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Abstract: Conferring crops with resistance to multiple diseases is crucial for stable food production.
Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase
BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we
demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter
exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling
rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate
and a partial darkening of husked rice. Herein, we present a strategy to address these unfavor-
able phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a
pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters
maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked
rice were similar to those of the wild-type rice.

Keywords: BSR1; rice; RLCK; disease resistance; Pyricularia oryzae; Xanthomonas oryzae pv. oryzae;
Cochliobolus miyabeanus; Burkholderia glumae

1. Introduction

Stable crop production is an important agricultural issue because some countries are
facing global food shortages owing to population growth, deteriorating security, and global
warming. Rice is one of the most important crops worldwide and serves as a staple food for
approximately 50% of the world’s population [1]. However, stable rice production is limited
by diseases. Approximately 10–30% of the harvest is lost due to blast, one of the seven major
crop diseases in the world, caused by the fungus Pyricularia oryzae in rice. However, 10%
of the harvest is sufficient to feed 60 million people annually [2]. The bacterial leaf blight
caused by Xanthomonas oryzae pv. oryzae (Xoo) is an important rice disease that has caused
significant yield losses in Southeast Asian and West African countries [3]. Minimizing these
losses would contribute to stabilizing and increasing rice production.

Addressing this problem and enhancing host resistance to these pathogens without
relying on pesticides is the most economical and environmentally friendly approach to
sustainable food production. Breeding a rice variety with broad-spectrum resistance (BSR)
is the safest and most efficient method to achieve this goal. To date, R gene introduction has
been the main method used for breeding disease-resistant varieties of rice [4]. However, in
many cases, R gene-introduced varieties have only been effective in agricultural production
for a few years because of the emergence of new pathogen biotypes that can overcome
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this gene [5]. In addition, the R gene generally confers resistance to a specific race of
the pathogen but does not confer BSR. Furthermore, pyramiding these R genes using
conventional breeding methods is labor-intensive, time-consuming, and difficult because
of the need to remove linked unfavorable traits. Therefore, we considered using BSR genes
as a feasible approach.

To date, several BSR genes have been identified. BSR is classified into species-non-
specific (SNS) BSR, which confers resistance against two or more pathogen species, and
race-non-specific (RNS) BSR, which confers resistance against two or more races or strains of
the same pathogen [6]. SNS BSR is more valuable in agriculture than RNS BSR. Examples of
SNS BSR genes include WRKY45 [7] and OsSSI2 [8], which are involved in providing disease
resistance to P. oryzae and Xoo via the salicylic acid pathway. WRKY30 [9] and OsACS2 [10]
are involved in providing disease resistance to P. oryzae and the sheath blight fungus
Rhizoctonia solani through the biosynthesis of jasmonic acid and ethylene, respectively.

BSR1 is an SNS BSR gene, and the BSR1 protein (OsRLCK278) is classified in the
RLCK-VII protein family as BIK1 [11], PBL19, and PBL20 [12], which are well known to
encode receptor-like cytoplasmic kinases (RLCKs) involved in providing disease resistance
in Arabidopsis [13]. We have previously reported the disease resistance mechanism of
BSR1 [14–17].

The BSR1 gene, when highly expressed under the maize ubiquitin promoter (PZmUbi),
confers SNS BSR. We have reported that BSR1-overexpressing (OX) rice shows strong
resistance to Xoo and Burkholderia glumae, causing bacterial seedling rot, grain rot, P. oryzae,
and brown spot fungus Cochliobolus miyabeanus [13,18]. There are few resistance genes
for B. glumae and C. miyabeanus, although global warming is expected to increase their
propagation in the future [19]. No other genes showed resistance to four or more of these
diseases, making the use of BSR1 in breeding desirable. However, because PZmUbi-BSR1
rice plants express high levels of BSR1 throughout the plant body, unfavorable phenotypes,
such as reduced seed germination rate and partial darkening of husked rice, have been
observed [13,18]. Thus, we used a constitutive promoter with weaker activity than PZmUbi
and a pathogen-inducible promoter to generate rice lines expressing BSR1 and evaluated
their disease resistance, germination rate, and brown rice color.

