terminal area.
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4.3.2. Model Complexity Analysis

Firstly, we provide parameter settings for Attention-TCN-GRU models, SS-LSTM,
and LSTM models. The Attention-TCN-GRU model’s parameter settings for take-off
and landing phases are depicted in Tables 2 and 3. The SS-LSTM model’s parameter
complexity is essentially similar to the Attention-TCN-GRU model since both employ
seq2seq architecture. This similarity extends to configurations such as the sliding window,
learning rate, and batch size. Both models employ LSTM for their encoders and decoders,
with the number of hidden layers for encoding take-off and landing trajectories being 3 and
4 respectively, and the neuron counts in each layer being (250, 150, 120) for take-off and
(250, 150, 120, 100) for landing, both with a learning rate set to 0.001. In contrast, the LSTM
model uses three hidden layers for both take-off and landing trajectories, each containing
128 units, with a batch size of 32 and a learning rate of 0.001. From the standpoint of
parameter setting complexity, the Attention-TCN-GRU and SS-LSTM models exhibit a
similar level of complexity, while the LSTM model is relatively simpler. A definitive
assessment of model training performance, however, would require a consideration of
training time.

By analysing the training time complexity of the designed model and evaluating its
training time with a single LSTM model as well as the SS-DLSTM model for a given input
size, it can help to understand the efficiency of the model when dealing with large-scale
data. In this case, LSTM is a deep-learning model that incorporates space-time context for
trajectory point prediction, whereas SS-DLSTM based on a seq2seq framework uses LSTM
as a codec to predict the trajectory.

The time required for model training is reduced and it can bring more benefits in
practical applications. Figure 8 illustrates the difference in time required for the training of
each model. Among them, Attention-TCN-GRU is more efficient than SS-LSTM, indicating
that the use of TCN, which has better performance in capturing long sequences, and GRU,
which has higher efficiency, as the decoder, and the introduction of the attention mechanism,
can accelerate the convergence of the loss function and focus on the important trajectory
points in the prediction of aircraft trajectories, and also greatly reduce the training cost
compared with the basic LSTM model. Therefore, the complexity of the model is optimized
under the condition of guaranteeing accuracy, and it is suitable for 4D trajectory prediction
in the terminal area.

Aerospace 2024, 11, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. Comparison of model training time. 

Additionally, as illustrated in Figure 9, we have also conducted statistics on the in-
ference time of each model. It is evident from the figure that once trained, our designed 
model achieves the fastest inference speed in practical trajectory prediction tasks, approx-
imately 1.5 s, which is fully capable of handling real-time trajectory prediction tasks. 

 
Figure 9. Comparison of model inference time. 

4.3.3. Comparative Analysis of Models 
This study selects two representative predicted trajectories from the landing and 

take-off validation datasets following the incorporation of the busyness index. Figures 9 
and 10 visualize the predictive results of the flight take-off and landing trajectories, show-
casing two-dimensional plots of predicted and actual paths over latitude-time, longitude-
time, and altitude-time, along with a three-dimensional curve of latitude, longitude, and 
altitude. We only plot the coordinates that encompass the entire trajectory to clearly illus-
trate the discrepancies between the predicted and actual paths. 

Figure 8. Comparison of model training time.

Additionally, as illustrated in Figure 9, we have also conducted statistics on the infer-
ence time of each model. It is evident from the figure that once trained, our designed model
achieves the fastest inference speed in practical trajectory prediction tasks, approximately
1.5 s, which is fully capable of handling real-time trajectory prediction tasks.
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Figure 9. Comparison of model inference time.

