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Abstract: In the framework of precision viticulture, satellite data have been demonstrated to sig-
nificantly support many tasks. Specifically, they enable the rapid, large-scale estimation of some
viticultural parameters like vine stem water potential (Ψstem) and intercepted solar radiation (ISR)
that traditionally require time-consuming ground surveys. The practice of covering table grape
vineyards with plastic films introduces an additional challenge for estimation, potentially affecting
vine spectral responses and, consequently, the accuracy of estimations from satellites. This study
aimed to address these challenges with a special focus on the exploitation of Sentinel-2 Level 2A and
meteorological data to monitor a plastic-covered vineyard in Southern Italy. Estimates of Ψstem and
ISR were obtained using different algorithms, namely, Ordinary Least Square (OLS), Multivariate
Linear Regression (MLR), and machine learning (ML) techniques, which rely on Random Forest
Regression, Support Vector Regression, and Partial Least Squares. The results proved that, despite
the potential spectral interference from the plastic coverings, ISR and Ψstem can be locally estimated
with a satisfying accuracy. In particular, (i) the OLS regression-based approach showed a good
performance in providing accurate ISR estimates using the near-infrared spectral bands (RMSE < 8%),
and (ii) the MLR and ML algorithms could estimate both the ISR and vine water status with a higher
accuracy (RMSE < 7 for ISR and RMSE < 0.14 MPa for Ψstem). These results encourage the adoption
of medium–high resolution multispectral satellite imagery for deriving satisfying estimates of key
crop parameters even in anomalous situations like the ones where plastic films cover the monitored
vineyard, thus marking a significant advancement in precision viticulture.

Keywords: protected cultivation; plastic sheet covering; precision viticulture; stem water potential;
intercepted solar radiation

1. Introduction

Grapevine (Vitis vinifera L.) cultivation has a significant socioeconomic importance
around the world, with grapes being the third most popular fresh fruit after bananas and
apples, with an estimated total production of about 80 million tons in 2022; around 40% of
this total amount (31.5 million tons) consists of table grapes. Italy is recognized as a leading
viticultural country, producing about 8.1 million tons of grapes per year [1], 1 million tons
of which are table grapes. Viticulture is a highly competitive sector, requires high inputs
into the production process to achieve an adequate profitability, and has to face challenges
concerning the social demand for environmentally friendly agricultural management [2,3].

Precision agriculture (PA) and, more specifically, precision viticulture (PV) techniques
can aid in reducing the environmental impacts of grapevine cultivation by optimizing
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the agronomic practices and, in particular, the use of natural resources, such as water,
and inputs, such as fertilizers and pesticides [3–5]. PA and PV are increasingly depen-
dent on remote sensing technologies, including satellite constellations and drone-aircraft
imagery [3].

Numerous studies have shown that remote sensing data can be used to monitor
key crop parameters like stem water potential (Ψstem) [6,7], leaf area index [8,9], crop
coefficients [10,11], leaf nitrogen content [12,13], and crop phenology [14,15]. Often, single
spectral bands or indices alone are insufficient to accurately describe the parameters
under study, necessitating the use of complex models that consider parts or the entirety
of the crop’s spectral signature along with the indices [6,12,13,16–18]. This approach can
lead to severe collinearity problems, which can significantly affect the estimates [19,20].
Multivariate Linear Regression (MLR) and machine learning (ML) techniques are beneficial
for complex tasks requiring multiple features [20–23]. It has been demonstrated that MLR
and ML applications can effectively estimate and forecast key crop parameters [16,17,24,25].

Table grapes are a very delicate produce; therefore, their cultivation increasingly
requires protecting the vineyards with plastic sheets to preserve the vegetation and bunches
from external agents and condition the microclimate. This technique also allows growers
to extend the harvest period by advancing or delaying the grape ripening, and to improve
grape quality [26–28]. This practice introduces new technical challenges for PA due to the
effects of plastic sheets on absorbed, transmitted, and reflected radiation, thus altering the
vines’ spectral signatures [29–31]. This phenomenon is peculiar to the radiometric and
material characteristics of plastic coverings, but could also depend on the cleanliness of the
plastic film and local agricultural practices.

Changing the crop’s spectral signature can affect PA applications such as those aimed
at monitoring vegetation health and growth, predicting yield, and providing variable rate
irrigation and fertilization [29,32], thereby impacting resource optimization and decision-
making processes.

In this context, assessing crop parameters in vineyards covered with plastic sheets
for PA applications is more complex and is a quite unexplored topic. The present work
aimed to help fill this this gap by monitoring a plastic sheet-covered table grape vine-
yard of cv Luisa, a new Italian seedless cultivar obtained and selected for in Italy (Apulia
Region), using Sentinel-2 (S2) data to estimate two key crop ecophysiological parame-
ters: (i) the intercepted solar radiation, which is closely related to foliage biomass, and
(ii) the stem water potential, which is related to the water status of vines. For this pur-
pose, statistical (Ordinary Least Squares (OLS) and Multiple Linear Regression (MLR)) and
machine learning (ML) approaches were applied.

2. Materials and Methods

2.1. Study Area

The study was conducted in 2022 in an adult one-hectare commercial table grape vine-
yard located in south-east Italy (Apulia Region, BT Province, Laporta farm, 41◦31116.800′ N,
15◦99390.100′ E, 66 m a.s.l.) (Figure 1). The area has a warm, temperate climate labeled as Csa
(hot and dry summer Mediterranean conditions) according to the Köppen–Geiger classifica-
tion [33]. The local soil presents a loamy–sandy texture. Vines (cv Luisa grafted onto 140 Ru
rootstock, 2.4 × 2.4 m apart) were trained using an overhead trellis system (Tendone) pruned to
4–6 canes per vine (~10 buds/cane). Standard viticultural practices were applied in the vineyard,
including leaf thinning (two interventions) and drip irrigation (1830 m3/year as total amount of
delivered water).
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Figure 1. Test vineyard located in Southern Italy, Apulia Region (area with green lines). Black 
squares represent the spatial distribution of surveyed replicates (a square of 4 contiguous vines/rep-
licate). The reference system is WGS 84/UTM 32N, EPSG:32633. 

The vineyard was covered from April to November with a commercial plastic film 
made of 200 µm thick low-density polyethylene, which is transparent to solar radiation. 
The plastic sheets were placed at a height of 3.0 m above the ground level, just above the 
vine canopy, following the vineyard rows; between adjacent sheets, a 20–30 cm space was 
left to favor air circulation (Figure 2). 

 
Figure 2. Test vineyard covered with plastic sheets. 

2.2. Ground Data 
Air temperature within the vineyard was automatically measured at 15 min time in-

tervals. The sensor was positioned in the place of a missing vine at a height of 2 m above 
the ground (weather station provided by Horta s.r.l., Piacenza, Italy). Daily mean air tem-
peratures were utilized to calculate the growing degree days (GDD, Equation (1)) [34]. 

Figure 1. Test vineyard located in Southern Italy, Apulia Region (area with green lines). Black squares
represent the spatial distribution of surveyed replicates (a square of 4 contiguous vines/replicate).
The reference system is WGS 84/UTM 32N, EPSG:32633.

The vineyard was covered from April to November with a commercial plastic film
made of 200 µm thick low-density polyethylene, which is transparent to solar radiation.
The plastic sheets were placed at a height of 3.0 m above the ground level, just above the
vine canopy, following the vineyard rows; between adjacent sheets, a 20–30 cm space was
left to favor air circulation (Figure 2).
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Figure 2. Test vineyard covered with plastic sheets.