2. Results
2.1. Enhancement of BSR1 Expression in Rice and Screening for Bacterial Leaf Blight Resistance

We previously reported rice plants overexpressing BSR1 using a construct (Figure 1a)
in which BSR1 cDNA was inserted downstream of the maize ubiquitin promoter (PZmUbi),
which is a constitutively high-expressing promoter [13]. PZmUbi-BSR1 transgenic rice lines
#5 and #9 exhibited 159- and 130-fold higher expression of BSR1 than the wild-type (WT),
respectively, and demonstrated BSR to at least the four pathogens described above [13,18].
However, regarding growth and morphological characteristics, the PZmUbi-BSR1 lines
produced partially blackish brown rice (Figure 1b), and the seed germination rate was
reduced to approximately 1/3 to 1/4 of the original (Figure 1c), whereas the brown rice color
in the WT was white (Figure 1b). We attributed this undesirable trait to the use of a strong
promoter and considered that this problem could be resolved by improving the promoter.
Therefore, we expressed BSR1 using the rice ubiquitin promoter (POsUbi7) [20], a constitutive
promoter with weaker activity than PZmUbi, and the OsPR1b promoter (PPR1b) [21], whose
activity was induced by infection with P. oryzae and Xoo.

POsUbi7-BSR1 rice lines were generated using a vector in which BSR1 cDNA was
inserted between the POsUbi7 promoter and double terminator (Figure 2a). From approx-
imately 50 T0 plants carrying POsUbi7-BSR1, lines resistant to Xoo race 1 were selected
through initial screening, and the expression levels of BSR1 were subsequently analyzed.
Next, we verified the resistance of the selected lines in T1 plants and selected nine lines
that demonstrated approximately half or less suppression of lesion length compared with
the WT. The expression levels of BSR1 and resistance levels to Xoo in the nine selected
lines are presented in Figure 2b,c, respectively. Figure S1 presents Xoo resistance in three
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representative lines. Additionally, since the PZmUbi-BSR1 rice is also resistant to other Xoo
races [18], we inoculated race III Xoo to lines #15 and #22 as representatives. Therefore, the
lesion lengths were reduced to <1/4 of that in the WT, indicating resistance (Figure S2).
Then, the grain color of the T1 seeds from these lines was examined. Three lines (#20, #27,
and #46) showed blackish grains (Figure 2b,c, gray bar); however, six lines (#11, #15, #22,
#31, #41, and #42) exhibited white grains similar to those of the WT (Figure 2b,c, white bar).
The POsUbi7-BSR1 lines showing Xoo-resistant and white grains (Figure 2b, white bar only)
had 16.0- to 49.5-fold higher expression of BSR1 than that of WT, which was lower than
those of the PZmUbi-BSR1 rice described above. We successfully generated lines with leaf
blight resistance and white grains using the OsUbi7 promoter.
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Figure 1. Undesirable phenotype of BSR1 overexpression by maize ubiquitin promoter in rice seeds:
(a) Maize ubiquitin promoter (PZmUbi)-BSR1 construct. Tnos, nos terminator. (b) Grain color of wild-
type (WT) PZmUbi-BSR1 (OX) #5 and #9 lines. (c) Germination ratio (%) of WT PZmUbi-BSR1 #5 and #9
lines. n = 116–198.

