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Abstract: This investigation focused on the suppressive impact of varying NaHCO3 concentrations
on cucumber seed germination and the ameliorative effects of 2,4-Epibrassinolide (EBR). The findings
revealed a negative correlation between NaHCO3 concentration and cucumber seed germination,
with increased NaHCO3 concentrations leading to a notable decline in germination. Crucially,
the application of exogenous EBR significantly counteracted this inhibition, effectively enhancing
germination rates and seed vigor. Exogenous EBR was observed to substantially elevate the activities
of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), thereby mitigating oxidative
damage triggered under NaHCO3 stress conditions. Additionally, EBR improved enzyme activity
under alkaline stress conditions and reduced starch content in the seeds. Pertinently, EBR upregulated
genes that were associated with gibberellin (GA) synthesis (GA20ox and GA3ox), and downregulated
genes that were linked to abscisic acid (ABA) synthesis (NCED1 and NCED2). This led to an elevation
in GA3 concentration and a reduction in ABA concentration within the cucumber seeds. Therefore,
this study elucidates that alleviating oxidative stress, promoting starch catabolism, and regulating the
GA and ABA balance are key mechanisms through which exogenous EBR mitigates the suppression
of cucumber seed germination resulting from alkaline stress.
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1. Introduction

Saline-alkali stress profoundly affects essential plant processes, including germina-
tion, growth, and photosynthesis, thereby posing challenges to sustainable horticultural
practices [1,2]. This stress can be classified into two distinct classifications: salt stress,
attributable to neutral salts, and alkali stress, caused by alkaline salts [3]. Both types insti-
gate ionic toxicity and osmotic imbalances, culminating in oxidative stress. Of particular
note, the heightened pH associated with alkali stress renders it more injurious to plants
than salt stress [1,4,5]. Such stress promotes reactive oxygen species (ROS) accumulation,
engendering oxidative harm. This not only disrupts the internal hormonal balance but also
diminishes enzymatic activity, further suppressing plant growth [1,6,7]. While extensive
research has elucidated mechanisms underpinning plant salt tolerance, our understanding
of plant adaptations to alkali stress remains comparatively nascent [5].

During the initiation of germination, the seed’s embryo transitions from a quiescent
state to heightened physiological activity. This metamorphosis begins with suckering and
culminates as the radicle penetrates the seed coat, prompting the elongation of the radicle
and the embryonic axis [8]. Seed germination, the pivotal onset in the life cycle of a plant,
plays a determinative role in influencing subsequent phases of growth, maturation, and
overall plant development [9,10]. Given the inherent immobility of plants, the strategic
oscillation between dormancy and germination becomes imperative for their evolutionary
continuity and reproductive process [10–12]. In an agronomic context, the precision and
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robustness of seed germination bear directly upon the quality of the seedlings and the
eventual crop yield. The germination process can be segmented into suckering, activation,
and emergence [9,11,13]. Following water uptake, the seeds undergo volumetric expansion,
triggering a series of metabolic enzyme activations. This process is accompanied by
significant changes in the internal hormonal balance, notably a surge in gibberellin (GA)
synthesis and a marked reduction in abscisic acid (ABA) levels. These molecular alterations
effectively terminate dormancy, enabling the embryonic axis and roots to penetrate their
surrounding tissues, culminating in the completion of germination [11,13–15]. This complex
orchestration involves an array of physiological and biochemical operations, including
the catabolism of organic substrates, the genesis and modification of RNA and proteins,
hormone synthesis, and overarching metabolic realignments [11,14,16].

Brassinosteroids (BRs), often designated as “the sixth plant hormone”, are a collection
of approximately 40 steroid hormones that are ubiquitous in plants [17]. They have a
crucial function in enhancing a plant’s resilience against an extensive array of both biotic
and abiotic stress factors, encompassing various environmental and biological challenges.
Central to numerous physiological processes, BRs are integral for seed germination, cell
elongation, cotyledon expansion, dark morphogenesis, and ethylene production initia-
tion [17,18]. Plant adaptability to various biotic and abiotic stressors is a critical area of
horticultural research. The germination phase is especially vulnerable to environmental
stressors such as salinity, drought, heavy metals, and extreme temperatures. Accumulating
evidence has highlighted the instrumental role of BRs in counteracting these challenges [12].
Specifically, under saline conditions, BRs have been empirically demonstrated to ameliorate
membrane damage, reduce seed deterioration, and enhance the intrinsic salt tolerance in
non-halophytic plants [19,20]. Brassinosteroids (BRs) play a crucial part in the process
of seed germination. While they are essential for standard germination, the Arabidopsis
mutants det2-1 (involved in BR biosynthesis) and bri1-1 (BR-insensitive) show increased
susceptibility to ABA-mediated inhibition compared to the wild-type counterparts. No-
tably, exogenous BRs facilitate germination in both gibberellin (GA) synthesis mutants and
GA-insensitive mutants [12].

