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Abstract: Predicting the likelihood that non-native species will be introduced into new areas remains
one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate
management measures to mitigate the effects of future biological invasions. At present, not much
information is available on the areas in which non-native aquatic plant species could establish
themselves in the Iberian Peninsula. Species distribution models were used to predict the potential
invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species)
and (2) those with the potential to invade the peninsula (40 species). The results revealed that the
Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species.
Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related
to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas
for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information
about the potential distribution of non-native aquatic plant species. The atlas and this article are
intended to serve as reference tools for the development of public policies, management regimes,
and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic
plant species.

Keywords: alien species; biological invasions; MaxEnt; non-native species; species distribution
models; virtual atlas

1. Introduction

When non-native species arrive and become established in new areas, there are often
environmental and/or economic costs associated with the impacts of the species and the
resulting management needs [1–3]. In addition, biological invasions are considered a major
threat to natural systems and a key cause of biodiversity loss worldwide [4,5]. They are
a problem that shows no signs of abating, given that the number of non-native species
has not stopped growing in recent decades and is expected to continue along this global
trajectory for the foreseeable future [6–8].

Consequently, predicting the risk of biological invasions remains one of the greatest
challenges in conservation [9] and, therefore, it is essential to develop mitigation strategies
that target future invasions [10]. In addition, gathering information on invasion risk is a
fundamental part of horizon scanning, a technique that can guide management strategies
for eradicating or controlling populations of established non-native species and preventing
the arrival and establishment of non-native species with invasive potential [11]. Early
warning systems can play an extremely important role, given that control and eradication
are generally most effective when efforts are deployed during the introduction phase of the
invasion before species become established [9].

Species distribution models (SDMs) are currently the most common approach used to
explain and predict where species occur in space and time [12]. Using species occurrence
data and a set of predictor variables, SDMs can infer species distributions in areas for which
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no observations are available [13]. They are thus helpful tools for identifying the areas most
likely to be colonized by and host a given non-native species; in this way, it is possible to
determine which areas are at the greatest risk of invasion [14].

Inland aquatic ecosystems, both freshwater and estuarine, provide innumerable goods
and services and are, at the same time, especially vulnerable to biological invasions com-
pared to terrestrial ecosystems for three key reasons. First, they experience a high rate of
species introductions because of human activities. Second, they tend to be quite isolated.
Third, they host a large number of endemic species [11,15–17]. Some of the most harmful
invaders in inland aquatic ecosystems are aquatic plant species, given their ability to alter
habitat structure and composition as well as ecosystem biogeochemistry and water qual-
ity [18]. Research suggests that the number of non-native aquatic plants that have been
introduced to the Iberian Peninsula has been increasing over recent years [19], a pattern also
observed in Europe [20]. Such is clearly concerning for inland aquatic habitats and their
native species, especially considering that the Iberian Peninsula is particularly species-rich
and harbors a large number of endemic taxa [21]. Yet, few resources are currently available
for monitoring non-native species, especially inconspicuous groups such as aquatic plant
species, which limits knowledge of the potential distribution of invasive species and the
ability to develop appropriate preventive measures. In this context, the SDMs could be
used to help governmental authorities direct time, resources, and energy to the locations at
greatest risk of invasion. Indeed, for the Iberian Peninsula, SDMs have been successfully
used with both established non-native aquatic plants [19,20] and with non-native aquatic
plant species with invasive potential [22].

Although information on the occurrence and global distribution of non-native species
is becoming increasingly available, thanks to databases and platforms such as GBIF
(https://www.gbif.org/, accessed on July 2023), it remains difficult to obtain informa-
tion on the potential distribution and hence invasion risk for certain species. This challenge
means that environmental managers and planners lack the full breadth of data they need
to develop and implement effective management and conservation strategies.

This study thus aims to fill some of the information gaps that exist regarding the
potential distribution of non-native aquatic plant species in the Iberian Peninsula and to
create practical resources from this information. The main objective is to produce a map of
suitable areas for assessing the invasion risk of invasive and potentially invasive species in
the Iberian Peninsula. To achieve this, there are three specific objectives: (1) to establish
the methodological basis for mapping potential species distributions and, consequently,
determining the invasive potential of non-native aquatic plants; (2) to identify the areas at
greatest risk of invasion by non-native aquatic plants; and (3) to characterize these areas
based on climatic, topographical, and anthropogenic variables.