PPR1b-BSR1 rice lines were generated using a vector in which BSR1 cDNA was inserted
between the PPR1b promoter and the double terminator, as illustrated in Figure 3a. From
approximately 30 T0 plants carrying PPR1b-BSR1, lines resistant to Xoo race 1 were selected
through initial screening. By confirming the resistance of the selected lines in T1 plants, six
lines that exhibited approximately half or less suppression of lesion length compared with
the WT were identified (Figure 3b). The grain color of the T1 seeds from these lines was
then examined, and all six lines showed a white grain color (Figure 3b, white bar) similar
to that of the WT.
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Figure 2. Generation and screening of POsUBi7-BSR1 lines: (a) Rice Ubi7 promoter (POsUbi7)-BSR1
construct. T35S, CaMV35S terminator; Tnos, nos terminator. (b) BSR1 expression levels in POsUbi7-BSR1
T0 lines. (c) Disease resistance to Xanthomonas oryzae pv. oryzae (T7174, race I) in POsUbi7-BSR1
T1 lines. Lesion lengths in POsUbi7-BSR1 plants were significantly lower than those in WT plants
(* p < 0.05 by Dunnett’s test). Values are mean ± standard deviation (n = 4–14). Gray bars in (b,c)
indicate that blackish grains were included, whereas white bars indicate that only white grains
were included.
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construct. T35S, CaMV35S terminator; Tnos, nos terminator. (b) Disease resistance to Xanthomonas
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lower than those in WT plants (* p < 0.05 by Dunnett’s test). Values are mean ± standard deviation
(n = 3–9). White bars indicate that only white grains were included.

2.2. Other Disease Resistance in POsUbi7-BSR1 Lines

The T4 generation of POsUbi7-BSR1 lines #22 and #42 was used as a representative
for subsequent disease resistance tests. Overexpression of BSR1 was confirmed before
disease resistance evaluation (Figure S3). First, the disease resistance to B. glumae was
investigated. Although the WT plants succumbed to the infection, displaying 0% survival,
lines #22 and #42 exhibited 100% survival, indicating resistance to bacterial seedling rot
(Figure 4a,b). Subsequently, disease resistance to the fungus P. oryzae, which causes rice
blast, was assessed. Lines #22 and #42 demonstrated robust resistance, with <1/8 and <1/3
of the lesions observed in comparison with the WT, respectively (Figure 4c,d). Subsequently,
disease resistance to the fungus C. miyabeanus, which causes brown spots, was evaluated.
Lines #22 and #42 showed strong resistance, with lesion numbers < 1/2 and <1/9, re-
spectively, compared with the WT (Figures 4e,f and S4). Overall, the POsUbi7-BSR1 lines
(#22 and #42) maintained resistance to at least four pathogens, similar to the PZmUbi-BSR1
lines. Additionally, the descendants of lines #22 and #42 displayed resistance to panicle
blast (Figure S5).
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were inoculated with B. glumae. The inoculum concentration was OD520 = 0.0004. Survival ratio
was calculated 8 d post-inoculation (n = 9–20). Tests were repeated three times with similar results.
(b) Photographs of B. gluma-infected shoots in POsUbi7-BSR1 and WT lines 8 d post-inoculation.
(c,d) Disease resistance to Pyricularia oryzae in POsUbi7-BSR1 lines. (c) Lesion numbers on P. oryzae-
infected T4 leaves in POsUbi7-BSR1 and WT lines 6 d post-inoculation. The inoculum concentration
was 1.3 × 105 conidia/mL. Lesion numbers in POsUbi7-BSR1 plants were significantly lower than
those in WT plants (* p < 0.05 by Dunnett’s test). Values are mean ± standard deviation (n = 3–7).
(d) Photographs of leaves infected with P. oryzae in POsUbi7-BSR1 and WT 7 d post-inoculation.
(e,f) Disease resistance to Cochliobolus miyabeanus in POsUbi7-BSR1 line. (e) Lesion numbers on
C. miyabeanus-infected T4 leaves in POsUbi7-BSR1 and WT lines 4 d post-inoculation. The in-
oculum concentration was 1.4 × 104 conidia/mL. Lesion numbers in POsUbi7-BSR1 plants were
significantly lower than in WT plants (* p < 0.05 by t-test). Values are mean ± standard deviation
(n = 6–7). (f) Photographs of leaves infected with C. miyabeanus in POsUbi7-BSR1 and WT lines
4 d post-inoculation.