As a globally cultivated crop, cucumber is notably susceptible to salinity stress, whether
grown in open fields or greenhouses [1,21]. This susceptibility intensifies when coupled
with soil crusting, elevating the risk of pathogenic attacks on seeds and seedlings [5,22,23].
Alkaline stress, distinguished by its high pH, poses a distinct challenge, exerting more pro-
nounced inhibitory effects on plant growth and germination than neutral salts [24–26]. Our
research examines the role of externally applied 2,4-Epibrassinolide (EBR) in counteracting
the detrimental effects of alkalinity on cucumber seed germination, shedding light on its
remedial properties and the integral physiological processes involved. Our research seeks
to establish a foundational understanding that supports the strategic application of EBR in
confronting alkaline stress challenges in cucumber cultivation.

2. Results

The germination rate is an essential measure of seed vigor and is vital in the ger-
mination process. Typically, cucumber seeds exhibit a 95% germination rate within 24 h.
However, the addition of external NaHCO3 notably suppressed this rate, with the inhibition
intensifying as NaHCO3 concentrations increased. Figure 1 illustrates these effects. At a
concentration of 200 mmol L−1 NaHCO3, the germination rate drastically dropped to 30%
after 24 h and 42% after 36 h. For the purpose of this study, a NaHCO3 concentration of
75 mmol L−1 was selected, at which the germination rate was approximately 30% at 24 h
and 42% at 36 h.

Figure 2 underscores the significant effect of exogenous EBR on the germination rate
and percentage of cucumber seedlings under NaHCO3 stress (p < 0.05). After 20 h of
treatment, the germination rate was recorded at 63%, which increased to 77.67% following
the addition of EBR. After 36 h, EBR application led to a notable 46.67% increase in the fresh
weight of stressed seeds (p < 0.05), significantly enhancing radicle elongation. TTC staining
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indicated limited and pale staining in seeds under NaHCO3 stress, while the inclusion of
EBR resulted in a marked increase in stained seeds with deeper coloration.
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Figure 1. Effects of NaHCO3 with different concentrations on germination rate of cucumber
seeds. Treatments include (1) Control (CK) with distilled water, representing the baseline con-
dition; (2) Stress (S), induced by exposure to 75 mmol L−1 NaHCO3, simulating alkaline stress;
and (3) Stress Mitigation with EBR (S + EBR), a combined treatment of 0.2 µmol L−1 EBR and
75 mmol L−1 NaHCO3, demonstrating EBR’s efficacy in stress response modulation. Seeds were
pretreated for 12 h in either distilled water or a 0.2 µmol L−1 EBR solution prior to the commencement
of germination tests.

Figure 3 distinctly shows that NaHCO3 stress induced a significant rise in the levels of
H2O2, O2

− generation rate, and MDA content in cucumber seeds, illustrating a marked
increase in oxidative stress compared to the control group (p < 0.05). Importantly, the
introduction of exogenous EBR markedly mitigated these stress indicators, demonstrating
a significant reduction in the concentrations of ROS and malondialdehyde (MDA) in seeds
exposed to NaHCO3 (p < 0.05). This highlights the pivotal role of EBR in reducing the
oxidative harm resulting from alkaline stress.

Moreover, the application of NaHCO3 during germination notably diminished the
activities of crucial antioxidant enzymes, including superoxide dismutase (SOD), peroxi-
dase (POD), and catalase (CAT), when contrasted with the control group (Figure 4). The
addition of exogenous EBR, however, not only counteracted this decline but also notably
enhanced the activities of these enzymes under NaHCO3 conditions. These observations
indicate exogenous EBR strengthens the antioxidative defense mechanism in cucumber
seeds, promoting ROS scavenging during germination in alkaline conditions.

Figure 5 reveals crucial observations regarding the regulatory impact of exogenous
EBR upon antioxidative gene activity within cucumber seeds exposed to NaHCO3. Exoge-
nous EBR significantly increased the activity of genes such as Cu-Zn SOD, CAT, and POD
under NaHCO3 stress conditions. This upregulation was consistently observed for POD
and Cu-Zn SOD genes throughout the experimental period. In particular, the elevation
in the expression of the CAT gene was predominantly significant between 12 and 24 h
after initiating NaHCO3 treatment. These findings highlight the specific role of EBR in
upregulating crucial antioxidative genes, thereby potentially mitigating the oxidative stress
effects induced by NaHCO3 in cucumber seed germination.
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and vigor (D) of cucumber seeds under NaHCO3 stress. Treatments include (1) Control (CK) with
distilled water, representing the baseline condition; (2) Stress (S), induced by exposure to 75 mmol L−1

NaHCO3, simulating alkaline stress; and (3) Stress Mitigation with EBR (S + EBR), a combined
treatment of 0.2 µmol L−1 EBR and 75 mmol L−1 NaHCO3, demonstrating EBR’s efficacy in stress
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significance among different treatments as determined using Duncan’s samples comparison test
(p < 0.05).
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Figure 5. Effects of exogenous EBR on gene expression of Cu-Zn SOD (A), POD (B), and CAT (C) in
the process of cucumber seed germination under NaHCO3 stress.