2.2. Ground Data

Air temperature within the vineyard was automatically measured at 15 min time
intervals. The sensor was positioned in the place of a missing vine at a height of 2 m
above the ground (weather station provided by Horta s.r.l., Piacenza, Italy). Daily mean air
temperatures were utilized to calculate the growing degree days (GDD, Equation (1)) [34].

GDD(n) =
n

∑
i=0

Max(Tm(i)− Tbase, 0), (1)
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where n is the number of days from April 1st to October 31st, Tm is the average daily air
temperature (◦C), and Tbase is the base temperature, i.e., the minimum temperature for
vegetative growth, which was assumed equal to 10 ◦C for grapevines [35].

Twelve replicates, each consisting of a square of 4 contiguous vines (Figure 1), were
considered in order to monitor the phenological stages and assess two ecophysiological
parameters: intercepted solar radiation and vine water status. Grapevine phenology was
monitored during the entire growing cycle, approximately once a week, according to codes
and description of the extended BBCH scale [36] (Table 1).

Table 1. Phenological stages of grapevine cv Luisa (extended BBCH scale), with related DOY
and GDD.

Principal Growth Stage Description BBCH Code DOY GDD

Sprouting Bud burst: green shoot tips are clearly visible 09 100 24

Leaf development Six leaves have unfolded 16 119 132

Inflorescence emergence Inflorescence swelling, flowers closely pressed
together 55 134 267

Flowering 80% of flowerhoods have fallen 68 141 360

Development of fruits

Fruit is set: fruits beginning to swell, remains of
flowers are lost 71 145 425

Berries are groat-sized, bunches beginning to
hang 73 151 513

Berries beginning to touch 77 162 668

All berries are touching 79 181 998

Ripening of berries

Beginning of ripening: berries beginning to
brighten in color 81 190 1153

Berries brightening in color 83 207 1437

Berries ripe for harvest 89 216 1593

Senescence After harvest: end of wood maturation 91 234 1880

The intercepted solar radiation (ISR) was assessed as a parameter related to the vine
vegetative growth. Data were collected from April 29th to August 22nd, on clear-sky
days, at intervals of approximately 10 days. ISR was obtained by measuring, at solar
zenith, the flux density of the photosynthetically active radiation (PAR, 400–700 nm, µmol
photons m−2 s−1) available over the canopy (3 readings/replicate) and under the canopy
(6 readings/replicate), using a solar bar (AccuPAR model LP-80 PAR/LAI, Decagon Devices,
Pullman, WA, USA) [37]. Mean values and the corresponding ISR percentages were
computed according to Equation (2) [37]:

ISR = [1 − (PARuc/PARoc)] × 100, (2)

where ISR is the percentage of intercepted solar radiation, PARuc is the flux of photosyn-
thetically active radiation under the canopy, and PARoc is the flux of PAR over the canopy.

The vine water status was evaluated through measurements of stem water potential
(Ψstem) [38] using a pressure chamber (model 3005, Soilmoisture Equip. Corp., Santa
Barbara, CA, USA). Data were collected from May 25 to August 22, approximately once
a week. Two completely developed leaves per replicate were sampled from the lower-
internal part of the canopy. Before the Ψstem measurements, sampled leaves were enclosed
in two-layer bags (plastic inside and aluminum outside) for 2 h to reach equilibrium.
Measurements were performed within about 1 h (12:30 to 13:30) to keep the environmental
conditions as stable as possible.

Ground measures were georeferenced using a GNSS receiver (Leica 1200, Leica Geosys-
tem AG, Heerbrugg, Switzerland). The survey was conducted in the NRTK (Network Real
Time Kinematic) VRS mode using the Puglia Region correction service
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(http://gps.sit.puglia.it/SpiderWeb/frmIndex.aspx, accessed on 21 June 2022). The aver-
age accuracy (3D) was about 3 cm [39].

2.3. Satellite Data

Earth Observation (EO) satellite imagery is presently widely available. Nevertheless,
not all images are suitable for applications in precision agriculture (PA). PA, in fact, shows
some specific requirements: (1) the images’ geometric resolution must be consistent with
the size of monitored fields; (2) the temporal resolution has to be sufficiently high to
significantly track the phenological stages of crops; (3) the spectral bands should be sensitive
to key crop parameters such as biomass, photosynthetic activity, and leaf water content;
(4) the image cost has to be consistent with the ordinary income of the agronomic sector
(possibly free); and (5) the data have to be provided in a ready-to-use and harmonized form.

With respect to these constraints, S2 data from the EU Copernicus Program are suitable.
The S2 MSI (Multi spectral Instrument) sensor acquires 13 bands in the range of 400–2500 nm
with a nominal temporal resolution of 5 days and a maximum spatial resolution of 10 m.
Additionally, S2 images are provided free of charge and, if obtained with a processing level of
2A, are already ortho-projected and BOA (Bottom of the Atmosphere)-calibrated.

The S2 images used in this work were obtained through the Google Earth Engine
(GEE) platform from the S2 Harmonized Level 2A Collection. The declared spatial accuracy
of the data is 3 m and the radiometric resolution is 12 bits [40] (Table 2).

Table 2. S2 band technical features: central wavelength, bandwidth, ground sample distance (GSD),
radiometric resolution, and temporal resolution [41].

Spectral Band Central Wavelength (nm) Band Width (nm) GSD

B1 (Aerosol) 443 20 60
B2 (Blue) 490 65 10

B3 (Green) 560 35 10
B4 (Red) 665 30 10

B5 (Red Edge 5) 705 15 20
B6 (Red Edge 6) 740 15 20
B7 (Red Edge 7) 783 20 20

B8 (Near Infrared) 842 115 10
(B8A Near Infrared Plateau) 885 20 20

B9 (Water Vapor) 945 20 60
B10 (Cirrus) 1380 30 60

B11 (Short Wave Infrared 1) 1610 90 20
B12 (Short Wave Infrared 2) 2019 180 20

Radiometric resolution 12 bit
Temporal resolution 5 days

According to the literature, single bands and several spectral indices [3] can be used
as predictors for ISR and Ψstem. All S2 bands (excluding B1, B9, and B10) were used in
this work.

In the meantime, some vegetation indices were computed as well (Equations (3)–(10)).

NDVI = (B8 − B4)/(B8 + B4) (3)

EVI = 2.5·(B8 − B4)/(B8 + 6·B4 − 7.5·B2 + 1) (4)

GNDVI = (B8 − B3)/(B8 + B3) (5)

NDRE = (B8 − B5)/(B8 + B5) (6)

NDWI1 = (B8 − B12)/(B8 + B12) (7)

NDWI2 = (B3 − B11)/(B3 + B11) (8)

NDWI3 = B11/B12 (9)

http://gps.sit.puglia.it/SpiderWeb/frmIndex.aspx
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NDMI = (B8 − B11)/(B8 + B11) (10)

where B2, B3, B4, B5, B8, B11, and B12 correspond to the spectral ranges reported in Table 2.
Bands showing a GSD = 20 m were oversampled to 10 m (nearest neighbor).

