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Abstract: Registration is essential for terrestrial LIDAR (light detection and ranging) scanning point
clouds. The registration of indoor point clouds is especially challenging due to the occlusion and
self-similarity of indoor structures. This paper proposes a 4 degrees of freedom (4DOF) coarse
registration method that fully takes advantage of the knowledge that the equipment is levelled or
the inclination compensated for by a tilt sensor in data acquisition. The method decomposes the
4DOF registration problem into two parts: (1) horizontal alignment using ortho-projected images
and (2) vertical alignment. The ortho-projected images are generated using points between the floor
and ceiling, and the horizontal alignment is achieved by the matching of the source and target ortho-
projected images using the 2D line features detected from them. The vertical alignment is achieved
by making the height of the floor and ceiling in the source and target points equivalent. Two datasets,
one with five stations and the other with 20 stations, were used to evaluate the performance of
the proposed method. The experimental results showed that the proposed method achieved 80%
and 63% successful registration rates (SRRs) in a simple scene and a challenging scene, respectively.
The SRR in the simple scene is only lower than that of the keypoint-based four-point congruent
set (K4PCS) method. The SRR in the challenging scene is better than all five comparison methods.
Even though the proposed method still has some limitations, the proposed method provides an
alternative to solve the indoor point cloud registration problem.

Keywords: indoor point clouds; registration; 4DOF; line matching

1. Introduction

The easy access to high-quality dense point clouds means that LiDAR (light detection
and ranging) scanning has been widely used in areas such as surveying and mapping [1],
forestry inventory [2], and hazard monitoring [3] during the last two decades. In recent
years, indoor point clouds have become more and more desirable for applications in
interactive visualization [4], as-built construction [5,6], indoor navigation [7], and building
model reconstruction [8,9]. Cost-effective, convenient, and efficient methods for producing
high-quality indoor point clouds are expected.

Various methods and equipment can be employed to acquire indoor point clouds.
Traditional terrestrial laser scanning (TLS) is probably the most basic method used to obtain
indoor point clouds. TLS can acquire high-accuracy point clouds, but it needs to scan station
by station to cover the full view of the indoor scene. Mobile indoor mapping systems,
such as NavVis [10], can acquire dense indoor point clouds in a moving mode, which is
convenient and efficient, but the accuracy of the produced point clouds is lower than that

ISPRS Int. ]. Geo-Inf. 2021, 10, 26. https:/ /doi.org/10.3390/1jgi10010026

https:/ /www.mdpi.com/journal/ijgi


https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-4035-8595
https://orcid.org/0000-0002-7761-7805
https://doi.org/10.3390/ijgi10010026
https://doi.org/10.3390/ijgi10010026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10010026
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/10/1/26?type=check_update&version=2

ISPRS Int. ]. Geo-Inf. 2021, 10, 26

2 0f 24

of TLS. RGB-depth (RGB-D) sensors such as Intel RealSense [11] and Microsoft Kinect [12]
are more and more used in indoor data acquisition for their low cost and portability.

Registration is essential for TLS-based and RGB-D-based indoor point cloud acqui-
sition methods. Registration transforms point clouds scanned from different stations to
a unified coordinate system to cover the entire scene completely. The registration can
be categorized into pairwise registration and multi-view registration depending on the
station number of input point clouds. Pairwise registration is the basis and foundation of
multi-view registration. Besides this, a coarse-to-fine strategy is usually used to improve
the efficiency of pairwise registration. The coarse step finds the initial registration parame-
ters quickly and serves as the input of fine registration. The fine registration step obtains
the optimal registration parameters. The iterative closest point (ICP) algorithm [13] and
its variants [14,15] and the normal distribution transform (NDT) algorithm [16] and its
variants [17,18] are among the most famous and widely used fine registration algorithms.

This paper focuses on the pairwise coarse registration of point clouds, which plays
an important role in point cloud processing. A variety of methods have been developed
to accomplish robust, efficient, and high-accuracy coarse registration. These methods
can mainly be divided into two categories: (1) feature-based registration methods and (2)
probabilistic registration methods.