Figure 6 offers a comprehensive profile of amylase activity in cucumber seeds during
germination. Initially, there was a spike in α-amylase activity, which then decreased,
juxtaposing the consistent rise in total activities of amylase and β-amylase. Alongside
this, a steady decline in the content of starch was observed. Under the NaHCO3 condition,
amylase activity was significantly reduced, while starch content increased compared to the
control. The introduction of exogenous EBR, however, led to an elevation in α-amylase
activity and a reduction in starch content under alkali stress. In the initial 12 h period of
NaHCO3 treatment, the influence of EBR on β-amylase and total amylase activities was
minimal. After this period, EBR substantially augmented both activities. These observations
suggest that EBR effectively counters the challenges to cucumber seed germination induced
by alkali stress, primarily via increasing the activity of amylase and aiding in the breakdown
of starch.

Figure 7 presents the fluctuating expression pattern of the AMY (amylase) gene in
cucumber seeds during germination, characterized by an initial surge followed by a sub-
sequent decrease. In contrast, the expression of BMY (beta-amylase) genes consistently
increased. Exposure to NaHCO3 suppressed the activity of both AMY and BMY genes,
with this effect being most pronounced within the first 24 h of germination.

Upon the application of exogenous EBR, there was an observed increase in the ex-
pression levels of both AMY and BMY genes in cucumber seeds under NaHCO3 stress.
While EBR did not completely negate the suppressive effect of NaHCO3 on these genes, it
played a significant role in mitigating their reduced expression. The influence of EBR on the
AMY gene was particularly notable during the first 24 h of germination, whereas its effect
on BMY gene expression extended throughout the 36 h period of the experiment. This
indicates that EBR, while not fully reversing the NaHCO3-induced inhibition, contributes
to a partial recovery of the expression of these key genes of amylolytic under alkaline stress.
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Figure 7. Effects of exogenous EBR on gene expression of AMY (A) and BMY (B) in the process of
cucumber seed germination under NaHCO3 stress.

Figure 8 demonstrates that NaHCO3 application reduced the accumulation of ABA and
GA3 in cucumber seeds while simultaneously increasing the ABA/GA3 ratio. Conversely,
the application of external EBR decreased ABA levels and the ABA/GA3 ratio in stressed
seeds, concurrently elevating GA3 levels.
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significance among different treatments as determined using Duncan’s samples comparison test
(p < 0.05).

Figure 9 reveals that NaHCO3 treatment upregulated the expression of ABA synthesis-
related genes NCED1 and NCED2 and downregulated the ABA catabolism gene CYP707A1
(p < 0.05), with minimal impact on CYP707A2. The application of exogenous EBR notably
decreased the expression of NCED1 and NCED2, indicating its role in suppressing ABA
production and promoting ABA breakdown under NaHCO3 stress. This modulation in
gene expression is instrumental in reducing ABA synthesis and enhancing its degradation,
thereby reducing the suppressive impact of ABA during seed germination. Moreover, alkali
stress suppressed the expression of GA3ox and GA20ox genes in cucumber seeds. However,
the addition of exogenous EBR stimulated the expression of GA3ox and GA20ox genes,
suggesting that EBR enhances the production of active GA via catalytic synthesis under
alkali stress.
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Figure 9. Effects of EBR on transcript levels of key genes involved in ABA and GA biosynthesis and
catabolism in germinated cucumber seeds under NaHCO3 stress. The expression of ABA synthesis-
related genes NCED1 (A) and NCED2 (B), GA biosynthesis-related genes GA20ox (C) and GA3ox (D),
and ABA catabolism-related genes CYP707A1 (E) and CYP707A2 (F). Data are means ± SD with
three biological replicate samples. Different letters above bars indicate significance among different
treatments as determined using Duncan’s samples comparison test (p < 0.05).