NDVI, EVI, and GNDVI are spectral indices widely used for estimating crop
biomass [42], assessing plant health status [43,44], and conducting phenological analy-
ses [45,46]. Conversely, NDWI1-2-3 and NDMI are primarily related to water content and
can be used for Ψstem prediction [47–49]. No soil-adjusted spectral indices (such as SAVI,
OSAVI, MSAVI, or MSAVI2) were considered in this study due to the specific nature of the
vineyard. In fact, the Tendone training system resulted in a high soil coverage (Figure 2),
eliminating the need for spectral indices designed to reduce the soil effect in the vegetation’s
spectral response. Furthermore, Borgogno et al. [29] identified a strong correlation between
the NDVI and MSAVI2 spectral indices in vineyards covered with plastic sheets, suggesting
that these two indices provide similar information.

Spectral bands and spectral indices time series (TS) were generated using GEE. The
local (pixel-level) temporal profile of the index/band was initially filtered using the Scene
Classification Layer (SCL) provided with the image, by masking out the observations
labeled as clouds, shadows, and cirrus. It was finally regularized at a 1-day time step
with 1st-order linear interpolation [50] in order to ensure a satellite observation (even if
estimated) for all the dates of the ground surveys (Table 3).

Table 3. Temporal resolution of Sentinel-2 images and ground data availability for 2022 from April to
August (DOY: day of the year). First column reports the S2 images temporally closer to the ground
surveys. Second column reports the S2 images used, either native or derived from the interpolation
procedure (highlighted with an asterisk *).

Closest Sentinel-2 Image Sentinel-2 Image Used ISR Ψstem

DOY

117 119 * 119 -
134 134 134 -
142 141 * 141 -
142 145 * 145 145
152 151 * 151 151
164 162 * 162 162
184 181 * 181 181
192 190 * 190 190
202 201 * 201 201
207 207 207 207
217 216 * 216 216
239 234 * 234 234

On each sampling date, the corresponding spectral band or index was extracted. The
mean value of the pixels underlying the ground samples (usually one or two pixels per
sampling area) was computed for that specific date. This process resulted in the extraction
of the mean values of indices/bands from the regularized image TS. The values were then
incorporated as new attributes into the vector layer that identifies the locations of the
ground samples.

Based on a previous work [29], a preliminary analysis was conducted to investigate
the contribution of the plastic film to the spectral responses of the vines during the 2022
growing season. Eighteen spectral features were considered during the analysis (Table 4).
For this purpose, a change point analysis was performed with reference to the field-average
daily interpolated TS of the above mentioned 18 spectral features. Specifically, the Pettit’s
non-parametric test was used to locate the strongest breakpoint along the time series using
two subsequent windows with a size equal to 20 days [51].
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Table 4. Considered meteorological and spectral features.

Ecophysiological Parameters Meteorological
Feature Spectral Features

ISR (%)
Ψstem (Mpa) GDD

B2-B3-B4-B5-B6-B7-B8-B8A-B11-B12
NDVI-GNDVI-NDRE-EVI

NDMI-NDWI-NDWI2-NDWI3

2.4. Relating ISR and Ψstem with Spectral and Meteorological Features

ISR/Ψstem estimates were obtained according to 3 different approaches: (i) 1st order Ordi-
nary Least Square regression (OLS), (ii) Multiple Regression (MLR), and (iii) machine learning.

As proposed by previous studies, crop physiological parameters can be estimated from
spectral features by incorporating machine learning algorithms in the process [16,52]. No
Deep Learning (DL) approach have been employed due to the limited amount of training
data and the consequent high risk of model overfitting [53,54].

In line with best practices, OLS, MLR, ML, and DL models should be used in their most
straightforward form, avoiding unnecessary complexity that could lead to overfitting and
poor generalization to new data [55,56]. The goal is to achieve the expected results with the
simplest model. ML and MLR algorithms, theoretically, can include all available features
(predictors); however, this can lead to unnecessarily large models. To tackle this problem,
in this work, a preliminary step was performed to select the most meaningful features and
to tune the model parameters. This procedure was carried out on the same dataset, both
excluding and including the GDD data derived from the meteorological station located
beneath the plastic sheet as a possible available variable in the feature selection process.
This approach was chosen to test possible approaches that do not have to rely on the
meteorological data from under the plastic sheets, which are not always accessible.

A k-fold cross-validation strategy (k = 5) was utilized to mitigate overfitting and to
estimate the accuracy of the models. This strategy was adopted during the training and
testing phases for the single feature OLS, MLR, and ML models. Specifically, all testing
folds were combined to recreate the entire test dataset and obtain the general evaluation
metrics reported in Section 2.4.4.

2.4.1. Polynomial Regression

To investigate the relationship between spectral features and ISR/Ψstem, first-order
polynomial OLS regressions were used [57], as shown in Equation (11):

y = a·x + b (11)

where y corresponds to the dependent variable (i.e., ISR or Ψstem), x is the independent
variable (i.e., spectral or meteorological feature), and a and b are the slope and intercept
model parameters, respectively.

Conversely, the relationship between GDD and active biomass (for which ISR is a
proxy) is known to be well modeled by a 2nd-order polynomial regression (i.e., a concave
parabola) [29,45]. Therefore, the relationship between ISR and GDD was modeled according
to Equation (12):

y = a·x2 + b·x + c (12)

where y corresponds to the dependent variable (i.e., ISR), x is the independent variable (i.e.,
GDD), and a, b, and c are the model parameters.

The coefficients for the models were obtained using the entire dataset for training, with
the aim of highlighting patterns in the data. Conversely, the evaluation metrics reported
in Section 2.4.4 were computed for the test dataset. This dataset was derived from the
cross-validation procedure, during which, a different polynomial regression was fitted
for each training fold. This dual approach enables a comprehensive exploration of the
relationships between the spectral–meteorological features and the two ecophysiological
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ones. At the same time, it allows for a thorough testing of the models using the entire
dataset, thereby minimizing the risk of overfitting.

2.4.2. Multiple Linear Regression

Multiple linear regression (MLR) with all the variables was used to predict ISR/Ψstem.
Performing MLR considering several variables might be detrimental due to the risk of
collinearity between them, causing model parameter instability [58]. This phenomenon is
a common issue in multiple regression analyses, which is known as multicollinearity. To
address this issue and select variables, multiple linear regression with stepwise selection
(MLRS) was employed. Akaike Information Criterion (AIC) was used to select the best
features that strongly contributed to the model [59]. Due to the limited number of ground
samples and the need to thoroughly test the models across a wide range of cases, both MLR
and MLRS were evaluated using a 5-fold cross-validation approach. Therefore, each model
was effectively tested using the entire dataset.

2.4.3. Machine Learning Algorithms

ML algorithms can be used to efficiently model complicated and, possibly, non-linear
relationships. Specifically, Random Forest Regression (RFR), Support Vector Regression
(SVR), and Partial Least Squares Regression (PLSR) were chosen for this study [60–62].

In order to limit the number of variables used in the ML training, a forward feature
selection was utilized, calibrating the same model that is fed with an increasing number of
features to look for a significant reduction in RMSE.

SVR and RFR require an additional step aimed at identifying the optimal hyperparam-
eters; this was achieved through a GridSearch approach that was repeated for every feature
group used during the forward feature selection step. Table 5 reports the parameters values
tested in this step. All the features used for ML training were normalized a priori to avoid
any scale-related problems. This iterative approach led to the identification of the best
model configuration for the 3 tested ML algorithms. Finally, the best model for each of the
considered algorithms: PLSR, SVR, and RFR. Similar to Section 2.4.2, the ML training and
testing were performed using a 5-fold cross-validation approach. All the ML analyses were
conducted using Python 3.10.