2. Results
2.1. Occurrence Data

This study looked at 72 target species: 32 non-native species that have already become
established in the Iberian Peninsula and 40 non-native species with invasive potential.
After filtering the original data used to create the models, the record number ranged
between 68 and 15,072 for the established species (Table S1) and between 22 and 6212
for the species with invasive potential (Table S2). The decision was made to perform the
models without Lemna aequinoctialis Welw., a species that had been on the list created by the
LIFE INVASAQUA Project (LIFE17 GIE/ES/000515) (hereafter Life Invasaqua project) [23].
Although good results were obtained with few data, L. aequinoctialis had too few records of
occurrence (n = 3) once the protocol for cleaning up the distribution data had been applied.

2.2. Distribution of Currently Established Non-Native Aquatic Plant Species

The current known distribution of non-native aquatic plant species in the Iberian
Peninsula are represented in Figure 1A. Of the 9039 cells in the regional map, 759 cells
contained instances of occurrence for non-native aquatic plants. A given cell was occupied

https://www.gbif.org/
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by one to six species (1 species: 555 cells; 2 species: 126 cells; 3 species: 40 cells; 4 species:
17 cells; 5 species: 19 cells; and 6 species: 2 cells). In general, most occupied cells were
found in the western half of the Iberian Peninsula, specifically in coastal Portugal, around
the mouth of the Tagus River, across a portion of the Guadiana Basin, and the coast of the
southwestern Iberian Peninsula. Additionally, cells along the coast of the eastern Peninsula
were occupied by a large number of non-native aquatic plant species. Indeed, only two
cells containing six different species of non-native aquatic plants were found in this area.
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Figure 1. (A) Map of observed species richness for non-native aquatic plant species; (B) Map of
potential species richness for established non-native aquatic plant species; (C) Map of potential
species richness for non-native aquatic plant species with invasive potential; (D) Map of potential
species richness for both established species and species with invasive potential.

2.3. Species Distribution Models

Overall, the models yielded highly accurate predictions. For the established species,
AUC values ranged from 0.831 to 0.993 (mean AUC ± SD: 0.918 ± 0.058) (Table S1). For the
species with invasive potential, the range was 0.810–0.993 (mean AUC ± SD: 0.940 ± 0.043)
(Table S2). The lowest AUC value of 0.702 was associated with an established species,
Elodea canadensis Michx.

For the established species, the most important predictor variables were temperature
(combination of Bio5 and Bio6) as well as HFP and precipitation (combination of Bio15 and
Bio17) (Figure 2A). For the species with invasive potential, these variables were temperature,
precipitation, and HFP, the same variables as for the two groups of species combined
(Figure 2A). Altitude was the variable of least importance for the established species, the
species with invasive potential, and both groups combined (Figure 2A). For the established
species, variable importance independently was ranked as follows: Bio6 > HFP > Bio17
> Bio5 > Altitude > Bio15 (Figures 2B and 3). For the species with invasive potential, the
order of ranking was: Bio6 > Bio17 > Bio5 > HFP > Altitude > Bio15 (Figures 2B and 4). For
both groups combined, it was: Bio6 > Bio17 > HFP > Bio5 > Altitude > Bio15 (Figure 2B).
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Figure 2. Relative importance (%) of the predictor variables used during SDM development and the
standard error for each grouping of the target species: (A) Main variable types and (B) Independent
variables. Bio5 = maximum temperature of the warmest month. Bio6 = minimum temperature of
the coldest month. Bio15 = seasonality of precipitation. Bio17 = precipitation of the driest quarter.
HFP = human footprint index. Altitude = digital elevation model. Blue bars: established species,
yellow bars: potential species, and red bars: all established and potential species.
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Figure 3. Relative importance (%) of the variables used to model the potential distributions of
each established non-native aquatic plant species. Bio5 = maximum temperature of the warmest
month. Bio6 = minimum temperature of the coldest month. Bio15 = seasonality of precipita-
tion. Bio17 = precipitation of the driest quarter. HFP = human footprint index. Altitude = digital
elevation model.
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Figure 4. Relative importance (%) of the variables used to model the potential distributions of
each non-native aquatic plant species with invasive potential. Bio5 = maximum temperature of the
warmest month. Bio6 = minimum temperature of the coldest month. Bio15 = seasonality of precipi-
tation. Bio17 = precipitation of the driest quarter. HFP = human footprint index. Altitude = digital
elevation model.