3. Discussion

Brassinosteroids (BRs), characterized as polyhydroxylated steroidal phytohormones,
have gained recognition for their pivotal roles in modulating plant developmental trajecto-
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ries, encompassing stages from flowering to germination, and extending their influence to
optimize crop yields. Similarly, BRs, owing to their multifaceted attributes, occupy a central
position in plant hormonal regulation. The adaptive machinery of plants is frequently
engaged when confronted with an array of environmental stressors: extreme tempera-
ture deviations, elevated salinity, water scarcity, mechanical injury, fungal assaults, and
challenges associated with metal toxicity. Such adversities instigate a cascade of phyto-
hormonal responses, enabling plants to negotiate both abiotic and biotic impediments.
Significant results of these stressors are the intensified production of ROS, encompassing
superoxide ions and peroxides. Such unchecked ROS can jeopardize cellular integrity
and functionality. Strategically timed exogenous applications of BRs can augment the
inherent defense mechanisms of plants, offering them a bulwark against the oxidative
repercussions of stress. In the face of environmentally inimical conditions, BRs fortify the
plant’s capabilities by amplifying carbon dioxide assimilation, invigorating chlorophyll
synthesis, and accentuating the reserves of key antioxidants like ascorbic acid, carotenoids,
and proline. Transcending their role as mere stress mitigators, BRs also orchestrate vital
growth processes, thereby catalyzing seed germination and ensuring the timely maturation
of fruits [27].

Seed vigor and the germination rate stand as paramount indices when evaluating the
germinative attributes of seeds, capturing nuances of both the tempo and homogeneity of
germination, complemented by the latent vigor of ensuing seedlings [28]. Existing studies
clearly demonstrate that the impact of alkaline salt stress surpasses that of neutral salts in
hindering the germination processes of oilseed rape (Brassica napus L.) and Chenopodium
glaucum [28,29]. Amplifying this, elevated salt concentrations discernibly attenuate the
germination characteristics and vegetative propagation of hemp (Cannabis sativa), with the
repercussions being more pronounced from alkaline salts compared to neutral variants [30].
In congruence with these insights, our present research documented a curtailment in
cucumber seed germination in tandem with augmented alkali concentrations (Figure 1).
This observation resonates with antecedent studies spotlighting the inverse dynamics
between Cannabis sativa seed germination and escalating alkali salinity.

Recent studies highlight a notable increase in maize (Zea mays L.) germination under
salt-induced stress, particularly following BR seed pretreatment [31]. Our research sup-
ports these observations. We demonstrate that exogenous EBR effectively mitigates the
negative effects of NaHCO3 stress on cucumber seed germination. The resultant amplified
germination rates and vigor of seeds parallel earlier investigations on BRs modulatory
effects in rice (Oryza sativa L.) [32] as well as maize (Zea mays L.) [31]. Furthermore, these
compounds have been identified to counter salt and drought stress in both barley (Hordeum
vulgare L.) [32] and cucumber (Cucumis sativus L.) [33] samples. Complementing this, stud-
ies have pinpointed the role of BRs in attenuating seed germination setbacks instigated by
salt stress, suggesting a potential interaction with the ethylene synthesis pathway [33].

According to reports, BR supplementation counteracts the negative consequences of
water stress during the germination process of radish (Raphanus sativus) seeds [34]. Harmo-
nizing with outcomes from salt-stressed quinoa (Chenopodium quinoa) seeds [35]. Within our
experimental confines, the repercussions of NaHCO3 stress were evident in the slowed ger-
mination rates and curtailed seed hydration, manifesting as reduced fresh weights relative
to controls. However, the integration of exogenous EBR effectively countered these effects,
enhancing cucumber seed weight and fostering embryonic axis elongation, as illustrated in
Figure 2. Such transformations likely originate from BRs’ regulatory interplay with cellular
division and MDP40 phosphorylation, influencing microtubule configurations [36].