Table 5. Hyperparameter values tested to find the best RFR and SVR configuration.

ML Algorithm Hyperparameters

RFR Trees:
{50, 100, 200}

Maximum
Depth:

{None, 10, 20}

Minimum
Sample Leaf:

{1, 2, 4}

Maximum
Features:

{sqrt, log2, 1}

SVR Kernel:
{RBF}

C:
{0.01, 0.1, 1, 10,

50, 100}

ε:
{0.1, 0.2, 0.3, 0.5,

1, 2, 4}

γ:
{scale, auto, 0.1,
0.5, 1, 2, 4, 10}

2.4.4. Model Performance Evaluation

All models were assessed based on the relationship between observed and predicted
values. The p-value was the first parameter considered to evaluate the significance of the
relationship between dependent and independent variables for the OLS, MLR, and MLRS
approaches. The coefficient of determination (R2, Equation (13)) and the Root Mean Squared
Error (RMSE, Equation (14)) were chosen as performance indicators for all models [63].
Additional insights were obtained through the analysis of the slope and intercept of the
first-order linear model for the observed and predicted values of the dependent variable
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(O-P slope and O-P intercept, respectively). Statistical analyses were conducted using
R software, version 4.3.1 [64].

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi − yi

)2 (13)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(14)

where yi and ŷi are the i-th measurement and corresponding predicted value for
i = {1, . . ., n}, n is the number of measurements, and yi is the mean of all the values.

The RMSE, R2, O-P slope, and O-P intercept were computed using the test set derived
from the cross-validation procedure.

3. Results

3.1. Ground Data Variability

ISR and Ψstem were measured through ground surveys 12 and 9 times, respectively.
Table 6 reports the mean, minimum, maximum, and standard deviation values for both
parameters. On DOY 119 (phenological stage of ‘six leaves have unfolded’), the vine shoots
were long enough to guarantee a high accuracy in ISR determination. The average solar
radiation intercepted by the foliage ranged from 24.86% on DOY 119 (April 29) to 87.48% on
DOY 234 (August 22, ‘end of wood maturation’, and end of field measurements). The ISR
values increased linearly as the shoots grew until DOY 190 (July 9): this was the moment
when the veraison occurred and shoot elongation stabilized. Afterwards, due to viticultural
canopy management (i.e., basal leaf removal and shoot topping), the ISR values decreased
until DOY 216 (August 4, ‘berries ripe for harvest’); on DOY 234 (August 22), it reached a
value close to the one on DOY 190. The minimum and maximum ISR values were found to
be 18.78% (DOY 119) and 93.98% (DOY 181, ‘all berries are touching’), respectively.

Table 6. Statistical description of ISR and Ψstem values collected on cv Luisa vines, on surveyed days
of year (DOY) (SD = standard deviation).

DOY
ISR (%) Ψstem (MPa)

Mean Min Max SD Mean Min Max SD

119 24.86 18.78 30.32 4.15 - - - -
134 38.86 33.27 43.54 3.73 - - - -
141 44.16 38.33 49.37 3.70 - - - -
145 52.05 44.65 59.13 4.01 −0.515 −0.605 −0.425 0.058
151 60.44 53.23 67.40 4.39 −0.569 −0.625 −0.485 0.039
162 72.94 57.55 80.78 7.35 −0.494 −0.550 −0.435 0.036
181 84.51 66.29 93.98 7.89 −0.617 −0.710 −0.490 0.066
190 87.11 74.39 93.57 5.11 −0.635 −0.740 −0.465 0.097
201 85.94 72.60 93.98 6.06 −1.031 −1.240 −0.875 0.120
207 83.40 72.13 90.95 6.12 −1.094 −1.335 −0.895 0.127
216 83.58 73.72 89.54 5.83 −0.837 −1.030 −0.700 0.112
234 87.48 78.14 93.70 4.87 −0.818 −1.090 −0.625 0.156

The average stem water potential ranged from −0.494 MPa on DOY 162 (June 11,
‘berries beginning to touch’) to −1.094 MPa on DOY 207 (July 26, ‘berries brightening in
color’). The maximum and minimum Ψstem values were found to be −0.425 MPa (DOY
145, ‘fruit is set’) and −1.335 MPa (DOY 207), respectively. According to the threshold
values proposed by van Leeuwen et al. [65], the average vine water deficit was null
from the beginning of the measurements until DOY 162, weak on DOYs 181 and 190,
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weak to moderate on DOYs 201-207, and weak again on DOYs 216 and 234, i.e., the last
two measurement dates.

The two ecophysiological parameters showed considerable variability during the
growing season of vines, as demonstrated by both the magnitude of the standard deviation
and the extended ranges of values. This variability suggests wide spatial and temporal
fluctuations, resulting in a sufficiently large dataset covering the ISR range from 18.78% to
93.98%, and Ψstem range from −0.425 MPa to −1.335 MPa, despite the fact that the data
were collected from a single vineyard in just one year.

3.2. Temporal Trends of Vineyard Reflectance and Spectral Indices

Some preliminary analyses explored the contribution of the plastic film to the vine-
yard’s spectral behavior. Both single spectral bands and spectral indices, namely vegetation
indices (VIs), were considered (Figure 3). Starting from the beginning of the year, the
S2 reflectance of bands B2, B3, B4, and B5 showed a rapid increase at DOY 100, which
coincided with budbreak, i.e., the time when the plastic sheets were un-rolled over the
vineyard, and decreased rapidly in early December, when the plastic sheets were rolled
up. As for the other bands, the B11 and B12 reflectance values increased before budbreak
and again at the beginning of December, while the spectral response of B6, B7, B8, and B8a
seemed to not be directly affected by the film handling.
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Figure 3. Temporal trends of satellite-derived spectral features collected during the year (DOY):
(a) reflectance values of visible bands (B2, B3, B4); (b) reflectance values of red-edge and NIR bands
(B5, B6, B7, B8, B8A); (c) reflectance values of shortwave infrared bands (B11, B12); (d) vegetative
indices (NDVI, GDVI, EVI, NDRE). Vertical dashed lines correspond to the time series change points
identified by the Pettit test (dashed line colors match the temporal profile colors).
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These observations, utilizing the abrupt transitions between absence/presence/
absence of the plastic covering during the vine annual cycle, align with findings by
Borgogno et al. [29], who directly compared reflectance values coming from covered
and uncovered vineyards. Those authors noted that bands B7, B8, and B8A showed no
significant difference between covered and uncovered vineyards, which was different from
the results from the visible and SWIR bands.

As far as indices are concerned, Figure 3 shows notable reductions in VI around
DOY 100 (when plastic sheets were un-rolled over the vineyard). This can be related to a
significant increase in reflectance values of visible bands and B5. In contrast, no analogous
increase was found for B8; this suggests an apparent loss of photosynthetic activity while
maintaining the same biomass (i.e., reduction in vegetative indices). Conversely, in early
December, when the plastic sheets were rolled up, a significant increase in NDVI and
GNDVI values were noted, together with a decrease in EVI values. The seemingly stable
trend of the NDRE values may be explained by the combination of bands B5 and B8, which
both showed gradual changes towards the end of the season (when the plastic sheets were
rolled up). VI also showed similar patterns from budding until after harvesting. According
to these findings, and considering that it is the most used index for monitoring grapevine
behavior during the growing season, NDVI was selected as the reference index [66]. Despite
the presence of the plastic film from budbreak until after harvesting (when the onset of leaf
senescence took place), NDVI showed a pattern that was quite consistent with the seasonal
trends observed in an uncovered vineyard [67]. The minimum NDVI values were recorded
in April. Conversely, the NDVI maxima were reached in July (shortly after veraison), which
were followed by a general decrease in August. It would seem that NDVI trends could be
used to efficiently monitor vines in spite of the presence of this type of plastic cover. This
finding is aligned with a previous work [29].