Among feature-based registration methods, hand-crafted features are the most widely
and commonly used features. In this kind of registration method, geometric features
(such as points, curves, planes, and surfaces) are first extracted from point clouds, and then
correspondences are identified from these geometric features. Finally, the rigid transforma-
tion between point clouds is estimated based on the identified corresponding geometric
features. Spin images [19] and Extended Gaussian Images (EGI) [20] are among the
classical point features that used to register point clouds. To better describe local geom-
etry, Rusu et al. [21] proposed 16-dimensional (16D) features named persistent feature
histograms (PFHs) and applied them to registering point clouds. The computation of
PFH features is time-consuming. Rusu et al. [22] improved the PFH feature and proposed
fast point feature histograms (FPFHs). To be more time-efficient, Dong et al. [23] pro-
posed a binary descriptor named the binary shape context (BSC) for object recognition and
point cloud registration. The BSC descriptor was proved to have a high descriptiveness,
strong robustness, and high efficiency in both time and memory.

Point features such as Spin images, EGI, PFH, FPFH, and BSC are theoretically suitable
for any kind of point clouds. However, the performance is declined in some cases. In such
cases, high-level geometric features, such as lines, planes, and semantic features, are used
to improve point clouds’ registration performance. Yang and Zang [24] extracted crest lines
from TLS point clouds and a deformation model was used as a similarity measure to match
the extracted crest lines. Planar patches were extracted and matched for 3D laser scanning
data registration in [25]. Tree stems were extracted and matched to register point clouds
acquired in forestry in [26]. High-level geometric features such as crest lines, planar patches,
and tree stems are usually only suitable for point clouds scanned in specific scenes.

Effective and robust hand-crafted features are difficult to design. In recent years,
the deep learning method has been used to learn high-level descriptive features from
large amounts of training data directly and automatically. Zeng et al. [27] proposed a
volumetric patch-based network to learn correspondences for RGB-D data registration.
Similarly, Zhang et al. [28] proposed to learn 3D deep features from volumetric patches
for the registration of mobile laser scanning point clouds obtained in different phases.
In contrast to learning features from volumetric patches, Alba et al. [29] projected the
neighborhood of key points to 2D RGB-D patches and learned features using the standard
2D convolutional neural network. Based on PointNet [30], Deng et al. [31] proposed the
point pair feature network (PPFNet) to learn globally informed 3D local feature descriptors
directly from unordered points. Similarly, Aoki et al. [32] thought of PointNet as a learnable
“imaging” function and thus used the Lucas-Kanade algorithm to achieve the alignment of
point clouds.
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Besides hand-crafted features and deep learning learnt features, the four-point con-
gruent set (4PCS) is another special feature proposed to register point clouds. 4PCS-based
registration methods first extract coplanar four-point-wide bases from source and target
points. Affine invariant ratios are defined using base points to find candidate correspon-
dences between wide bases in source and target points. Candidate transformations are
estimated based on the candidate 4PCS correspondence, and the one that transforms the
source points to have the most points close to the targets points is selected as the optimal
and final transformation. The 4PCS algorithm works well for datasets with small over-
laps and is resilient to noise and outliers, but is time-consuming for large-scale datasets.
To improve its time efficiency, some variants have been developed based on the original
4PCS algorithm. Mellado et al. [33] improved the original 4PCS algorithm by introduc-
ing a smart indexing data organization to reduce the quadratic time complexity to linear
time complexity. The improved algorithm is called SUPER 4PCS. Keypoint-based 4PCS
(K4PCS), proposed by Theiler et al. [34], improves the time efficiency by first extracting
keypoints from point clouds and then feeding the keypoints to the 4PCS algorithm, in-
stead of using all points in the source and target points. Similar to K4PCS, Ge [35] proposed
to extract semantic keypoints first and then feed the extracted semantic keypoints to the
4PCS algorithm.

Feature-based registration methods accomplish point cloud registration by matching
feature correspondences in source and target point clouds. Meanwhile, the probabilistic
registration method model uses the distribution of point clouds as a density function
and performs registration either by employing a correlation-based approach or using
an expectation maximization-based optimization framework [36]. Tsin and Kanade [37]
proposed to use a kernel correlation function to measure the affinity between point clouds
and register point clouds by finding the maximum kernel correlation using an M-estimator.
Jian and Vemuri [38] proposed a unified framework for rigid and nonrigid point cloud
registration which uses Gaussian mixture models to represent the point clouds and register
the input point clouds by minimizing the statistical discrepancy measure between the two
Gaussian mixtures. Myronenko and Song [39] proposed the coherent point drift (CPD)
algorithm, which fits the Gaussian mixture model centroids of the source point cloud to the
target point cloud by maximizing the likelihood in a way that forces the GMM centroids to
move coherently as a group to preserve the topological structure of the point sets.