2.3. Resistance to Other Diseases in PPR1b-BSR1 Lines

The progenies of PPR1b-BSR1 lines #23 and #28 were used as representatives for dis-
ease resistance tests. First, disease resistance to B. glumae was investigated. The WT
plants succumbed to the infection, displaying 0% survival. Lines #23 and #28 exhibited
95 and 35% survival, respectively, indicating their resistance to bacterial seedling rot
(Figures 5a,b and S6). Subsequently, the disease resistance to P. oryzae was evaluated. Lines
#23 and #28 demonstrated strong resistance, with lesion numbers < 1/4 and <1/5, respec-
tively, compared with the WT (Figure 5c,d). Third, disease resistance to C. miyabeanus was
assessed. Lines #23 and #28 displayed strong resistance, with lesion numbers < 1/5 and
<1/2 of that of the WT, respectively (Figure 5e,f). In summary, the PPR1b-BSR1 lines (#23
and #28) maintained resistance to at least four pathogens, similar to the PZmUbi-BSR1 and
POsUbi7-BSR1 lines.
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inoculated with B. glumae. The inoculum concentration was OD520 = 0.004. The survival ratio
was calculated 7 d post-inoculation (n = 20). Tests were repeated three times with similar results.
(b) Photographs of B. glumae-infected shoots in PPR1b-BSR1 and WT 7 d post-inoculation.
(c,d) Disease resistance to Pyricularia oryzae in PPR1b-BSR1 lines. (c) Lesion numbers on P. oryzae-
infected T1 leaves in PPR1b-BSR1 and WT lines 6 d post-inoculation. The inoculum concentration
was 1.3 × 105 conidia/mL. Lesion numbers in PPR1b-BSR1 plants were significantly lower than
those in WT plants 6 d post-inoculation (* p < 0.05 by Dunnett’s test). Values are mean ± standard
deviation (n = 4–7). (d) Photographs of leaves infected with P. oryzae in PPR1b-BSR1 and WT 7 d
post-inoculation. (e,f) Disease resistance to Cochliobolus miyabeanus in PPR1b-BSR1 lines. (e) Lesion
number on C. miyabeanus-infected T1 leaves in PPR1b-BSR1 and WT lines 4 d post-inoculation. The
inoculum concentration was 1.4 × 104 conidia/mL. Lesion numbers in PPR1b-BSR1 plants were sig-
nificantly lower than in wild-type plants (* p < 0.05 by Dunnett’s test). Values are means ± standard
deviation (n = 3–6). (f) Photographs of leaves infected with C. miyabeanus in PPR1b-BSR1 and WT lines
4 d post-inoculation.

2.4. Improvement of Undesirable Traits Detected in the Seeds of PZmUbi-BSR1 Lines

As mentioned above, the two POsUbi7-BSR1 and two PPR1b-BSR1 lines exhibited resis-
tance to the four major diseases, mirroring the disease resistance observed in the PZmUbi-
BSR1 lines. The grains of the T4 homo-seeds of the two POsUbi7-BSR1 lines and T3 homo-
seeds of the two PPR1b-BSR1 lines were white (Figure 6). Additionally, the issue of reduced
germination in PZmUbi-BSR1 seeds was addressed, as these seeds demonstrated a 100%
germination rate, similar to that of the WT (Figure 6). As described above, the successful
utilization of OsUbi7 and OsPR1b promoters preserved resistance to the four major diseases,
effectively improved grain color, and resolved germination concerns in the seeds.
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The grain color of these transgenic lines was white, as in the WT. The germination ratios (%) of these
lines were similar to WT. n = 25.

3. Discussion

When BSR1 was expressed using the rice constitutive promoter POsUbi7 with moderate
expression levels and the pathogen-inducible promotor PPR1b to adjust the expression level
and timing in rice, both rice plants exhibited sufficient resistance to the four major diseases
(rice blast, brown spot, bacterial leaf blight, and bacterial seedling rot), the PZmUbi-BSR1 rice
plants did as well. This indicates that disease resistance can be conferred by appropriate
expression of BSR1 without using PZmUbi. These promoters have been used to improve the
growth of PZmUbi-WRKY45 rice plants with blast and bacterial leaf blight resistance [20,21].
In this study, we have shown that these promoters are useful for improving unfavorable
phenotypes (such as the blackish color of brown rice and low germination rate) by over-
expressing BSR1. Since the POsUbi7-BSR1 and PPR1b-BSR1 lines are transgenic, they were
grown in a small, isolated greenhouse, where exact yield comparisons are not feasible.
Although no significant differences were observed compared to the WT, field evaluation is
essential for accurate yield assessment.