Change point analyses enable the easy identification of the most abrupt changes in each
TS. Figure 3 presents the identified change points for each TS. The analysis clearly identified
the moment of plastic sheet opening as the most significant for all the spectral bands and
indices (p-values < 0.0001), thereby supporting all the previous analyses. Interestingly,
the most abrupt changes were identified when the plastic sheets were opened on the field
rather than when they were closed.

3.3. Relating ISR and Ψstem with Spectral and Meteorological Features: Linear
Regression Analysis

3.3.1. ISR Estimation

Given the results of the preliminary analysis (Figure 3), first-order polynomial linear
relationship models were tested to relate ISR with the S2 bands and spectral indices. Table 7
reports the values of the computed intercept, slope, p-value, R2, RSME, and coefficients
derived from the fitted first-order polynomial model between the observed and predicted
values (O-P intercept and O-P slope). All the satellite spectral features showed significant
relationships with ISR (p-value < 0.0001). The only exception was NDWI2.

The most significant bands (p-value < 0.0001 and R2 > 0.80) were found to be those
located between 740 and 865 nm (Table 2). In particular, B6, B7 (red edge), B8, and B8a
(NIR) proved to be the best predictors with an RMSE value of about 7%. Additionally, the
linear model for the observed and predicted values showed that B7 and B8A led to the
most aligned predictions (i.e., O-P intercept < 7; O-P slope = 0.9).

Regarding the vegetation indices, the lowest errors were achieved with NDRE
(R2 = 0.872 and RMSE = 7.82%). Among the water indices, the strongest correlation
was found with NDMI and NDWI1 (see Equations (7) and (10)). Conversely, NDWI2 and
NDWI3 resulted in the weakest relationships. In general, the vegetation indices (i.e., NDVI,
NDRE, GNDVI, and EVI) and NDMI led to a minor overestimation of ISR at low values
(O-P intercept < 10). Simultaneously, a fairly linear relationship was maintained between
the observed and predicted ISR, with an O-P slope greater than 0.85.
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Table 7. Parameters and statistical coefficients of 1st-order polynomial linear regressions between
ground ISR (%) and satellite features and of 2nd-order polynomial linear regression between ground
ISR (%) and a meteorological feature (GDD). O-P intercept and O-P slope refer to the intercept and
slope derived from the observed–predicted 1st-order polynomial linear model. RMSE, R2, O-P slope,
and O-P intercept were computed from the test set derived from the cross-validation procedure.

Satellite Feature Intercept Slope p-Value R2 RMSE (%) O-P Intercept O-P Slope

B2 269 −1042 9.24 × 10−23 0.477 15.82 33.99 0.49
B3 278.8 −963 2.35 × 10−20 0.437 16.41 36.70 0.45
B4 203.5 −708.6 7.50 × 10−41 0.706 11.86 18.90 0.72
B5 281.9 −863.2 1.31 × 10−27 0.554 14.60 28.97 0.57
B6 −116.1 453.4 2.98 × 10−66 0.874 7.77 8.34 0.88
B7 −75.6 309.6 4.86 × 10−72 0.897 7.06 6.99 0.90
B8 −83.22 324.43 5.36 × 10−66 0.873 7.78 8.46 0.87

B8A −82.07 311.56 2.20 × 10−72 0.897 7.02 6.90 0.90
B11 292.7 −740 3.63 × 10−32 0.614 13.59 25.16 0.62
B12 163.6 −568.2 5.53 × 10−44 0.737 11.21 17.32 0.74

NDRE 3.66 214.91 2.27 × 10−65 0.868 7.94 8.70 0.87
GNDVI −14.59 233.37 2.18 × 10−63 0.857 8.25 9.27 0.86
NDVI −5.79 179.19 1.30 × 10−63 0.860 8.19 9.18 0.86
NDMI 24.06 199.14 1.67 × 10−67 0.878 7.62 8.14 0.88
NDWI −3.326 153.89 2.93 × 10−61 0.870 7.89 8.70 0.87
NDWI2 109.1 259.7 7.48 × 10−4 0.062 21.20 62.50 0.07
NDWI3 −84.24 82.38 5.73 × 10−39 0.756 10.81 16.27 0.76

EVI 4.01 108.30 1.45 × 10−62 0.856 8.29 9.47 0.86

GDD 13.85 a: −4 × 10−7

b: +0.001 3.4 × 10−77 0.917 6.31 5.53 0.91

The relationship between ISR and GDD was modeled with a second-order polynomial
model, as suggested by previous studies [29,45]. The relationship between the environmen-
tal variable GDD and ISR had the highest R2 and the lowest RMSE values (0.917 and 6.31%,
respectively). The intercept derived from the first-order linear model for the observed
and predicted ISR values was the smallest compared to those obtained from the spectral
features (O-P intercept = 5.53). In contrast, the O-P slope was the highest at 0.91.

3.3.2. Ψstem Estimation

Table 8 shows the Ψstem estimation results from the univariate OLS analysis alongside
the first-order model parameters for the observed and predicted Ψstem values for all
analyzed features (O-P intercept and O-P slope). The analyses resulted in low R2 values
(<0.45) and high RMSE values (>0.17 MPa). Regressions built using B6, B7, B8, B8A, NDWI2,
and EVI as predictors (considered individually) were significant with p-values > 0.0001. B3
was the best predictor, showing an R2 and a RMSE value of 0.418 and 0.174, respectively.
Reflectance in the visible and SWIR bands was found to be positively correlated (slope > 0)
with Ψstem.

The results also showed that the spectral indices performed worse compared with
single bands in predicting Ψstem. The corresponding RMSE values were around 0.2 MPa.
However, it can be noticed that all spectral indices had a negative correlation with Ψstem
(slope < 0). The unique exception was NDWI2, which showed a slightly positive slope but
with a very dispersed point cloud (R2 = 0.031). This phenomenon can be interpreted as a
non-significant relationship. Additionally, the O-P slope was about 0.04, confirming the
hypothesis.

Regarding the O-P parameters, it can be observed that the intercept was always
negative (<0), while the slope was always smaller than 0.4 with the only exceptions being
B3 and GDD (0.43 and 0.46, respectively). The O-P parameters highlight the unsatisfying
predictive capabilities of the first-order linear models applied to both the spectral and
meteorological variables.
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Table 8. Statistical results of 1st-order polynomial regression relating ground-measured Ψstem
(MPa) to satellite spectral features and meteorological data (GDD). O-P intercept and O-P slope
refer to the intercept and slope derived from the observed–predicted 1st-order polynomial linear
model. RMSE, R2, O-P slope, and O-P intercept were computed from the test set derived from the
cross-validation procedure.