Even though coarse point cloud registration has been widely studied for a long
time, it is still challenging due to the scene complexity, sparse distribution, occlusion,
and noises of point clouds, especially for indoor point clouds. Compared with outdoor
scenes, indoor scenes have their own characteristics: (1) many self-similarity structures
exist and (2) they have much more structured geometric features. The registration of indoor
scene point clouds can achieve a better performance if its own characteristics are fully
considered. Bueno et al. [6] proposed to extract keypoints from indoor point clouds and
then feed the keypoints to a 4PCS algorithm to achieve the registration of indoor point
clouds. This method is similar to the K4PCS algorithm [34] for outdoor scenes, and the
characteristics of the indoor point clouds are not considered. Tsai and Huang [40] designed
an indoor 3D reconstruction system using pan-tilt and an RGB-D sensor. An algorithm to
automatically register the data acquired in a fixed station was developed but the global
registration of different stations was not presented. Mahmood et al. [5] extracted lines from
a horizontal cross-section and registered the as-built model to an as-planned model using
the line feature correspondences. This method is suitable for the registration of a point
cloud of part of a building (such as a room) to the full building information model (BIM)
but not for station-by-station point cloud registration. Sanchez et al. [41] proposed the
structured scene feature-based registration (SSFR) algorithm that uses Gaussian images
to find corresponding planes for the registration of indoor point clouds that have planes.
The SSFR algorithm is not suitable for complex indoor scenes since its plane number is set
as constant. Pavan et al. [42] proposed a plane-to-plane correspondences-based method for
indoor and outdoor building point cloud registration. Planes are segmented first using the
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random sample consensus (RANSAC) algorithm and then the planes are matched using
complex numbers. Finally, the transformation is estimated using the plane correspondences.
This method is time-consuming due to the RANSAC segmentation step.

The rigid transformation between point clouds has six degrees of freedom (DOF) if it
does not have any constraints and can be expressed by three translations and three rotation
angles. For the state-of-the-art scanners, the inclination of equipment in data acquisition
can be compensated by the built-in tilt sensor, and thus the rotation between point clouds
scanned from different stations is constrained to azimuth only. Based on this assumption,
Cai et al. [43] proposed a fast branch-and-bound (BnB) algorithm based on 3D keypoint
correspondences for a 1D rotation search and thus achieved a computationally efficient
4 degrees of freedom (4DOF) registration. In our previous work [44], a two-step 4DOF
registration algorithm for outdoor scenes is proposed. In the first step, the horizontal
translation and azimuth angle is estimated by the keypoint-based registration of ortho-
projected feature images. In the second step, the vertical translation is estimated by the
height difference of the overlapping areas after they are horizontally aligned. Ge and
Hu [45] proposed a three step 4DOF registration algorithm for urban scene point clouds.
In the first step, the 2D transformation was estimated using the matched line primitives.
In the second step, the vertical offset was compensated by least squares optimization.
Finally, the full transformation was refined by a least squares algorithm using the uniformly
sampled patches.

This paper proposes a 4DOF coarse registration algorithm for indoor point clouds.
Similar to our previous work [44], the 4DOF registration is divided into two steps. The first
step achieves 2D registration in the horizontal plane. The second step aligns the point
clouds in the vertical plane after they are horizontally aligned. Differing from our pre-
vious work, this paper proposes a new method to generate ortho-projected images for
indoor point clouds and achieves horizontal alignment by matching the 2D line features
in the ortho-projected images rather than using the keypoint-based registration method.
Besides this, this paper achieves vertical alignment by making the heights of the floor and
ceiling in the source point cloud and the target point cloud equivalent rather than making
the heights of the overlapping regions equivalent.

The remainder of this paper is structured as follows. In Section 2, the used indoor
point cloud datasets are introduced, and the proposed registration method is described in
detail. In Section 3, the results are presented. In Section 4, we briefly discuss the proposed
method and the results. Finally, the conclusions are given in Section 5.