4.3.3. Comparative Analysis of Models

This study selects two representative predicted trajectories from the landing and take-
off validation datasets following the incorporation of the busyness index. Figures 9 and 10
visualize the predictive results of the flight take-off and landing trajectories, showcasing
two-dimensional plots of predicted and actual paths over latitude-time, longitude-time,
and altitude-time, along with a three-dimensional curve of latitude, longitude, and altitude.
We only plot the coordinates that encompass the entire trajectory to clearly illustrate the
discrepancies between the predicted and actual paths.
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Figures 10 and 11a–d show the 3D comparison of the predicted trajectories with the
real trajectories and the 2D comparison of latitude, longitude, and altitude over time from
each model, respectively. It can be seen that, for the take-off trajectory, the overall trend
of the three models is the same as that for the real trajectory, and the models basically
fit the real trajectory well from the prediction point to the trajectory of 100 s. After that,
the LSTM model shows a significant decrease, and the SS-DLSTM model also shows a
decreasing trend, while the Attention-TCN-GRU model designed in this paper, which
has better performance in dealing with long sequences, maintains the performance of
prediction better, and its overall prediction accuracy is significantly higher than the other
two models. It is well illustrated that the present algorithm can better meet the 4D trajectory
prediction of terminal area departure.
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For the landing trajectories, all three models maintain predictions that are relatively
consistent with the actual trajectories. In contrast to the prediction accuracy for take-off
trajectories, the prediction accuracy for landing trajectories shows a slight decrease. This
can be attributed to the fact that departing aircraft spend slightly less time in the terminal
airspace and exhibit relatively fewer trajectory patterns, whereas landing aircraft trajectories
are characterized by greater uncertainty and variability. Nevertheless, the Attention-TCN-
GRU model continues to demonstrate strong predictive performance, indicating that the
model designed in this study exhibits favourable advantages in predicting both take-off
and landing trajectories within the terminal area. In summary, the latitude, longitude,
and altitude over time prediction results of the three models are basically consistent with
the actual trajectories. Compared with the other two models, the prediction curve of
the LSTM model has a larger deviation from the actual trajectories. Compared with
LSTM, the SS-DLSTM and Attention TCN-GRU models have smaller prediction errors for
latitude, longitude, and altitude, indicating that the seq2seq framework is more suitable
for 4D trajectory prediction in the terminal area than the single neural network LSTM. The
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Attention-TCN-GRU model has the best prediction accuracy, which indicates that the use of
a TCN with strong long-sequence processing ability as the encoder for terminal area track
predictions, the inclusion of the attention mechanism, and the use of the more efficient
GRU as the decoder can improve the prediction accuracy of the 4D track in the terminal
area. Indeed, the designed Attention-TCN-GRU model outperforms existing terminal area
trajectory prediction models, showcasing superior predictive performance in terminal area
trajectory prediction.

4.3.4. Comparison of Assessment Error Values

By comparing the predicted trajectories with the actual trajectories, we obtained the
values of the RMSE and MAE as evaluation metrics. This study calculated the prediction
errors of the models for latitude, longitude, altitude, and time in the terminal area 4D
trajectories, along with the average errors for each model. The results are summarized in
Table 5.

Table 5. Model error evaluation.

Model Dimension RMSE MAE Three-Dimensional MAE (m)