Satellite Feature Intercept Slope p-Value R2 RSME (MPa) O-P Intercept O-P Slope

B2 −2.675 10.250 2.01 × 10−12 0.357 0.183 −0.46 0.37
B3 −2.931 10.180 1.05 × 10−14 0.418 0.174 −0.41 0.43
B4 −1.760 5.617 2.45 × 10−9 0.270 0.195 −0.52 0.29
B5 −2.617 7.739 1.90 × 10−12 0.355 0.184 −0.46 0.38
B6 0.201 −2.193 1.67 × 10−2 0.041 0.224 −0.70 0.05
B7 0.227 −1.948 6.43 × 10−4 0.099 0.217 −0.66 0.10
B8 −0.069 −1.350 1.90 × 10−2 0.040 0.224 −0.70 0.04

B8A 0.413 −2.243 1.64 × 10−4 0.120 0.215 −0.64 0.12
B11 −2.526 6.051 6.88 × 10−9 0.255 0.197 −0.53 0.27
B12 −1.459 4.657 3.30 × 10−8 0.238 0.199 −0.55 0.25

NDRE −0.202 −1.577 1.24 × 10−6 0.191 0.206 −0.59 0.20
GNDVI 0.012 −1.916 1.17 × 10−7 0.223 0.202 −0.56 0.23
NDVI −0.134 −1.313 2.23 × 10−6 0.181 0.207 −0.59 0.19
NDMI −0.264 −1.774 2.37 × 10−7 0.211 0.203 −0.57 0.22
NDWI −0.092 −1.237 1.47 × 10−6 0.150 0.211 −0.61 0.16
NDWI2 −0.408 2.082 2.39 × 10−2 0.031 0.225 −0.70 0.04
NDWI3 0.452 −0.615 3.29 × 10−7 0.079 0.219 −0.67 0.08

EVI −0.358 −0.565 7.94 × 10−4 0.093 0.218 −0.66 0.10
GDD −0.371 −0.0003 8.81 × 10−16 0.435 0.172 −0.40 0.46

3.4. Relating ISR and Ψstem with Spectral and Meteorological Features: Multivariate Approach

Multivariate regressions can be prone to overfitting, especially when dealing with lim-
ited datasets and a large number of independent variables. To address this, two strategies
were employed: an MLR using all available features (with and without Growing Degree
Days—GDD) and a Multiple Linear Regression with stepwise feature selection based on
Akaike Information Criterion (MLRS) (also with and without GDD). The results of both the
MLR and MLRS for ISR and Ψstem estimation are reported in Table 9 and refer to the test
set derived from the 5-fold cross validation.

The MLR approach yielded satisfactory results for ISR estimation compared to the
univariate models. Specifically, the RMSE and R2 values obtained from the 5-fold cross-
validation were 7.26% and 0.88, respectively. Notably, the inclusion of the GDD variable
significantly improved the results, with R2 increasing to 0.93 and RMSE decreasing to
5.39%. However, it is important to note that these results were achieved by considering all
variables (18 without GDD and 19 with GDD).

The MLRS approach, which utilized AIC for feature selection, reduced the number of
predictive variables by selecting only the most informative ones, thereby mitigating the risk
of overfitting. As a result, both RMSE and R2 showed improvement with GDD (5.13% and
0.94, respectively) and without GDD (6.65% and 0.90, respectively). Notably, the O-P slopes
and intercepts were always higher than 0.9 and lower than 6, respectively. This highlights a
strong linear relationship between the observed and predicted ISR values, specifically for
the MLRS when considering GDD, which showed the lowest O-P intercept value (3.05) and
the highest O-P slope (0.95).

As for Ψstem estimation, the MLR approach outperformed the univariate models,
yielding RMSE and R2 values of 0.136 MPa and 0.53, respectively, when GDD was included,
and 0.134 and 0.55, respectively, when it was not. Furthermore, by selecting only the most
informative variables, the RMSE decreased to 0.117 and 0.118, and the R2 increased to
0.62, both with and without GDD. Regarding the O-P intercepts and slopes, MLR and
MLRS managed to effectively reduce the former and increase the latter, compared to the
univariate models.
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Table 9. Statistical results of MLR and MLRS approaches relating ground-measured ISR (%) and
Ψstem (MPa) to satellite spectral features and meteorological data (GDD). O-P intercept and O-P
slope refer to the intercept and slope derived from the observed–predicted 1st-order polynomial
linear model. RMSE, R2, O-P slope, and O-P intercept were computed from the test set derived from
the cross-validation procedure.

Method Ecophysiological
Parameter GDD Selected Features RMSE R2 O-P Intercept O-P Slope

MLR ISR
No All 7.26% 0.885 5.951 0.911

Yes All 5.487% 0.932 4.633 0.932

MLRS ISR
No B8A, GNDVI 6.653% 0.898 6.564 0.902

Yes GDD, NDWI3, B7, NDWI,
NDMI, NDVI 5.132% 0.944 3.049 0.953

MLR Ψstem
No All 0.134 MPa 0.555 −0.246 0.655

Yes All 0.136 MPa 0.527 −0.275 0.628

MLRS Ψstem
No B3, B8, NDRE, B4, GNDVI,

B6, B7, B8A, NDVI 0.118 MPa 0.621 −0.254 0.660

Yes GDD, NDWI2, B8, NDMI, B4,
NDRE, B7, B11 0.117 MPa 0.625 −0.251 0.657

3.5. Relating ISR and Ψstem with Spectral and Meteorological Features: Machine
Learning Approach

ML algorithms are renowned for being able to model complex and non-linear re-
lationships. The results reported in the previous sections highlighted the potential and
limitations of linear OLS and multivariate approaches like MLR/MLRS in predicting ISR
and Ψstem for vines. For these reasons, three ML algorithms (RFR, SVR, and PLSR) were
tested to model the same relationships. ML training and testing were performed with
and without GDD as an additional predictor. The optimization and feature-selection step
made it possible to tune the model parameters and to select the most significant features
(Tables 10 and 11). All the reported results refer to the test set derived from the 5-fold
cross validation.

The ISR estimates derived from the ML algorithms demonstrated lower RMSE and
higher R2 values compared to those obtained from linear OLS. Specifically, the lowest RMSE
was achieved when RFR was used with GDD as an additional predictor, resulting in an
RMSE of 4.7% with an R2 of 0.96. When these results were compared to those from MLRS,
a few improvements were observed. Notably, the slope and intercept of the observed–
predicted relationship for RFR, when GDD was considered, were the highest (0.96) and
lowest recorded (1.8), respectively. Interestingly, the worst performing models were the
SVR, which considered only two variables (B6 and B7), and PLSR, which also selected only
two variables (B5 and B8A), which achieved average results.

Regarding Ψstem estimates, the ML approach showed lower RMSE and higher R2

values compared with the ones from OLS. On the other hand, when compared to MLR and
MLRS, only a few improvements were noticeable. Specifically, the minimum RMSE and
highest R2 were obtained using RFR with GDD as additional predictor (RMSE = 0.101 MPa
and R2 = 0.81). Additionally, the O-P intercept and slope were the closest to zero and
the closest to one observed so far in the Ψstem modeling task. Conversely, the worst
performing models were RFR (B3, B5, B8, and NDWI) and PLSR (B3, B4, B7, B8, B8A, and
NDRE) with RMSE values equal to 0.148 and 0.147 MPa, respectively.
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Table 10. ML model parameters and predictors used to generate ISR estimates from the tuning step.
O-P intercept and O-P slope refer to the intercept and slope derived from the observed–predicted
1st-order polynomial linear model. RMSE, R2, O-P slope, and O-P intercept were computed from the
test set derived from the cross-validation procedure.