2. Materials and Methods
2.1. Indoor Point Cloud Datasets

Two datasets were used to validate the proposed method. The first one, provided by ETH
Zurich (https:/ /ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-
remote-sensing-dam/documents/sourcecode-and-datasets /PascalTheiler/ office.zip) and
abbreviated as SR, contains five scans of an indoor office (Figure 1a). All five scans
overlap each other, and thus a total of 10 pairs of matching can be conducted (Table 1).
The ground truth transformations between pairs are provided by ETH Zurich. The sec-
ond one, provided by Wuhan RGSpace Technology Co. LTD (http:/ /rgspace.com/) and
abbreviated as CB, contains 20 scans of the interior of a building (Figure 1b). The point
clouds were captured by a self-integrated scanner using three Azure Kinect DKs (https:
/ /azure.microsoft.com/en-us/services/kinect-dk/). The Azure Kinect DKs were operated
in a WFOV (wide field-of-view) 2 x 2 binned mode in data acquisition and thus the scan-
ning range was less than 2.9 m. The scanner was leveled using tilt sensors with a 0.1 degree
precision and rotated around z axis with a pre-calibrated fixed angle interval (30 degrees)
in data acquisition. The relative relationships between the Azure Kinect DK sensors were
also carefully calibrated, and thus all the data scanned in a station can be transformed to a
unified coordinate system. A total of 19 pairs of matching was conducted to ensure that
all the 20 scans could be registered to the points of the first scan station. The ground truth
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transformations between pairs were provided by Wuhan RGSpace Technology Co. LTD.
The pairs used to conduct experiments and other details can be found in Table 1.

‘ oTl \
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x .
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Figure 1. The scan location of the experimental datasets. (a) scan locations of dataset SR; (b) scan
locations of dataset CB.

Table 1. Summary of the experimental datasets.

Dataset Description Abbr. #Scans #Points Used Pairs Dimensions (m)

T1 10720371  TI-T2 T1-T3

™ 10707764  TI-TATI-T5

1 Simple Big Office Room SR 5 e 10729371  T2-T3 T2-T4 16 x 11 x 3

T4 10694987  T2-T5T3-T4

5 10753198 T3-T5 T4-T5

S0 6071466

s1 6054560 S0-51

s2 5877122 S1-52

s3 5593724 S2-53

sS4 5847040 S3-54

S5 5964762 $4-55

s6 6028178 S5-56

s7 5475755 54-57

S8 5103696 5578'58190

Complex Office Space S9 5302832 -
2 with};\/[ultiple Rooms CB 20 510 5038474 58-510 18> 11 x 2.7

s11 4990545 510-511

S12 4812543 S11-812

S13 5631427 S12-513

S14 5182758 S11-514

si5 5542010 S14-815

S16 5746671 S15-516

S17 5851471 516-517
si8 5665512 S17-818
S19 5482208 S18-519

2.2. Registration Method

The proposed indoor point cloud registration method assumes that the equipment is
leveled or that the inclination is compensated by tilt sensors in data acquisition. The whole
process of registration is achieved by three steps: (1) ortho-projected image generation,



ISPRS Int. ]. Geo-Inf. 2021, 10, 26

6 of 24

(2) ortho-projected image registration using 2D line features, and (3) point cloud registration.
The overview of the proposed registration method is illustrated in Figure 2.

Source Point Target Point

Coarsely Registered Points

l l ‘ i — IVertical Alignment

Source Point Height Target Point Height
Histogram Histogram

lFloor and Ceiling Detectimi
,/\ S /\\

/../ \ -,

Vertical Plane Points Vertical Plane Points

¥
Horizontally Aligned Points
S

Ortho Projected Image Generatior . .
\ K Horizontal Alignment
/ < /*" ( )
o /‘

Source Ortho Projected Image Target Ortho Projected Image

Registered Ortho Projected Images

Ortho Projected Image Registration

Figure 2. Overview of the proposed 4 degrees of freedom (4DOF) indoor point cloud registra-
tion method.

2.2.1. Registration Framework
The rigid transformation between source point clouds and target point clouds without
any constraints can be written as:

Xt ty Xs
yi | = |ty | +R@R(BRO)| ys |, 1)
Zt t, Zs

where [ x5 ys 2z ]T is the source point and [ x; vy z ]T is the target point.