2.4. Potential Species Distributions (Potential Invasion Risk)

The potential distribution of each target species is included in the online Invasion Risk
Atlas ([24], Figure 5). Here zones and macroecological patterns associated with the greatest
risk of invasion by each target species are indicated, whose distributions vary across the
Iberian Peninsula (Figure 6).
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Figure 5. Illustration of the interface for the online Invasion Risk Atlas (https://InvasionRiskAtlas.
github.io/, accessed on July 2023).
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Figure 6. Potential distributions (invasion risk maps) of six non-native aquatic plant species that have
been identified by experts as very high risk for Iberian inland waters (Life Invasaqua project; [23]):
(A) Azolla filiculoides Lam. [24]; (B) Eichhornia crassipes (Mart.) Solms [25]; (C) Ludwigia grandiflora
(Michx.) Greuter & Burdet [26]; (D) Salvinia natans (L.) All. [27]; (E) Salvinia molesta D.S. Mitch. [28];
(F) Spartina densiflora Brongn. [29].

2.5. Potential Richness of Non-Native Aquatic Plant Species

For the established species, the species with invasive potential, and both groups
combined, potential species richness displayed similar associations with macroecological
patterns (Figure 1B–D). Although the risk of invasion was heightened for the established
species versus the species with invasive potential, the areas at greatest risk coincided: with
coastal areas, large river basins, and densely populated urban centers. At the lowest risk
were the most isolated zones of the Iberian Peninsula, namely high-elevation areas and
areas far from large river basins and urban centers (Figure 1B–D).

The established species, the species with invasive potential, and both groups together
showed similar responses to the variables used in the SDMs in terms of areas with the
highest potential species richness (Figure 7A–F). HFP was positively correlated with po-
tential species richness: the areas experiencing more anthropogenic pressure seem to be
at greater risk of invasion by the target species (Figure 7A). Lower elevation areas appear
to be more likely to host a larger number of non-native aquatic plant species (Figure 7B).
With regards to temperature, species richness increased with Bio6 (Figure 7D) and was
higher for Bio5 at values between 20 ◦C and 25 ◦C (Figure 7C). There was also a rela-
tionship between precipitation and potential species richness. First, areas with greater
seasonality in precipitation seem more likely to be invaded by a greater number of species
(Figure 7E). Precipitation levels displayed a bimodal association: potential species richness
was high in areas with low precipitation (<20 mm) and areas with higher precipitation
(100–220 mm); between and above these precipitation levels, potential species richness
decreased drastically (Figure 7F).
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Figure 7. Response curves showing the relationship between the potential species richness of non-
native aquatic plant species and the variables used in SDM development. The data are for the Iberian
Peninsula. The solid lines represent the mean (blue lines: established species, yellow lines: potential
species, and red lines: all established and potential species), and the shaded areas represent the
95% confidence intervals. (A) HFP index; (B) Digital elevation model (Altitude); (C) Maximum
temperature of the warmest month (Bio5); (D) Minimum temperature of the coldest month (Bio6);
(E) Seasonality of precipitation (Bio15); (F) Precipitation of the driest quarter (Bio17).

3. Discussion

Identifying and understanding the distribution of non-native species is one of the keys
to establishing appropriate management strategies aimed at preventing, mitigating, and
eradicating invasions. The Iberian Peninsula already hosts a large number of non-native
aquatic species and is at substantial risk of future invasions [23]. This study underscores
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that lack of knowledge about the potential distribution of non-native aquatic plant species
is one of the greatest limitations in biological invasion management and, consequently,
about the possible threat they pose to the Iberian Peninsula, an important hotspot for
aquatic plant species in Europe and around the Mediterranean [30,31].

Although information exists on the distribution of non-native plant species in the
Iberian Peninsula, most are scattered across different sources, such as digital platforms
and atlases. It also tends to be very general in nature and focused on known species
distributions. A few references include Anthos (http://www.anthos.es/, accessed on
January 2023), the Flora-On project (https://flora-on.pt/, accessed on January 2023), Atlas
de las plantas alóctonas de España [32]. However, little information is available about the
potential distribution and invasion risk of non-native plant species [33], specifically of
non-native aquatic plant species. Such knowledge is available for certain established
species [19,34] and for species with invasive potential [22]. When available, this information
tends to be very specific and is not always easy to find. For instance, sometimes only a map
of overall invasion risks is presented, which conveys information about all species without
showing the potential distribution of target species independently. This study serves as
an up-to-date and comprehensive source of information on the potential invasion risks of
non-native aquatic plant species. It used the results of the Life Invasaqua project [23] to
create a list of target species: non-native aquatic plant species currently established in the
Iberian Peninsula as well as non-native aquatic plant species with invasive potential. In
addition, the study’s findings were used to create the online Invasion Risk Atlas [35]. Easy
to use, the atlas shows the potential distribution and, consequently, the areas at greatest
risk of invasion by each of the target species. Both this study and the atlas represent a
major advance with regards to existing resources for understanding the risk of invasion by
non-native aquatic plant species in the Iberian Peninsula.