Salinity stress disrupts cell membrane function and triggers an upsurge in ROS ac-
cumulation [1]. Our study revealed that exposure to NaHCO3 stress provoked a marked
increase in ROS, resulting in oxidative damage accompanied by a spike in MDA con-
centrations within cucumber seeds. Impressively, the introduction of exogenous EBR
counteracted these effects, markedly reducing ROS and MDA levels. This suggests that
EBR not only alleviates the oxidative damages induced by alkali stress but also reinforces
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the cell membrane’s stability. Advanced plants employ sophisticated antioxidant systems
as defense mechanisms against oxidative threats [37]. Central to these systems are vital
antioxidant molecules, such as AsA and GSH, reinforced by the collective actions of en-
zymes like SOD, POD, and CAT, known for their antioxidant properties [38]. Previous
literature has highlighted EBR’s capacity to modulate these antioxidant systems, efficiently
neutralizing excessive reactive oxygen species during stress and thereby bolstering plant
resilience [39–42]. Echoing these findings, our experiments demonstrated that EBR appli-
cation under NaHCO3 stress conditions amplified the key antioxidant enzyme activities
of cucumber seeds while concomitantly suppressing ROS and MDA levels. Germination
relies heavily on amylases that metabolize stored starch in plant seeds into simpler sugars,
which then fuel vital physiological processes [14,43,44]. This enzymatic conversion of starch
is crucial for effective seed germination [44]. Amylase, ubiquitous in plants, efficiently
hydrolyzes starch by cleaving its glycosidic linkages, yielding simpler sugars [45,46]. Its
activity peaks in germinating seeds where α-amylase predominates, spearheading starch
decomposition. This enzymatic intervention releases reducing sugars, primarily maltose
and dextrin. Subsequently, α-amylase further processes maltose and catalyzes dextrin
saccharification. It is noteworthy that stressful environmental factors can suppress amylase
activity in germinating cucumber seeds [47]. Contrastingly, exogenous BRs have been docu-
mented to invigorate α-amylase activity even amidst such adversities [31,48,49]. BRs’ seed
priming significantly enhanced maize (Zea mays L.) germination metrics and α-amylase
activity in salt-stressed soil, increasing cumulative germination; conversely, it reduced
germination time, days to 50% emergence [32]. In our investigations, we discerned that
NaHCO3-induced stress diminished amylase functionality in cucumber seeds. This hin-
dered the starch conversion in cotyledons, jeopardizing normal germination. Intriguingly,
when augmented with exogenous EBR, the seeds exhibited rejuvenated amylase activity
despite the NaHCO3 stress, fostering starch metabolism during germination. This observed
resurgence could be ascribed to EBR’s potency in bolstering the antioxidant defenses of cu-
cumber seeds, mitigating oxidative perturbations, and fostering an amenable physiological
ambiance for amylase.

Abscisic acid (ABA) and gibberellic acid (GA) are fundamental hormones direct-
ing seed germination. Their dynamic interplay is pivotal in the germination contin-
uum, with the equilibrium between their synthesis and degradation being especially
influential [50–52]. As seeds initiate germination, ABA concentrations decline while GA
levels ascend, leading to the cessation of dormancy and the commencement of germina-
tion [50,52,53]. Notably, alkaline stress can obstruct ABA degradation, thereby thwarting
germination. The recent literature underscores the capacity of brassinosteroids (BRs) to
counterbalance the repressive effects of ABA on germination. Furthermore, an intact
BR signaling pathway appears indispensable for negating ABA-mediated germination
restraint [12]. In our study, the application of 24-epibrassinolide (EBR) resulted in the
downregulation of ABA synthesis genes, namely NCED1 and NCED2, but simultane-
ously upregulated the transcription of genes central to ABA breakdown, CYP707A1 and
CYP707A2. This dual mechanism curbed ABA synthesis, accelerated its breakdown, and
thus attenuated its overall concentration, providing a respite from the germination con-
straints of alkaline stress. It is worth noting that EBR’s modulation of the CYP707A2
gene—crucial for ABA metabolism—was particularly pronounced [54,55]. In the realm of
plant developmental biology, BRs and GA share overlapping regulatory functions. Genetic
mutants with disrupted BR or GA pathways or heightened sensitivity thereto consistently
manifest a suite of characteristics, including compromised germination, stunted growth,
and deferred flowering [12,56,57]. In our experiments, we discerned that EBR height-
ened the transcriptional activity of primary GA biosynthetic genes GA20ox and GA3ox
under alkaline duress. This action bolstered GA synthesis in cucumber seeds, fortifying
their germinative potential. Given that BR administration is known to induce an upsurge
in hydrogen peroxide (H2O2) concentrations and considering H2O2’s role in facilitating
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ABA metabolism and GA synthesis [58], this might offer a mechanistic insight into EBR’s
germination-enhancing properties under alkaline conditions.

4. Materials and Methods
4.1. Experimental Materials and Design

This study employed “JinYan 4” (Cucumis sativus L.) as the cucumber variety for exper-
imentation. The experimental trials were conducted at Shandong Agricultural University,
Tai’an, China. 24-Epibrassinolide (EBR) was procured from Sigma-Aldrich, Burlington,
VT, USA.

Adopting the approach by Božena ŠERÁ [59], our study involved a specific pretreat-
ment of cucumber seeds. These seeds were first immersed in solutions with varying
concentrations of EBR (24-epibrassinolide), as well as a control group in distilled water,
maintaining a consistent temperature of 28 ◦C for 12 h. After immersion, the seeds un-
derwent a sterilization process, exposed to a 0.5% (v/v) sodium hypochlorite solution
for 10 min. This was followed by a series of five extensive rinses with distilled water to
eliminate any residual sterilizing agent. Subsequently, the seeds were carefully placed in
Petri dishes, each lined with three layers of filter paper to promote uniform conditions
for germination. We introduced 10 mL of the respective treatment solution into each dish,
ensuring a consistently moist environment for the duration of the experiment. The experi-
mental design included three replicates for each treatment, with each replicate comprising
200 seeds. Germination was carried out in a dark environment at a stable temperature of
28 ◦C. Critical measures such as germination rates and various physiological indices were
systematically recorded at set intervals after the treatment, aiming to evaluate the influence
of different EBR concentrations on seed germination.