[ttt ] " is the translation vector between the source points and target points. «, 5,6
are the rotation angles between the source points and target points. If the equipment is
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levelled or the inclination is compensated by a tilt sensor in data acquisition, then « and
are equal to zero. In such a situation, Equation (1) can be written as:

Xt tx Xs
yve | = |ty | +RO)| ys |, (2)
Zt tz Zg
or
Xt ty cosf —sinf 0 Xs
yve | = |ty |+ | sinf cosé 0 ys |- 3)
Z4 t, 0 0 1 Zs
Equation (3) can be reformatted as:
Xt 0 cos® —sin® ty ][ x
Yt = 0 + sin @ cos 0 ty Ys |/ (4)
Zt t+zs—1 0 0 1 L 1
or -
xt O xs
R t
v | = 0 + { 0 1 } Ys |- ©)
Zt t,+zs—1 1 |

From Equation (5), we can conclude that the 4DOF registration can be decomposed
into two steps: (1) the first step estimates the horizontal translation vector and rotation
angle around the z axis (named as azimuth angle in the following), which corresponds to
[R, txy} ; (2) the second step estimates vertical translation, ¢,.

The estimation of the horizontal translation vector and the azimuth angle is equivalent
to the registration of the ortho images of source points and target points. This paper
uses vertical plane points such as walls and doors to generate point cloud ortho-projected
images to achieve the estimation of the horizontal translation vector and azimuth angle.
After being horizontally aligned, the vertical translation is estimated using the height
difference of the floor and ceiling in the source and target points.

2.2.2. Ortho-Projected Image Generation

Vertical plane points such as walls and doors are used to generate ortho-projected
images. To get vertical plane points, the ground points and ceiling points are first eliminated
from the raw indoor point clouds. It is obvious that the ground and ceiling have the most
points in the height histogram, as illustrated in Figure 3, so we can find the height of the
ground and ceiling using the height histogram and eliminate the points with z values
smaller than the ground height and points with z values higher than the ceiling height.

x10°
6 T

point number

height value (m)

Figure 3. The height histogram of a station indoor point cloud.

Since the equipment is mounted above the floor and the coordinate origin of the sensor
is on the equipment, the z values of the floor points are certainly smaller than zero and the
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z values of ceiling points are certainly larger than zero. The height of the floor points can be
found by fitting under the zero part of a height histogram using extreme value distribution.
Accordingly, the height of ceiling points can be found by fitting above the zero part of the
height histogram using extreme value distribution. The probability density function used
in this paper is defined as Equation (6). In Equation (6), y is the location of the maximum
value and s is a scale parameter.

1 —(xX—u s
y= gg—(x—ﬂ)/se—lf ( ”/' (6)

After the heights of the floor (denoted as 1¢) and ceiling (denoted as k) are found,
to eliminate moving objects only points with z values between 1y +dj, ,and he —dj, are used

to generate ortho-projected images. In this paper, d, . = % (hc —h f) and d;,_ = % (hc —h f)
are used to avoid moving objects on the floor and hanging objects on the ceiling.

Before registration, the source and target points are all in the scanner-owned coordinate
system. To generate ortho-projected images of a station point cloud (source points or target
points), the minimum x and y values (denoted as x,,;, and y,,;,) of that station point cloud
are found. For a point (x, y, z), its row number and column number in the ortho-projected
image are obtained by Equations (7) and (8). L is the grid resolution of the ortho-projected
images. Theoretically, the smaller the L, the better the matching accuracy but the higher
the computing complexity. To compromise between accuracy and computing complexity,
L is empirically set to 0.01 m in this paper. If a pixel in an ortho-projected image contains at
least one point, its pixel value is set to 255. Otherwise, the pixel value is set to 0. In such a
way, we can obtain a binary ortho-projected image for the source points and target points.

row = INT(V_Ly"W>, @)
col = 1NT<xLx’”i”>. ®)

2.2.3. Ortho-Projected Images Registration

The ortho-projected images are binary images, and line features are the most frequently
occurring features in the ortho-projected images. This paper uses a line-based algorithm
to register the ortho-projected images. The lines in the ortho-projected images are not
single-pixel lines; to better detect lines, the ortho-projected images are first thinned by the
Zhang-Suen thinning algorithm [46]. Then, the progressive probabilistic Hough transform
algorithm [47] is used to detect lines. Finally, the ortho-projected images are registered
using the detected 2D lines. The following part of this section are details to register the
source and target ortho-projected images using the detected lines.