Plants 2024, 13, 1138 8 of 12

BSR1-OX rice plants with PZmUbi, which exhibit strong resistance to leaf blight and
blast disease, show browning at the infection site [13,18]. In the present study, BSR1-
expressing rice plants with POsUBi7 and PPR1b showed browning at the infection site, espe-
cially when infected with leaf blight, but this was not as remarkable as that in the case of
PZmUbi. We have previously reported that BSR1 is involved in chitin-, peptidoglycan-, and
lipopolysaccharide-triggered ROS production and defense responses and ROS production
is enhanced in BSR1-OX rice [14,16]. Furthermore, it has been reported that BSR1 is in-
volved in plant responses to OsPeps and damage-associated molecular patterns (DAMPs),
and these responses are enhanced in BSR1-OX rice [17]. Thus, the browning observed at
the pathogen infection may be caused by cell death due to excessive ROS production by
the recognition of microbe-associated molecular patterns (MAMPs) or DAMPs.

In PZmUbi-BSR1 rice plants, overexpression of BSR1 caused a blackish grain color
and reduced the seed germination rate, as described above (Figure 1). According to
the Rice Expression Profile Database [22] (https://ricexpro.dna.affrc.go.jp/ (accessed on
11 March 2024)), BSR1 is transcribed at certain levels in leaves and roots at different growth
stages and in developing panicles (young anthers, pistils, lemmas, palea, ovaries, embryos,
and endosperms). Studies reported that ROS is involved in almost all the stages of growth,
development, and differentiation and that they play important roles in programmed
cell death and signal transduction [23–25]. Therefore, BSR1, which is expressed during
ovary, embryo, and endosperm development after fertilization, may contribute to ROS
generation in response to signals from ligands other than MAMPs and DAMPs in WT rice.
Alternatively, it may respond to the MAMP signals produced by endophytes. Therefore,
the overexpression of BSR1 with PZmUbi may induce the production of large amounts of
ROS in the endosperm and embryo, causing partial darkening of the endosperm and cell
death of the embryo, resulting in a reduced germination rate. In contrast, the improvement
in brown rice color and germination rate in POsUbi7-BSR1 and PPR1b-BSR1 rice seeds, similar
to those in WT seeds, may be attributed to the moderate control of ROS production by
adjusting BSR1 expression to an appropriate level. The upstream signals of BSR1 during
panicle and seed development have not yet been elucidated; however, future studies could
be conducted to uncover the ligands involved.

The BSR1 gene has also been introduced into plants other than rice and has been
shown to confer disease resistance. In Arabidopsis, the overexpression of BSR1 under the
35S promoter containing two enhancers resulted in disease resistance to three pathogens,
including the bacterium Pst DC3000 as well as fungi C. higginsianum and R. solani [13,26].
When overexpressed in various plants under the same promoter as in Arabidopsis, BSR1
confers disease resistance to Pst DC3000 and R. solani in tomatoes and to R. solani in torenia.
BSR1-overexpressed sugarcane is resistant to one of the most serious diseases caused by
the fungus Sporisorium scitamineum [26]. When BSR1 was appropriately expressed in these
plants, the transgenic plants exhibited normal growth and morphology similar to that
of the WT and retained disease resistance, although a dwarf phenotype was observed
in sugarcane with the highest expression level of BSR1 [26]. By selecting appropriate
promoters and fine-tuning the expression level of BSR1, it would be possible to generate
plants with broad-spectrum disease resistance without compromising the growth in other
crops as well as in rice.