ML Algorithm GDD Best Hyperparameters Selected Features RMSE
(%) R2 O-P Intercept O-P Slope

RFR No

Trees: 50
Max Depth: 20
Min Leaves: 1

Max Features: log2

B2, B3, B4, B6, B7, B8,
B8A, EVI, GNDVI,

NDMI, NDWI2

5.1 0.95 4.72 0.94

SVR No

Kernel: RBF
C: 1
ε: 0.1

γ: scale

B6, B7 6.4 0.91 6.72 0.89

PLSR No — B5, B8A 6.6 0.91 6.28 0.90

RFR Yes

Trees: 100
Max Depth: 20
Min Leaves: 1

Max Features: log2

GDD, B2, B3, B4, B6,
B8A, B12, NDMI,

NDWI2

4.7 0.96 1.8 0.96

SVR Yes

Kernel: RBF
C: 100
ε: 0.1
γ: 0.1

GDD, B3, B7, B8, B11,
B12, NDWI2

5.2 0.96 7.25 0.88

PLSR Yes — GDD, B3, B7, B8A, B11,
B12, EVI, GNDVI 5.0 0.95 4.20 0.94

Table 11. ML model parameters as predictors used to generate Ψstem estimates from the tuning step.
O-P intercept and O-P slope refer to the intercept and slope derived from the observed–predicted
1st-order polynomial linear model. RMSE, R2, O-P slope, and O-P intercept were computed from the
test set derived from the cross-validation procedure.

ML Algorithm GDD Best Hyperparameters Selected Features RMSE
(MPa) R2 O-P Intercept O-P Slope

RFR No

Trees: 50
Max Depth: 10
Min Leaves: 1

Max Features: SQRT

B3, B5, B8, NDWI 0.148 0.58 −0.30 0.58

SVR No

Kernel: RBF
C: 100
ε: 0.5
γ: 0.5

B3, B4, B5, B6, B7, B8A,
NDRE, NDVI, NDWI2

0.125 0.71 −0.25 0.64

PLSR No — B3, B4, B7, B8, B8A,
NDRE 0.147 0.59 −0.28 0.62

RFR Yes

Trees: 100
Max Depth: 10
Min Leaves: 1

Max Features: sqrt

GDD, B4, B8A, EVI 0.101 0.81 −0.17 0.76

SVR Yes

Kernel: RBF
C: 50
ε: 0.1
γ: 4

GDD, B4, B6, B12, NDMI 0.122 0.72 −0.22 0.69

PLSR Yes — GDD, B8, B8A, EVI,
NDRE 0.136 0.65 −0.25 0.66

3.6. ISR and Ψstem Estimation Maps

The potential of this study lies in the integration of satellite data, ground surveys,
and ML/MLRS models. Within this framework, the first step was to train an appropriate
model to estimate vegetation parameters such as ISR/Ψstem based on ground samples. The
application of precision viticulture lies in obtaining field estimates of these two parameters
based on real-time satellite data. For this reason, four ISR and Ψstem estimation maps
were generated using the best-performing models (RFR with GDD). Four key vineyard
stages were explored: ‘berries are groat-sized’ (Figure 4a,b) at DOY 150; ‘all berries are
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touching’ (Figure 4c,d) at DOY 181; ‘beginning of ripening’ (Figure 4e,f) at DOY 192; and
‘after harvest’ (Figure 4g,h) at DOY 217.
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The ISR maps (Figure 4a,c,e,g) showed a gradual increase in vegetation cover over
time. However, in the N-E part of the field, a consistently less vegetated area was present.
The differences in ISR between areas were amplified by vegetative growth, as observed
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in the map at DOY 192. The Ψstem values (Figure 4b,d,f,h) showed variability in both
the space and time domains. At DOY 150, the outer zones showed higher Ψstem values
compared to the inner zones. However, with subsequent maps (Figure 4d,f,h), this trend
reversed. Furthermore, it is notable in these three maps that there was an apparent trend in
the distribution of Ψstem across the vineyard, as seen in the ISR values.

4. Discussion

Remote sensing, and Sentinel-2 data in particular, has emerged as an alternative [32,68–70]
for estimating vine parameters, offering advantages over traditional time-consuming techniques
that are commonly employed to assess plant water status [71] and vegetative growth [72,73].
However, remote sensing-based deductions can be affected by exceptional local conditions,
namely the presence of plastic coverings (or nets), that can lead to unexpected results if not
properly addressed [29]. Previous works demonstrated that, despite coverings, spectral signals
from vineyards are still significant especially if the plastic sheets are specifically designed for
canopy protection [29]. On other hand, the radiometric characteristics of plastic sheets have an
impact on transmitted radiation [30,74,75] and can have a significant effect on the reflection from
the canopies. With this premise, this work intended to explore the capability of satellite-derived
spectral bands and indices to estimate two crucial ground parameters: ISR and Ψstem.

Preliminary analyses were conducted to identify change points in the spectral time
series. These analyses confirmed that plastic sheets cause abrupt changes in the spectral
reflectance of vegetation. This highlights the need for proper models to estimate ecophysio-
logical parameters. These models should be specifically developed for vineyards covered
with plastic sheets.

ISR estimation with quadratic models applied to GDD led to the lowest overestimation
at low ISR values compared to the models based on spectral bands and spectral indices.
However, while GDD can effectively model ISR, it is important to note that the temperature
readings were derived from a single meteorological station located beneath the plastic
sheets (i.e., uniform across the entire vineyard). Therefore, this approach does not account
for in-field variability.

The outcomes from the spectral linear regression analysis indicated that S2 B6, B7
(vegetation red edge), and B8-B8A (NIR) are good predictors of ISR, showing a low sensi-
bility to plastic coverings. The importance of red-edge bands to describe vine vegetative
parameters is widely acknowledged in the literature [76]. Their importance was furtherly
confirmed by their inclusion in the MLRS and ML approaches designed for ISR estimation
(Tables 9 and 10). In particular, SVR provided estimates with an RMSE of 6.4%, leveraging
two red edge bands, namely B6 and B7. This is particularly interesting since they are
minimally influenced by plastic coverings. To substantiate this observation, additional
studies on a more extensive array of plastic covers have to be realized.

As expected, reflectance values in the visible range showed a negative correlation with
ISR, but for different reasons. The B2 and B4 wavelengths are known to be absorbed by
active vegetation to feed their photosynthetic activity. In contrast, B3 (green)’s stronger
absorbance is mainly due to leaf structures which are expected to be thicker when photo-
synthesis is stronger. In the visible spectrum, the highest R2 was found for B4 (665 nm),
while for the non-visible spectrum, the highest R2 was found for B8A (885 nm).

Despite the single bands showing a good correlation with ISR, some further improve-
ments are expected to come from the adoption of VI spectral indices that are known to
absorb most of the residual calibration uncertainties of BOA (Bottom of the Atmosphere)
reflectances (especially from film-covered vines). Films, in fact, can differently affect
reflectance values depending on bands (Figure 3). In contrast, VIs generally showed a
reduced difference for both covered and uncovered vines during the rolling/unrolling
phases of vineyard management.

In the univariate OLS-based approach, VI and NDMI provided estimates of ISR with
an approximately R2 of 0.86 and an RMSE of 8% for a vineyard characterized by notable
spatial and temporal variability in solar radiation intercepted by the canopy. Among the
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VIs, the Normalized Difference Red Edge (NDRE) emerged as particularly noteworthy.
NDRE was already documented as being useful in predicting ISR for maize and soy-
bean [52]. Other authors used NDVI to monitor the effect of the vineyard leaf thinning
practice with satisfactory results [77]; in this work, NDVI proved once again to be a useful
and versatile index to estimate leaf coverage. Water indices have opposing behaviors
depending on the inclusion or exclusion of the NIR band. The NIR band contribution in the
NDWI1 and NDMI formulas improves the prediction of biomass traits of local vegetation.
Conversely, indices where NIR is not present bands (i.e., NDWI2 and NDWI3) produce
worse predictions.