In the Invasion Risk Atlas [35], the maps for the different target species show variable
macroecological patterns, which makes sense given the diversity in species types and
ecologies (Figure 6). That said, many of the target species display similar patterns with
regards to the nature of the areas at greatest risk of invasion. These are the areas that
have the capacity to host a large number of non-native aquatic plant species, and they
tend to occur near densely populated zones, coastal zones, and large river basins. These
results concur with those obtained for other non-native aquatic species in the Iberian
Peninsula, e.g., [36,37] and, specifically, for non-native aquatic plant species [19,20]. It
is also important to note that zones, where non-native aquatic plant species richness is
higher, tend to overlap with zones where native aquatic plant species richness is greatest,
a key finding that should inform the conservation of aquatic biodiversity in the Iberian
Peninsula [31]. This overlap likely stems from the fact that these areas are characterized
by pronounced environmental heterogeneity. The factors that favor biological diversity
occur in tandem with anthropogenic forces that facilitate the arrival and establishment of
non-native species in communities of native species [38].

As highlighted in previous studies, climatic variables strongly influence potential
species distributions [39,40], especially at the scales examined in this study and of ecological
importance for aquatic plant species [19,20,31,36,41,42]. In the models, temperature—
specifically the minimum temperature of the coldest month—was the variable of greatest
importance. Its positive relationship with potential species richness and, consequently,
invasion risk may be a consequence of how much temperature can limit species growth and
development. In addition, the results showed that potential species richness was higher
when the maximum temperature fell between 20 ◦C and 25 ◦C. Similar results have been
obtained in previous research on non-native aquatic species [36,43] and on aquatic plant
species in particular [20,42]. Additionally, precipitation, or the lack thereof, was also an
important variable in the SDMs. First, it is an indicator of water availability and levels
of soil moisture, both important abiotic variables in the life cycles of the target species.
Notably, precipitation is key to species dispersion because it can create connections among
water bodies. Second, precipitation levels serve as an indirect indicator of other conditions

http://www.anthos.es/
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that could affect species distributions, such as modifications in the water regime or the
concentration of nutrients [44–46]. In the case of the Iberian Peninsula, the areas at higher
risk of invasion are those where rainfall is lower and displays greater seasonality, a pattern
mentioned in past studies [19,20]. These finding underscores that climatically moderate
zones may play an important role in facilitating invasions.

Consequently, the shifts in temperature and precipitation brought about by climate
change could alter distribution patterns and the risk of invasion by non-native aquatic
plant species. They could promote plant development and proliferation by creating new
habitats with favorable conditions. Indeed, some currently non-problematic species could
start to cause problems, move northwards, and even disappear entirely from their present
ranges [42,43,47,48].

The use of non-climatic variables in SDMs can help improve predictions. Here, the
inclusion of altitude yielded decent results in SDMs for certain species, such as Spartina
spp. Schreb., Halophila stipulacea (Forssk.) Asch., and Zostera japonica Asch. & Graebn.
(Figures 3 and 4), which all occur in estuarine environments and marshes. This result is
noteworthy because some have suggested that it is questionable to include this variable in
SDMs for plant species [49]. Thus, it would appear to be important to account for altitude
when modeling the distributions of aquatic plant species, especially those found in habitats
where this variable matters, such as marshes and estuaries.

Although it is increasingly common for variables related to water chemistry to be
included in SDMs, e.g., [41,50], their use is not always appropriate, as it will depend on the
modeling scale. For example, water chemistry can help explain local species distribution
patterns [40] but may not make the same contribution to higher-scale models, but see [41,51].
In contrast, variables that provide information about anthropogenic pressures, habitat
accessibility, and propagule pressure have proven to be useful in SDMs for non-native
species in general [36,39,52] and for non-native aquatic plant species in particular [19,20].
As a result, this study included the HFP index in its SDMs. Indeed, anthropogenic pressures
can help explain the presence of certain non-native taxa in climatically unfavorable areas
or their absence from climatically favorable areas: successful colonization relies at least in
part on factors such as propagule pressure [52].