The points (x,y) and (X, Y) in the source ortho-projected images and target ortho-
projected images in the Cartesian coordinates can be written in the homogeneous coordi-
nates [x y 1]7 and [X Y 1]7, respectively, where T denotes transpose. The relation between
the source ortho-projected image point [x y 1]T and target ortho-projected image point

[X Y 1] can be written as:

X cosf —sinf t, X
Y | = | sin0 cos® t, vy |, )
1 0 0 1 1

or
P =Rp. (10)
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If ax + by + 1 = Ois a line in the source ortho-projected image in Cartesian coordinates,
the same line in homogenous coordinates can be written as:

1

[abl][;]:Q (11)

or
I'p=o0, (12)

where IT = [ a b 1] is the parameter of a line in a source ortho-projected image.
Similarly, line Ax + By + 1 = 0 in a target ortho-projected image in Cartesian coordinates
can be written as:

X
[A B 1]|Y|=0 (13)
1
or
L'p=o, (14)

where LT = [ A B 1 ] is the parameter of a line in a target ortho-projected image.
Left multiplying both sides of Equation (10) by LT, we obtain:

L'P =LTRp. (15)

From Equation (14), we know that the left side of Equation (15) is 0. Thus, the right
side of Equation (15) is 0, which means:

L'Rp = 0. (16)
Combining Equations (12) and (16), it can be concluded that:
LR = AIT, (17)

where A is a scale parameter.

Equation (17) establishes the relation between line parameters in source and target
ortho-projected images and the transformation between these two ortho-projected images.
Equation (17) can be written in the detailed form as:

Acosf+ Bsinf = Aa, (18)
— Asinf + Bcos6 = Ab, (19)
Aty + Bty +1=A. (20)

Substituting Equation (20) into Equations (18) and (19), we obtain two equations
(Equations (21) and (22)) relating unknown registration parameters (9, te, ty) to the param-
eters of corresponding lines in the source and target ortho-projected images.

Acost + Bsin® —aAty —aBt, —a =0, (21)

— Asinf + Bcos0 — bAty — bBt, —b = 0. (22)

In Equations (21) and (22), a and b are the parameters of a line in a source ortho-
projected image, while A and B are the parameters of the corresponding line in a target
ortho-projected image. a, b, A, and B are obtained from the result of a progressive prob-
abilistic Hough transform algorithm. Thus, there are only three unknown parameters
(6, tx, ty), which we need to solve, in Equations (21) and (22). If we obtain two non-parallel
corresponding lines in source and target ortho-projected images, we have four equations
to solve the three unknown registration parameters, and thus the unknown registration
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parameters can be estimated by a least squares algorithm after a linearization or non-linear
optimization algorithm, such as the Levenberg-Marquardt (LM) algorithm.

One thing that needs to be noted is that there are two solutions for Equations (21) and (22)
if only a pair of lines are used. As illustrated in Figure 4, a pair of lines in a source ortho-
projected image (/7 and /5 in Figure 4a) can be matched to its corresponding lines in the
target ortho-projected image (I} and I} in Figure 4b) through solution 1 (Figure 4c) and
2 (Figure 4d). The translations ¢, and t, of the two solutions are the same. The rotation angle
of solution 1 (denoted as 61) and solution 2 (denoted as 6;) can be related by Equation (23).
If we get one solution, we can get another solution using Equation (23). Then, the two
solutions are further evaluated using;:

0 =60+, (23)

Figure 4. Two solutions for pair line matching. (a) Two lines in the source ortho-projected image, (b) two corresponding

lines in the target ortho-projected image, (c) matching solution 1, (d) matching solution 2.

Like the RANSAC algorithm, this paper selects a pair of lines from the source and
target ortho-projected images iteratively, and then the unknown registration parameters
are estimated using least squares algorithm according to Equations (21) and (22). Finally,
the estimated registration parameters are evaluated by a specific matching quality function
Q(S, T), where S denotes the source ortho-projected image and T denotes the target ortho-
projected image. Q(S, T) is based on the distance between the transformed pixels in the
source ortho-projected image and its nearest neighbor in the target ortho-projected image.
In the evaluation step, the pixels in the source ortho-projected image are transformed to the
target ortho-projected image using the estimated registration parameters. For each pixel
after transformation, its nearest pixel in the target ortho-projected image is found and its
matching quality is defined as:

N D(Si,f') ifD(Si,i") <d,
Qsirty) = { d | iD(st) > d @)
Q(S,T) =) Q(si tj). (25)
s;€S

In Equations (24) and (25), s; is the transformed source pixel and ¢; is its nearest
neighbor in the target ortho-projected image. D (s;, t;) is the Euclidian distance between s;
and t;. In this paper, threshold d is set to 5 pixels.