To assess the impacts of varying degrees of alkali stress, a comprehensive screening
experiment was designed involving seven distinct concentrations of sodium bicarbon-
ate (NaHCO3). The groups subjected to treatment included (1) 0 mmol L−1 NaHCO3
(control with distilled water), (2) 25 mmol L−1 NaHCO3, (3) 50 mmol L−1 NaHCO3,
(4) 75 mmol L−1 NaHCO3, (5) 100 mmol L−1 NaHCO3, (6) 150 mmol L−1 NaHCO3, and
(7) 200 mmol L−1 NaHCO3.

In subsequent experiments, we assessed the efficacy of exogenous 2,4-epibrassinolide
(EBR) in alleviating the repressive influence of alkaline stress on the germination of cu-
cumber seeds. This experiment encompassed three distinct treatments: (1) CK (control,
distilled water), (2) S (75 mmol L−1 NaHCO3), and (3) S + EBR (0.2 µmol L−1 EBR with
75 mmol L−1 NaHCO3). Seed pretreatment involved immersion in either distilled water or
a 0.2 µmol L−1 EBR solution for 12 h.

4.2. Determination of Seed Germination Rate and Fresh Weight

To accurately assess the efficacy of the different treatments, the seed germination rate
was systematically documented at predefined intervals post-treatment, specifically at 0,
12, 16, 20, 24, and 36 h. In this analysis, the emergence of the radicle from the seed coat
was employed as the definitive criterion for germination. This methodology facilitated an
in-depth examination of both the germination timeline and the corresponding responses
to the treatments. Additionally, the fresh weight of the seeds, which had successfully
germinated, was quantitatively measured at the 36 h mark only.

For the calculation of germination percentages, we adhered to the method proposed by
Božena ŠERÁ [59]: Germination (%) = [100 × (number of germinated seeds/total number
of seeds)]. This approach provided a standardized measure for comparing germination
across different treatments.

4.3. Assessment of Seed Viability

The viability of the seeds was ascertained by employing the 2,3,5-triphenyltetrazolium
chloride (TTC) staining technique, a technique well documented in previous research [60,61].
After a 36 h treatment, the seeds were carefully extracted and bisected along the embryonic



Plants 2024, 13, 394 11 of 17

axis. The radicle was removed, and the halves were then submerged in a 0.1% (w/v) TTC
solution. Subsequently, the seeds underwent a one-hour incubation period at ambient
temperature. Post-incubation, a series of three thorough water rinses were applied to the
seeds. The staining results were visually evaluated and documented photographically.
Each treatment was replicated thrice, with each replicate comprising 20 germinated seeds.

4.4. Determination of Reactive Oxygen Species (ROS) Levels and MDA Contents

The O2
·− production rate was determined following Xia’s method [62]. Fresh seeds

(1 g) underwent homogenization in a phosphate-buffered solution (pH 7.8), followed by
centrifugation at 4000× g for a quarter-hour, subsequently reacting with hydroxylamine.
After incubation, α-naphthylamine solution and p-aminobenzene sulfonic acid were added
to the reaction mixture, followed by further incubation. The measurement of absorbance at
530 nm facilitated the calculation of the quantification of H2O2 levels in a NaNO2 standard
curve. The quantification of H2O2 levels was assessed using Gong’s method [4], which
involved the quantification of absorbance for the titanium peroxide complex at 415 nm.

The content of malondialdehyde (MDA) is indicative of lipid peroxidation measured
according to the protocol of Hodges et al. [63]. Fresh seed tissue (1 g) was homogenized in
a 10% (v/v) trichloroacetic acid (TCA) solution. Subsequently, the homogenate underwent
centrifugation at 4000× g for a duration of 10 min. Following this, the supernatant was
combined with 0.6% thiobarbituric acid (TBA) and heated in a boiling water bath for
15 min. Following cooling, it was centrifuged again. The absorbance levels of the resulting
supernatant were quantified at 532 nm, 600 nm, and 450 nm for the assessment of MDA
content, subsequently calculated using a standard linear equation.