The results show that the HFP index and altitude present opposite trends in relation to
potential species richness (Figure 7A,B). This pattern can be explained by the fact that, in the
Iberian Peninsula, high-elevation areas are less accessible and, consequently, more pristine
than lower-elevation areas, which experience greater anthropogenic pressure, propagule
pressure, and nutrient availability. Other research has found similar results: non-native
species are rare in or entirely absent from isolated areas but abundant in accessible areas [43].
In this context, it is worth noting that the richness of non-native species is directly correlated
with the degree of anthropogenic activity within regions [36].

At the same time, limited and irregular levels of precipitation in low-lying areas may
interact with high levels of anthropogenic activity to increase nutrient concentrations in wa-
tersheds [53], which can promote the arrival and establishment of certain non-native aquatic
plant species. Such a relationship would support a hypothesis proposed elsewhere [19],
which was based on the positive association observed between irrigated farmland and
invasion risk in the Iberian Peninsula.

Based on the above, it seems likely that using variables that quantify the degree of an-
thropogenic pressure could have two important functions: to improve SDM quality, as also
highlighted elsewhere [52], and to indirectly incorporate information normally contained
in variables absent from the models, such as the level of nutrients in aquatic environments.

Both the established non-native species and the species with invasive potential over-
lapped in their areas at greatest risk of invasion. That said, there were subtle differences
between the two groups (Figure 1B,C). The main reason may be that the models for estab-
lished species contain data on actual species presence and environmental conditions in both
the Iberian Peninsula and other invaded regions. Such is not the case for the species with
invasive potential. Consequently, it seems important to include as much occurrence data as
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possible from a species’ native and invasive ranges when modeling potential distributions.
Taking this approach will result in more robust models that account for the entire range of
environmental conditions in which the species is found [47].

This study is not without its limitations. Sometimes the use of alternative settings
is more appropriate for model development than the use of MaxEnt default options [54].
However, this would mean applying individual models for each species, which would
go against standardizing and automating the process [55]. This is outside the scope of
this work, as the original idea of this project is to implement a common protocol for all
species studied, in order to save time and costs in all phases of control and management of
non-native aquatic plant species. On the other hand, the lack of specific predictors based
on the ecology of the species studied may be a limiting factor in this work [51]. However,
as reflected in the manuscript and the references cited therein, the use of climatic variables
and the impact of human activities on the area have worked well in the development
of SDMs for non-native species [36,41]. It is possible that the use of general predictors
may overestimate the potential distribution of the species studied, but it is preferable
to overestimate rather than underestimate the potential distribution of species from the
perspective of non-native species management [56]. It is important to remember that the
resulting models are simplifications of reality, based on a small number of predictors that
reflect habitat suitability rather than the absolute limits of species survival [56]. Despite the
uncertainty of such spatial representations, SDMs are currently one of the most useful tools
for detecting trends in the spread of non-native species.

This work is dynamic in nature and will evolve as new records on species presence are
collected. In this way, the models will continue to improve in the future, as new non-native
species are uncovered and studied by the scientific community. This characteristic is a
strength, not a limitation. Indeed, the function of this article and the Invasion Risk Atlas [35]
is to lay a foundation for developing targeted strategies and identifying new areas where
non-native aquatic plant species occur. This information will help update the models and
improve the resulting predictions.

4. Materials and Methods
4.1. Study Area

The focus of this study was the Iberian Peninsula, which comprises continental parts of
Spain and Portugal. The Balearic Islands and the Macaronesian archipelagos were excluded,
in accordance with recommendations made by the Life Invasaqua project [23]. Located in
the Mediterranean Basin, the Iberian Peninsula is a hotspot of plant biodiversity [57,58].
It harbors a range of highly diverse native aquatic plant species [30,31] that are currently
under threat given the arrival and presence of non-native aquatic plant species [19,20].

4.2. Species Occurrence Records

This study’s list of target non-native aquatic plant species was taken from the Life
Invasaqua project [23] and was expanded using the project’s technical reports [59–61]. The
list comprises 32 non-native aquatic plant species that have become established in the
Iberian Peninsula (Table S1) as well as 41 non-native aquatic plant species with invasive
potential (Table S2). The reference nomenclature was adopted from Tropicos (https://
tropicos.org, accessed on August 2023).