LSTM

Longitude/(◦) 0.0213 0.0163

611.57
Latitude/(◦) 0.0041 0.0035

Height/ft 236.5 181.6
Time/s 2.93 2.31

SS-DLSTM

Longitude/(◦) 0.0157 0.0104

396.28
Latitude/(◦) 0.0033 0.0024

Height/ft 184.5 132.8
Time/s 2.07 1.69

Attention-TCN-
GRU

Longitude/(◦) 0.0102 0.0067

269.51
Latitude/(◦) 0.0022 0.0019

Height/ft 131.4 96.5
Time/s 1.86 1.47

According to the above table, the prediction error of Attention-TCN-GRU model is
smaller than that of both SS-DLSTM and LSTM. In addition, due to the significant difference
in numerical accuracy between the latitude and longitude provided by the global navigation
satellite system and the altitude provided by the barometric altimeter in the input data,
the expression of absolute values cannot accurately express the relationship between the
altitude prediction error and the two-dimensional latitude and longitude errors. Therefore,
we calculated the relative values at three latitudes, using the ratio of the difference between
the predicted value and the true value to the true value. For latitude and longitude, we
establish a coordinate axis based on the centre of the airport to redefine the corresponding
latitude and longitude coordinates for the waypoint, instead of directly using the latitude
and longitude coordinates under the Earth coordinate axis, to avoid the problem of large
differences between the erroneous latitude and longitude and the actual latitude and
longitude, which cannot demonstrate the predictive performance through relative value
errors. The latitude, longitude, and altitude errors of Attention TCN-GRU after calculation
are 1.01%, 3.09%, and 1.78%, respectively. The latitude, longitude, and altitude errors of
SS-LSTM are 2.05%, 4.51%, and 2.88%, respectively. The latitude, longitude, and altitude
errors of LSTM are 2.51%, 9.44%, and 4.01%, respectively. The total root mean square error
of Attention-TCN-GRU model is 55.97% lower than that of the LSTM model and 32.07%
lower than that of the SS-DLSTM model.

In addition, as shown in Figure 12, we averaged the latitude, longitude, and altitude of
the three models’ take-off and landing trajectories to obtain a composite evaluation metric,
and then implemented a box-and-line plot analysis of the three models. It is also clear in
the figure that the median and mean prediction errors of the Attention-TCN- GRU model
are around 250 m, and the SS-LSTM and LSTM are around 420 and 600, respectively, which
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fully meets the requirements for trajectory prediction in terms of accuracy and illustrates
that the Attention-TCN-GRU model achieves more accurate predictions and is a more
suitable model for 4D trajectory predictions in terminal airspace.
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Additionally, by converting the data from Table 2, the latitude error is found to
be about 244.9 m, the longitude error about 1135.5 m, and the altitude error around
40.0 m. According to regulations set by the Civil Aviation Authority, the operational track
horizontal separation in the terminal area is 6000 m and the vertical separation is 300 m.
The prediction errors in both the horizontal and vertical directions proposed in this article
are lower than the relevant errors. Therefore, the trajectory prediction model in this paper
has the potential to provide basic technical support for conflict detection methods in the
aviation industry. However, there is still room for improvement in high-level safe and
efficient conflict detection.

5. Conclusions

This paper addresses the terminal airspace around airports and presents a data-driven
aircraft trajectory prediction model based on an extensive dataset of ADS-B historical flight
tracks. Initially, the Spat Fill method is employed to reconstruct equally spaced high-quality
flight tracks as the initial inputs for the prediction model. Subsequently, we frame trajectory
prediction as a problem in which historical flight track sequences are mapped to future
flight track sequences. Building upon seq2seq theory, we propose an Attention-TCN-GRU
model. This model leverages TCN as an encoder for better handling of long sequences,
employs the efficient GRU as a decoder, and integrates attention mechanisms to enhance
the learning of temporal correlations within flight track sequences. Using aircraft trajectory
features such as latitude, longitude, altitude, heading, and speed as inputs, the model
recursively generates latitude, longitude, and altitude information for future flight track
sequences over time. We applied the proposed model to a dataset from a major domestic
airport’s terminal airspace, and the study revealed that employing seq2seq theory in 4D
trajectory prediction within the terminal airspace is highly effective. Furthermore, the
predictive performance of the designed Attention-TCN-GRU model surpasses that of the
current mainstream prediction models.

However, the incorporation of variables with significant impacts on flight paths, such
as ANSP decisions and meteorological conditions, remains a challenge. In future data-
driven 4D trajectory prediction research, we will consider factors such as ANSP decision,
flight procedures, weather conditions, and aircraft intentions to enhance the predictive
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performance of our model. In addition, the generalization of the model is also a future
research focus, considering terminal area trajectory data under multiple different structures
for large validation in order to improve the establishment of terminal area trajectory
prediction models with different structural types and achieve accurate predictions on a
large scale. Finally, training the local QNH pressure feature set would enable the model to
consider the impact of QNH on height values, improving height prediction accuracy, and
this is also a future research goal.
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