Recently, POsUbi7-BSR1 rice was also reported to confer resistance to the chewing
herbivore Mythimna loreyi Duponchel (Lepodoptera: Noctuidae), a rice pest [17]. As
described above, by optimizing the expression level of BSR1 using a suitable promoter such
as OsUbi7, we were able to generate rice plants with BSR to four major diseases and one pest
while minimizing the adverse effects of overexpression. The next step will be to determine
whether these plants are effective against a wide range of pathogens and pests. Another
question is whether similar traits can be maintained in a field. We cannot exclude the
possibility that unfavorable phenotypes may occur due to somaclonal mutations derived
from callus cultures during the generation process of transgenic rice when released into
the field environment. We also cannot exclude the possibility of other problems arising

https://ricexpro.dna.affrc.go.jp/
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from the accumulation of mutations over several generations. In such cases, it may be
necessary to produce a larger number of transgenic rice plants and reduce the effects of
cultural mutations through multiple backcrossings. Using a leaf-specific promoter may be
effective because undesirable traits of BSR1 were found in the seed.

4. Materials and Methods
4.1. Plasmid Construction and Transformation

The PPR1b-BSR1 plasmid was constructed as follows: Briefly, the WRKY45 cDNA of
the PPR1b:WRKY45:TT plasmid [21] was replaced with BSR1 cDNA. In detail, the BSR1
cDNA (AK070024; Os09t0533600-01) provided by the Rice Genome Resource Center of
the National Institute of Agrobiological Sciences was first amplified by PCR using the
following primers: 5′-TTGATTAACTAAGCTTGTGCGTGCGTGCGTGCTTGC-3′ and 5′-
TGATTTCAGCGGATCTCGTCTCTGTGTCTCTCTTT-3′. Subsequently, the PPR1b:WRKY45:
TT plasmid was digested with BamHI and partially digested with HindIII to excise the
WRKY45 cDNA from the vector, and the amplified BSR1 cDNA was incorporated in place
of the WRKY45 cDNA using an In-Fusion HD Cloning Kit w/Cloning Enhancer (Takara Bio,
Tokyo, Japan). Transgenic rice lines were obtained from Nipponbare using the resulting
plasmid via the Agrobacterium-mediated method [27].

Construction of the POsUbi7-BSR1 plasmid and generation of POsUbi7-BSR1 rice lines
have been previously reported briefly [17]. In detail, the BSR1 cDNA was amplified by PCR
using the following primers: 5′-GCAAAAGAAGAAGCTGTGCGTGCGTGCGTGCTTGC-
3′ and 5′-TGATTTCAGCGGATCTGCTCTCTGTGTCTCTCTTT-3′. Subsequently, the P
OsUbi7:WRKY45:TT plasmid was digested with BamHI and partially digested with HindIII
to excise the WRKY45 cDNA from the vector. The WRKY45 cDNA was then replaced with
amplified BSR1 cDNA using an In-Fusion HD Cloning Kit with Cloning Enhancer.

4.2. RNA Extraction and Quantitative Real-Time (qRT)-PCR Analysis

Total RNA was extracted and purified from rice leaves using the Sepasol-RNA Super
G reagent (Nacalai Tesque, Kyoto, Japan) according to the manufacturer’s protocol. First-
strand cDNAs were synthesized from equal amounts of total RNA in a volume of 5 µL using
the PrimeScript RT Reagent Kit (Takara, Tokyo, Japan), according to the manufacturer’s
protocol. The Thermal Cycler Dice TP800 system (Takara) and Kapa SYBR FAST qPCR kit
(Kapa Biosystems, Cape Town, South Africa) were used for qRT-PCR analysis according
to the manufacturer’s instructions. Primers used for qRT-PCR were as follows: for BSR1,
5′-CCGGGACTTCAAAGCATCTAAC-3′ and 5′-TGTTGGTCCCTCCCTTGCT-3′; for Rubq1,
5′-GGAGCTGCTGCTGTTCTAGG-3′ and 5′-TTCAGACACCATCAAACCAGA-3′, serving
as an internal control. BSR1 transcript levels were normalized to the endogenous rice
reference gene Rubq1. The relative expression level of each gene was calculated using the
2−∆∆Ct expression ratio, which corrects for gene-specific PCR amplification efficiencies [28].