Occurrence data for all 73 species were downloaded from GBIF (https://www.gbif.
org/, accessed on January 2023; Table S3) and EASIN (https://easin.jrc.ec.europa.eu/
easin, accessed on January 2023). A database was compiled after incorporating the global
occurrence data (i.e., a species’ native and non-native distributions). Such an approach
makes it possible to include the environmental breadth acquired by species in newly
colonized areas, which reflects the species’ ability to acclimate [62]. It is therefore possible
to produce more reliable maps than when using a more limited set of records [47].

Because data quality determines the model quality [63], a data cleaning protocol was
applied. Erroneous data (geographical and taxonomic) were removed, as were data with
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a low degree of spatial resolution, i.e., zero coordinates and equal latitude and longitude
data [64]. In addition, to reduce the influence of sampling bias in the models, duplicates
were eliminated, and, to reduce spatial autocorrelation, the degree of data aggregation
was reduced by retaining only one occurrence point per pixel with respect to the predictor
variables grid [65,66]. Despite these efforts, it is possible that the data still displayed a
degree of spatial autocorrelation. It may actually be a natural result of scattering processes
and should not be artificially removed [67]. After the data cleaning process, the species
records were ready for use in the SDMs and to establish macroecological patterns of
species [55]. Species with less than ten records were excluded from the analyses [68].

All the analysis and management of the geographical data was performed using
R v. 4.1.3 (https://www.r-project.org/ accessed on April 2023) and QGIS v. 3.28 (https://
qgis.org/, accessed on May 2023). Furthermore, the QGIS PyQGIS library and Python (https:
//www.python.org/, accessed on May 2023) were used to automate repetitive processes.

4.3. Selection of Predictor Variables

The set of 19 bioclimatic predictor variables, which are described in Fick and Hi-
jmans [69], and the digital elevation model (altitude) from the Shuttle Radar Topogra-
phy Mission were downloaded from WorldClim (https://worldclim.org/, accessed on
January 2023).

In addition, to include anthropogenic impacts, accessibility, and propagule pressure,
values for the human footprint (HFP) index were downloaded from the Socioeconomic
Data and Applications Center (https://sedac.ciesin.columbia.edu/, accessed on January
2023). This index includes eight variables that reflect regional anthropogenic pressures:
human constructions, population density, electricity infrastructure, croplands, pastures,
roads, railways, and waterways [70].

All the variable values were compiled and associated with the EPSG:3857 reference
coordinates system (spatial resolution: 5 arc min). Given the large number of species being
modeled, this level of resolution best balances computational space and time with model
accuracy [36]. Variables were selected by determining their ecological significance for the
target species, drawing on previous studies [41,42,47]. Next, to minimize model overfitting
and optimize model parsimony, the number of variables was refined using the variance
inflation factor (VIF). This factor expresses the degree of collinearity among variables; here,
variables with a VIF value of greater than 5 were eliminated [11] using the R package
HH [71]. The variables retained were the digital elevation model (altitude), the maximum
temperature of the warmest month (Bio5), the minimum temperature of the coldest month
(Bio6), the seasonality of precipitation (Bio15), the precipitation of the driest quarter (Bio17),
and the human footprint (HFP) index.

4.4. Species Distribution Models

The SDMs were calibrated using MaxEnt v. 3.4.4 (maximum entropy modeling;
https://biodiversityinformatics.amnh.org/open_source/maxent/, accessed on April 2023),
an algorithm that combines machine learning with the maximum entropy principle. Max-
Ent estimates the probability that a species will be present by determining the maximum
entropy distribution based on known species occurrence [72]. MaxEnt was chosen because
it can be employed with presence-only data, even if relatively few records are available,
and because it is not strongly influenced by spatial sampling errors [54,63,73,74]. Further-
more, MaxEnt performs and predicts potential areas comparatively well against ensemble
models [75], making it one of the most reliable techniques for modeling distributions of
incomplete datasets [76].