If m lines are detected in the source ortho-projected image and # lines are detected
in the target ortho-projected image, there are a total of A2, pairs of lines in the source
ortho-projected image and a total of A2 pairs of lines in the target ortho-projected image.
Each pair of lines in the source ortho-projected image should be tested to each pair of
lines in the target ortho-projected image. If m and n are large, the estimation process is
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time-consuming. Fortunately, the values of m and 7 are usually between 4 and 10 in our
situation. To reduce the search space, the angle between the two lines is used to constrain
the search. First, if the two lines are near parallel, this pair of lines is abandoned. Then, if the
angle between the two lines from the source ortho-projected image is obviously different
from that of the target ortho-projected image, the estimation and evaluation are skipped.

2.2.4. Point Cloud Registration
After obtaining the horizontal alignment parameters ty, t,, and 6, a source point

- }Tis first transformed by:

x! cosf —sinf ty Xs
y | = | sin® cos® t, Ys |- (26)
z' 0 0 1 1

Then, the vertical offset between the horizontally aligned source points and the target
points is obtained by the source points’ floor height (hj[), the source points’ ceiling height
(h3), the target points” floor height (h}), and the target points’ ceiling height (k') by:

t, = 0.5 x [(h; — h;) + (H - hi)] 27)

Finally, the registered point [ x; y; z ]T is obtained by:

Xt 0 x!
yr | = 0 + 1 v | (28)
Z t, +2z5—1 z!

3. Results
3.1. Evaluation Metric Descriptions

Like many previous works [43,45,48], the rotation error e, the translation error er,
the successful registration rate (SRR), and the runtime are used to evaluate the proposed
algorithm. The rotation error eg and the translation error et are defined as:

tr(R—R) —1

eR = arccos 5 ,

(29)

er=|T—T]| (30)

where R and T represent the ground truth of rotation and translation, R and T represent
the registration algorithm-estimated rotation and translation, tr(.) denotes the trace of the
matrix, and eg is the angle of rotation in the axis-angle representation.

Given the rotation error eg and the translation error e, if eg is smaller than oz and
er is smaller than o7, the registration of this pair of point clouds is considered successful.
In this paper, oy is set to 3 degrees and o7 is set to 0.3 m. The rate between the successful
registration pairs and the total pairs is defined as the successful registration rate.

3.2. Qualitative Evaluations

The pairs of point clouds described in Section 2.1 were registered using the proposed
2D line feature-based method (named 2DLF in the following). The registration results
of dataset SR and CB are shown in Figures 5 and 6. The source and target points before
registration, after registration, and the horizontal section view of the registered point clouds
are shown in the first column, second column, and third column, respectively. The source
points are colored in blue and the target points are colored in brown. It can be seen from the
second and the third column of Figure 5 that all 10 pairs of points from dataset SR are well
registered. There is no obvious misalignment in the horizontal section view. The scene of
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dataset CB is much more complicated. Due to the complexity of the scene and the similarity
of indoor structures, it is hard to judge from Figure 6 whether a pair of point clouds is
successfully registered or not. By carefully identification, we can see from Figure 6 that
the point clouds between SO and S1, S1 and S2, S2 and S3, S3 and 5S4, S7 and 510, S8 and
S9, S8 and S10, S12 and S13, S14 and S15, S15 and S16, S16 and S17, and S18 and S19 are

well registered. The pairs between S5 and S6 and 54 and S7 are successfully registered,
but obvious misalignments can be seen in the results.

(a2) T1-T2

(b3) T1-T3

T

(c2) T1-T4

(c3) T1-T4
DR
i
1 “ﬁ
(d2) T1-T5 (d3) T1-T5
(el) T2-T3 (e2) T2-T3 (e3) T2-T3

Figure 5. Cont.
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Figure 5. The registration results of 10 pairs of point clouds in dataset SR. The first column is the point clouds before

registration, the second column is the point clouds after registration using the proposed method, and the third column is
the horizontal section view of the point clouds after registration. The brown points are target points and the blue points are

source points.

S
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Figure 6. Cont.
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Figure 6. The registration results of 19 pairs of point clouds in dataset CB. The first column is the point clouds before
registration, the second column is the point clouds after registration using the proposed method, and the third column is

the horizontal section view of the point clouds after registration. The brown points are target points and the blue points are
source points.
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3.3. Quantitative Evaluations

The registration results of the 10 pairs of point clouds from dataset SR and the 19 pairs
of point clouds from dataset CB were quantitatively evaluated using the metrics described
in Section 3.1. In order to compare the proposed method to other state-of-the-art meth-
ods, the two datasets were also registered by the fast match pruning branch-and-bound
(FMP-BnB) method [43], the 4DOF RANSAC method [49], the 4DOF version of the lifting
method (LM) [50], the Game-Theory approach (GTA) method [51], and the keypoint-based
4PCS (K4PCS) method [34]. All the results were evaluated using the metrics described in
Section 3.1.