4.5. Determination of Antioxidant Enzyme Activity

The quantification of antioxidant enzyme SOD, POD, and CAT activities was con-
ducted following the protocol described by Shalata et al. [64]. Fresh samples of germi-
nating cucumber seeds weighing 0.3 g were homogenized in 3 mL of 50 mM phosphate-
buffered saline (PBS) buffer (pH 7.8) containing 2 mM ascorbate, 0.2 mM EDTA, and 2%
polyvinylpyrrolidone. The homogenate was then centrifuged at 4 ◦C and 12,000× g for
20 min, with the supernatant used for enzyme activity assays. SOD activity was indicative
of its capacity to obstruct the photochemical reduction of nitroblue tetrazolium (NBT). The
measurement was taken at 560 nm following the protocol described by Gong et al. [4]. In
this context, a 50% decrease in NBT photoreduction was considered equivalent to one unit
of enzymatic activity”. The activity of POD was ascertained by recording the increase in
absorbance at 470 nm, indicative of guaiacol oxidation, following Shalata et al.’s methodol-
ogy [64]. CAT activity was quantified by monitoring the reduction in absorbance noted at
240 nm, correlating with the degradation of hydrogen peroxide (H2O2), according to the
approach of Shalata et al. [64].

4.6. Determination of Abscisic Acid (ABA) and Gibberellin (GA3) Content

Following the methodology outlined by Chen and colleagues [65], we accurately
measured the levels of ABA and GA3 at different stages of germination in cucumber seeds
using ELISA (enzyme-linked immunosorbent assay). Utilizing mlbio’s Plant ABA ELISA
KIT and Plant GA ELISA KIT, hormone levels were assessed at critical post-treatment
intervals of 16 and 36 h. This was carried out across three independent biological replicates
to ensure the reliability of the data.

Initially, each batch of cucumber seeds, weighing 0.3 g, was swiftly frozen using
liquid nitrogen, followed by blending with 2 mL of the extraction buffer supplied in the
kit. The samples, kept in an ice-cold environment, were homogenized and subsequently
transferred into 10 mL centrifuge tubes. For thorough sample transfer, the mortar received
an extra 2 mL of extraction solution rinse, with these washings then being amalgamated
with the tube-contained homogenate, succeeded by intense shaking. The mixture was
chilled at 4 ◦C for a duration of 4 h to allow phase separation and subsequently subjected
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to centrifugation at a force of 1000× g for a quarter of an hour. The upper liquid layer
was then cautiously extracted, and a volume of 1 mL was fused back with the sediment,
agitated rigorously, and exposed to additional extraction at a temperature of 4 ◦C across
60 min. After another round of centrifugation for 15 min, the combined supernatant
was measured for its total volume. Purification of the extract was conducted utilizing a
cartridge of Agilent Bond Elut C18 for Solid Phase Extraction (SPE). Subsequently, the
purified eluent was relocated into a centrifuge tube of 5 mL and concentrated by applying
a vacuum or inducing evaporation of methanol via nitrogen gas. Once concentrated, the
sample was diluted to a specified volume according to the kit’s instructions. For the final
assay, the prepared samples were incubated with specific antibodies, and absorbance was
quantitatively determined at 492 nm using an enzyme marker (Thermo Multiskan FC,
Thermo Fisher Scientific, Waltham, MA, USA). This comprehensive procedure enabled the
accurate measurement of ABA and GA concentrations.

4.7. Determination of Amylase Activity and Starch Content

Determination of Starch content: In accordance with the esteemed methodology delin-
eated by Allfrey and Northcote [66], the quantification of starch content was meticulously
executed. The experimental protocol commenced with the meticulous homogenization of
36 cotyledon pairs or axes in a 16 mL aliquot of 80% (v/v) ethanol, employing an ice-cold
mortar and pestle to ensure optimal conditions. This was followed by a centrifugation step,
exerting a force of 30,000× g for 10 min at a controlled temperature of 2 ◦C to effectively
separate the components. Subsequent to this, 6 mL of 30% (v/v) perchloric acid (HClO4)
was judiciously added to the homogenate, facilitating the dissolution of starch within
the granules. The solution was then allowed to equilibrate at ambient temperature for a
duration of 6 h, setting the stage for the starch assay. For the quantification, a bespoke I2-KI
reagent was prepared, entailing the dilution of 0.1 mL of a concentrated stock solution
(comprising 0.06 g I2 and 0.60 g KI in 10 mL deionized water) with 0.05 M HCl, tailored
specifically for this analysis. A volume of 0.5 mL from the starch solution was meticulously
mixed with an equal volume of the I2-KI reagent, followed by the addition of 1 mL of
30% (v/v) perchloric acid. The resultant mixture was vortexed and allowed to stabilize
at room temperature. The critical assessment of starch concentration was conducted by
measuring the absorbance at 620 nm, correlating it with a meticulously established standard
curve ranging from 0 to 5 mg/mL, using the identical I2-KI reagent derived from starch
solubilized in 30% HClO4. Rigor was maintained by repeating the analysis for each sample
in triplicate, ensuring the reliability and precision of the data obtained.