The SDMs were carried out with MaxEnt using the default parameters (‘Auto fea-
tures’, convergence = 10–5, the maximum number of iterations = 500, prevalence = 0.5,
regularization value β = 1) [72,77,78], an approach previously used to model the potential
distributions of aquatic plant species in general [31] and non-native aquatic plant species
in particular [19,20]. As only presence data were used, 10,000 random background points
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were generated and employed as “pseudoabsences” when running the models. The predic-
tive performance of each model was evaluated using a 10-fold cross-validation procedure,
where 80% of the data were employed to train the model and the remaining 20% were
utilized to validate the model. The predictive accuracy of the models was determined
by analyzing the area under the ROC curve (AUC). Modeling results were considered to
express plausible habitat occupation if the AUC was greater than 0.7 [79]. To obtain the
most robust estimate of model predictive performance, the average of 10 replicates of each
model was used to represent potential species distributions [80].

4.5. Online Invasion Risk Atlas

The resulting maps of invasion risk for each target species have been made avail-
able online, resulting in the first invasion risk atlas for the Iberian Peninsula ([35], https:
//InvasionRiskAtlas.github.io/, accessed on July 2023). The atlas was developed using
HyperText Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript script-
ing language. In addition, the Bootstrap v. 5 framework (https://getbootstrap.com/,
accessed on July 2023) was used to speed up the web development process, which was
accomplished using the Visual Studio Code (https://code.visualstudio.com/, accessed
on July 2023) editor. The atlas was designed in accordance with responsive web criteria,
which means it can be optimally visualized regardless of the viewing device (i.e., cell
phone, tablet, computer). The atlas’ source code has been deposited in a GitHub repository
(https://github.com/InvasionRiskAtlas?tab=repositories, accessed on July 2023), which
has been made public via GitHub Pages.

4.6. Potential Richness of Non-Native Aquatic Plant Species

The modeling results, which expressed habitat suitability on a continuous scale, were
transformed into maps expressing habitat suitability on a binary scale (presence/absence).
This process used the maximum training sensitivity and specificity threshold, which pro-
duced the most accurate predictions [81]. The zones of binary suitability were delineated
for the Iberian Peninsula and then summed to produce a map of the potential richness of
non-native aquatic plant species, which showed the number of species per pixel that were
likely to encounter conditions allowing colonization. Consequently, these are the locations
where the risk of invasion by non-native aquatic plant species is expected to be highest [20].

In addition, using the ggplot2 package in R [82], response curves were generated for
the variables included in the SDMs, with the goal of analyzing the relationships between
these variables and the potential richness of non-native species in the Iberian Peninsula.
The curves were fitted using generalized additive models (GAMs) because GAMs can
handle nonlinear relationships between response and predictor variables [36,83].

5. Conclusions

The SDM results have emphasized the importance of considering climatic and anthro-
pogenic variables when exploring the potential distributions of non-native aquatic plant
species, which aligns with the findings of previous research on non-native aquatic plant
species [19,20]. From the modeling based on these variables, it is evident that the Iberian
Peninsula displays ideal environmental conditions for maintaining established populations
of non-native aquatic plant species and for hosting new species with invasive potential. It is
hoped that the results here as well as the taxon-specific information in the online Invasion
Risk Atlas [35] will become important resources that can guide decision-making by envi-
ronmental managers. This work should help build biogeographical and macroecological
knowledge of aquatic plant species, a taxonomic group whose distribution patterns have
been poorly characterized. Furthermore, this study presents an objective methodology
that can be used with other taxonomic groups, which contrasts with previous work in
this domain. Another advantage is that disseminating information about the potential
distributions of non-native species can benefit the general public because knowledge and
understanding are the first steps along the path to effective management. In addition, the
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information provided could help spur citizen science initiatives, for example, and thus
contribute to data-gathering efforts and further model improvement. Finally, it is important
to develop monitoring programs so that the arrival of non-native aquatic plant species in
the Iberian Peninsula can be detected as early as possible. It is also essential to implement
or support eradication, control, or mitigation programs in areas where the presence of
non-native species can present a risk to the diversity of native species.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12173069/s1, Table S1: Results from SDMs per-
formed for non-native aquatic plant species that are already established in the Iberian Peninsula.
Occurrences = sample size used to run the model at the global scale after cleaning up the original oc-
currence data. AUC = area under the ROC curve. SD = standard error. MaxTSS = maximum training
sensitivity and specificity threshold; Table S2: Results from SDMs performed for non-native aquatic
plant species that have the potential to invade the Iberian Peninsula. Occurrences = sample size
used to run the model at the global scale after cleaning up the original occurrence data. AUC = area
under the ROC curve. SD = standard error. MaxTSS = maximum training sensitivity and specificity
threshold. Table S3: List of links to download species occurrence records from the GBIF platform.
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