Overexpression of BSR1 cDNA was confirmed by qRT-PCR analysis of independent
T0 plants from the POsUbi7-BSR1 lines, and their progenies were subsequently utilized in
further experiments.

4.3. Plant Materials and Culture

Rice (Oryza sativa L. cv. Nipponbare) was used as the WT control. Seeds from T1
to T4 of the POsUbi7-BSR1 and PPR1b-BSR1 lines were sown on half-strength MS medium
(Wako, Osaka, Japan) containing 3% sucrose, 0.4% Gelrite (Wako), and hygromycin B
(30 µg/mL; Wako), and the hygromycin-resistant seedlings were selected on this medium.
WT seeds were sown and grown on the same medium without hygromycin B. WT and
hygromycin-resistant transgenic seedlings were then transplanted into pots containing soil
(Bonsol no. 2; Sumitomo Kagaku Kougyo, Osaka, Japan) and grown in a greenhouse at
27–30 ◦C, as previously described [19].



Plants 2024, 13, 1138 10 of 12

4.4. Pathogens and Pathogen Cultures

The bacterial isolates used in this study were T7174 (MAFF311018, race I) and T7133
(MAFF311020, race III) from Xanthomonas oryzae pv. oryzae (Xoo), and AZ8204 (MAFF301682)
from Burkholderia glumae. Additionally, the fungal isolates were Kyu89-246 (MAFF101506,
race 003.0) from Pyricularia oryzae and H11-42-1 from Cochliobolus miyabeanus. Culture
procedures for these pathogens were conducted as previously described [18].

4.5. Bacterial and Fungal Pathogen Resistance Assay

For the Xoo resistance tests, a suspension of Xoo adjusted to OD600 = 0.3 in water
was inoculated onto seedlings of WT and transgenic lines at the 5- to 10-leaf stage using
the clip and dip method, as previously described [18]. For B. glumae resistance assays,
pre-germinated seeds of WT and transgenic lines were soaked in a suspension of B. glumae
adjusted to OD520 = 0.0004–0.004 and subjected to vacuum treatment following previously
described protocols [18]. For P. oryzae resistance assays, conidia of a compatible race 003
(isolate Kyu89-246) were suspended in 0.01% Tween 20 at a density of 1.3 × 105/mL
and sprayed onto seedlings of WT and transgenic lines at the 5-leaf stage, as previously
described [18]. For C. miyabeanus resistance assays, a suspension of C. miyabeanus conidia
adjusted to 1.4–5 × 104/mL was sprayed onto seedlings of WT and transgenic lines at the
7-leaf stage, following previously established procedures [18].

4.6. Brown Rice Color Evaluation and Germination Test

The brown rice color of WT and transgenic rice seeds (25 seeds each) was visually
evaluated. For the germination test, sterilized brown rice was sown in half-strength MS
medium without hygromycin B. After 3 d, seed germination was examined, and the
germination ratio was calculated.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants13081138/s1, Figure S1: Disease resistance to Xanthomonas
oryzae pv. oryzae (T7174, race I) in POsUbi7-BSR1 T1 lines; Figure S2: Disease resistance to Xanthomonas
oryzae pv. oryzae (T7133, race III) in POsUbi7-BSR1 T1 lines; Figure S3: BSR1 expression levels in
POsUbi7-BSR1 T4 lines; Figure S4: Disease resistance to Cochliobolus miyabeanus in POsUbi7-BSR1 T4
line; Figure S5: Disease resistance to panicle blast caused by Pyricularia oryzae (isolate Kyu89-246) in
the descendants of the POsUbi7-BSR1 #22 and #42 lines; Figure S6: Disease resistance to Burkholderia
glumae in PPR1b-BSR1 T2 lines; Method S1: Evaluation of panicle blast resistance [29–31].
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