Generally, the lowest RMSE was achieved when RFR was used with GDD as an
additional predictor, resulting in an RMSE of 4.7% with an R2 of 0.96. When these results
were compared to those from MLRS, a few improvements were observed. Considering
these findings, it is important to discern the applicability of different modeling approaches
based on the complexity of the problem. For relatively simple linear problems, such as
the estimation of ISR, the OLS approach should be preferred due to its simplicity, ease
of interpretation, and lower computational demand. The OLS method, despite being
outperformed by the MLRS and ML algorithms in terms of RMSE, remains a robust and
efficient tool for tasks where the relationships between variables are well-defined and
less intricate.

Conversely, as far as Ψstem estimation is concerned, the prevailing approaches em-
phasize the use of more intricate modeling techniques [6,16,78]. Bands and spectral indices
were revealed to be significantly correlated with Ψstem (OLS); nevertheless, the corre-
sponding relationships showed low R2 values. In particular, B3 proved to be the best
predictor for Ψstem (Table 8). A preliminary investigation indicated that a reduction of
B3 reflectance (530–550 nm) provides a quite accurate explanation for the change in leaf
water potential induced by water stress when employing hyperspectral imaging with
grapevines [79]. Reflectance in the visible and SWIR bands was found to be positively
correlated with Ψstem, despite increasing reflectance in the SWIR range being commonly
found to be strongly correlated with a decrease in leaf water content [79]. However,
a negative slope value was also found for SWIR bands in a study conducted on cot-
ton [80]; furthermore, in grapevines, it was found that the slope of the linear model relating
Ψstem with B8a and B11 can be negative for Ψstem values > −0.70 MPa and positive for
Ψstem < −0.90 MPa [81]. According to our results, Ψstem values lower than −0.90 MPa
were found from DOY 201 (July 20) to DOY 234 (August 22, end of the field measurement);
this corresponds, in the study area, to the typically warmer summer period. In these
conditions, the vines located in the portions of the vineyard with a weaker performance
can suffer severely. Differences in vine biomass could explain these findings. In fact, given
the vineyard variability, Ψstem corresponded to biomass. Remembering that stem water
potential is an indicator of water status, whereas SWIR reflectance is an indicator of water
quantity, it is possible that vines with a higher biomass, even if they are water stressed,
could retain a high total water amount. In contrast, models using red-edge and NIR bands
showed a lower degree of prediction capability; however, when combined with bands
in the SWIR and visible spectrum, red-edge and NIR bands contributed information for
the indices with more pronounced relationships with Ψstem, in accordance with other
authors who demonstrated that the short-wave infrared, near-infrared, and red bands,
along with their corresponding indices, are significantly associated with the water status
of vines [6,52]. Additionally, these features were incorporated into the MLR, MLRS, RFR,
SVR, and PLSR models (Table 11), confirming their contribution to the estimation of the
plant’s water status. These improved modeling performances underscore the necessity of
multiple spectral variables for accurate Ψstem estimation.

In this study, ML algorithms, specifically SVR and RFR, were shown to achieve satisfac-
tory results, with RMSE values of 0.125 and 0.148 MPa, respectively. Similar findings were
reported in a study where vine predawn water potential was predicted using hyperspectral
data in two vineyards [82]; the RMSE was reported to be approximately 0.12–0.11. A more
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recent study applied ML to Sentinel-2 satellite data to estimate Ψstem, finding an RMSE of
0.26 [16]; this result was obtained over three growing seasons and incorporated a dataset of
348 Ψstem measurements from various cultivars.

In addition, we explored the incorporation of GDD into the models; it served to
include microclimatic temperature information. The results exhibited further improvement,
yielding a reduced RMSE of only 0.122 for SVR and 0.101 for RFR. This improvement
is particularly remarkable when considering the variability observed in Ψstem within
the vineyard on the same dates; however, incorporating GDD involves introducing a
variable into the models that needs to be measured in the field. Conversely, the MLR
and MLRS approaches did not benefit from the inclusion of GDD as a variable, leading
to approximately the same results. The results clearly showed that the MLRS and ML
models, specifically RFR, can be employed to achieve satisfactory results, outperforming
the univariate OLS approach. Based on the favorable outcomes and results from prior
investigations, it seems that the inclusion of a plastic film did not impede the efficacy of
multivariate and machine learning models for the estimation of Ψstem.

The models relied on data with a range of Ψstem values, spanning from −0.425 MPa
to −1.335 MPa. Lower Ψstem values were not measurable during the season due to
irrigation support given to the table grape vineyard and, therefore, could not be included.
Consequently, the efficacy of estimating water status, especially in the presence of severe
water stress (<1.4 MPa), requires verification in future studies.

Additionally, other studies have proposed methodologies based on functional time
series analyses to estimate vineyard variability and yield parameters [83]. However, these
approaches are not directly transferable to real-time applications. Therefore, we suggest that
a more direct method, linking spectral and meteorological data to vegetation parameters,
would be better suited for real-time tasks.

5. Conclusions

This work investigated the challenges posed by plastic film coverings in vineyards, and
demonstrated that, despite interference, accurate estimation of crucial ground parameters
was achieved; these included (i) ISR, which is strictly related to leaf area [72] and crop
coefficients [37,84,85], and (ii) Ψstem, which is a reliable indicator of plant water status.

Preliminary analyses of the spectral time series confirmed the effects of the plastic
sheets on the spectral responses of the vegetation. Therefore, a broad range of models,
from simple linear regressions to more complex machine learning-based ones, were tested
to identify the best model and the most important spectral/meteorological predictive
features. Single linear regressions provided satisfactory results regarding ISR estimation;
conversely, Ψstem appeared to require more complex and refined models. Specifically,
Multivariate Regression, Random Forest Regression, and Support Vector Regression led to
the best results.

The findings from this work suggest that Multiple Regression and machine learning
models have high potential to generate more accurate predictions than ordinary regression
methods, especially for agricultural applications where the relationships are multivariate
and complex. However, on some occasions, even single bands or spectral indices can be
used to monitor ISR. It is in fact evident that accurate machine learning-derived estimates
required a relatively high number of predictors (features), suggesting a trade-off between
model complexity and performance. This aspect has to be carefully considered and suggests
the importance of a preliminary step of feature selection. However, it should be noted that
a fairly simple feature selection method was employed and more effective ones like Genetic
Algorithms (GAs) or Shapely Addictive Explanation (SHAP) should be considered in future
studies. Additionally, recent studies investigated the potential of using time series-based
Artificial Neural Networks for spectral index forecasting [86,87]. In this context, these
forecast estimates could be employed to predict crop ecophysiological parameters and thus
further enhance precision agriculture applications.
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Finally, an approach was proposed to develop a method to assess the impact of the
cover on the spectral signature at the beginning of the season. Further research is warranted
to explore diverse types of plastic films, providing a comprehensive understanding of their
influence on the spectral signature of vegetation, since the radiometric characteristics of
plastic sheets have an impact on transmitted radiation [30,74,75] and can have a significant
effect on the reflection from the canopies.
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