Determination of Amylase activity: The extraction of total amylase followed the
method outlined by Li and colleagues [67]. In conditions of 4 ◦C, 0.3 g of freshly germinated
cucumber seed samples underwent homogenization in 2 mL of acetate buffer (0.05 M, pH
6.0) utilizing a pestle. The homogenate obtained was first passed through cheesecloth,
subsequently centrifuged at 18,000× g for 10 min, and then subjected to filtration. The
protocol for α-amylase preparation was largely akin to that for total amylase extraction,
except it involved an additional step of heating at 70 ± 0.5 ◦C for a duration of 15 min
subsequent to filtration. For conducting amylase assays, the employed substrate comprised
a 1% soluble starch solution in 0.1 mol L−1 acetate buffer, maintaining a pH of 5.6. The
enzyme solution prepared was initially diluted to a volume of 1 mL using water, which was
then supplemented with 1 mL of starch solution. This mixture was incubated at a constant
temperature of 25 ◦C for one hour. Following incubation, 2 mL of 3,5-dinitrosalicylic acid
reagent was introduced into the mixture. The tubes containing this reaction mixture were
then heated in a boiling water bath for 5 min. Post-heating, the tubes were allowed to
return to room temperature and were further diluted with 20 mL of water. The intensity
of the colored solutions was quantified using a spectrophotometer. The intensity of the
colored solutions was quantified using a spectrophotometer. β-amylase was calculated
from the difference between α-amylase and the total contents of amylase.
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4.8. Gene Expression Analysis

The isolation of total RNA from these seeds using an RNA extraction kit from Invitro-
gen using the TRIzol method. Assessments of RNA quality and quantity were carried out
via 1% agarose gel electrophoresis, complemented by measurements using a NanoDrop
Photometer spectrophotometer (IM-PLEN, Westlake Village, CA, USA). This process pre-
ceded the reverse transcription of the isolated RNA into cDNA, utilizing the Super-Script™
First-Strand Synthesis System for RT-PCR kit (18091050; Invitrogen, Waltham, MA, USA).
Subsequently, the cDNA underwent qRT-PCR (quantitative real-time PCR), with primer
sequences meticulously designed as delineated in Table 1. Actin served as an internal
control. Primer designs for qRT-PCR were facilitated using Primer Premier 5 software
(Biosoft International, Palo Alto, CA, USA). The qRT-PCR experiments utilized the ABI
Prism 7900 HT system (Applied Biosystems, Waltham, MA, USA). The ascertainment of rel-
ative gene expression levels was achieved via the 2−∆∆CT method, with analysis conducted
using the 7500 software v2.0.6 (Applied Biosystems).

Table 1. Primers sequences.

Gene Name Primer Sequences

Actin F: CCCCGATGGGCAGGTAATA; R: AAGAGCAGGACGAACAGCAGA
AMF F: CACGGTTATTACACCCAGGACT; R: TAAATCACTTGGTTGCCCAT
BMF F: GGTGTCAAGTGGTAGCAACAATAAC; R: TGTCCTCTCTTTCTCTTCTAATGGTCT

Cu/Zn SOD F: CAAGTTAACGCATGGTGCTC; R: GGCAGTTATGTTTCCCAGGT
POD F: CAGGAAGGAGGGATGGTTT; R: TGGTGTTAGGTTCACTGTTGGA
CAT F: ATGCTGGAAGAGGAGGCTAT; R: ATGGTGAGGACATTTGGGAG

NCED1 F: CAGGGGGTTATTTGGTCTTGTT; R: ATCATCGTTGGCTGAGGCA
NCED2 F: CAAATCCGAAGTTTAGCCCAG; R: CATAATCCAGCAGACCAAGCG

CYP707A1 F: TCGGAGTTCTGTTTGCGGCT; R: TGGTAAAGGGCATAGTTCGT
CYP707A2 F: CCCAACATCCAACCTCCT; R: CTCGGGCGTCGCTAACAT

GA20ox F: ATCCGTTCCTTATGTTGCTG; R: CCTCATTATTGATTCATTGTCC
GA3ox F: ATTCCCTCTTCTCCCTTCCT; R: ACGCAACCCACATCAGCC

4.9. Data Processing

In this research, a fully randomized experimental design was implemented, with each
treatment group undergoing three sets of replications. We represented the data as mean
values accompanied by the standard error. For identifying significant variances among the
means, Duncan’s New Multiple Range Test, as facilitated by SPSS software version 22.0,
was employed. Statistical significance was inferred when the p-value was lower than 0.05.
Additionally, for further data analysis and chart creation, Excel 2010 was utilized.

5. Conclusions

The application of exogenous EBR effectively countered the negative impact of alka-
line stress on cucumber seed germination. This positive outcome is attributed to EBR’s
regulatory influence on the antioxidant defense system, its modulation of phytohormonal
dynamics, and its governance over amylase activity. Given the multifaceted physiological
process of seed germination, it is imperative to delve deeper into the nuanced regulatory
roles of EBR, especially in the context of alkaline stress on cucumber seed germination
(Figure 10).
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