Figures 7 and 8 shows the translation error and rotation error of 10 pairs point clouds
from dataset SR. The FMP-BnB method successfully registered seven pairs of point clouds
(T1-T2, T1-T3, T1-T4, T2-T3, T2-T4, T3-T4, T4-T5), and the SRR was 70%. The RANSAC
method successfully registered seven pairs of point clouds (T1-T2, T1-T3, T1-T4, T1-T5,
T2-T3, T2-T4, T3-T4), and the SRR was 70%. The LM method successfully registered five
pairs of point clouds (T1-T2, T1-T3, T1-T4, T2-T3, T2-T4), and the SRR was 50%. The GTA
method successfully registered seven pairs of point clouds (T1-T3, T1-T4, T2-T3, T2-T4,
T2-T5, T3-T4, T3-T5), and the SRR was 70%. The K4PCS method successfully registered all
10 pairs of point clouds, and the SRR was 100%. The proposed 2DLF method successfully
registered eight pairs of point clouds (T1-T2, T1-T3, T1-T4, T1-T5, T2-T3, T2-T4, T3-T4,
T4-T5), and the SRR was 80%. In dataset SR, the performance of the proposed 2DLF
method was better than that of the FMP-BnB method, the RANSAC method, the LM
method, and the GTA method.

Translation Error (m)

15.00
1.00
0.01
e |||| IIII I il I |||
0.00 I I | | I = |
T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5
m FMP-EnB RANSAC wmIM GITA mK4PCS mCM
T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5
FMP-BnB 0.067 0.067 0.049 0134 0.018 0.040 0.753 0.012 0.412 0.130
RANSAC 0.073 0.074 0.024 0.084 0.033 0.044 0.751 0.014 0.385 12.647
LM 0.073 0.068 0.029 9.011 0.008 0.045 11936 2363 3.49 5.524
GTA 12.377 0.016 0.221 0.580 0.026 0.092 0.017 0.014 0.005 0.729
K4PCS 0.236 0.131 0.088 0194 0.031 0.089 0.264 0.195 0.071 0.079
IDLE 0.083 0.074 0.059 0.043 0.065 0.056 0.537 0.022 0.324 0.270
Figure 7. Translation error of pairs from dataset SR (the failed pairs are colored in red).
Rotation Error (degree)
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RANSAC 0.60 0.65 0.16 2.86 0.32 0.41 323 0.74 3.32 174.06
LM 0.46 0.65 011 156.71 0.31 0.38 11329 162.53 90.15 106.01
GTA 17532 0.29 199 5.99 0.16 1.02 0.16 0.36 0.26 1195
K4PCS 173 111 0.63 L12 0.15 0.96 1.05 127 145 231
IDLF 0.43 0.68 0.41 2.80 0.47 053 318 0.73 331 283

Figure 8. Rotation error of point cloud pairs from dataset SR (the failed pairs are colored in red).
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Figures 9 and 10 shows the translation error and rotation error of 19 pairs point clouds
in dataset CB. The proposed 2DLF method achieved the best translation error in 12 (51-52,
S2-S3, S3-54, 55-56, S7-510, S8-S9, S8-510, S12-513, S14-515, S15-516, S16-5S17, S18-519) out
of 19 pairs of point clouds. Besides this, the proposed 2DLF method achieved the best
rotation error in 13 (51-52, S2-S3, 53-54, S5-56, 54-S7, S7-510, S8-S9, 58-510, S12-513, S14-515,
515-516, 516-517, S18-519) out of 19 pairs of point clouds. The proposed 2DLF method
achieved far more best error pairs both in terms of translation error and rotation error
than the other five methods did. The FMP-BnB method successfully registered two pairs
of point clouds (S0-51, S3-54) and the SRR was 10%. The RANSAC method successfully
registered four pairs of point clouds (S0-51, S3-54, 511-512, 515-516) and the SRR was 21%.
The LM method only successfully registered one pair of point clouds and the SRR was 5%.
The GTA method failed to register any of the 19 pairs of point clouds. The K4PCS method
successfully registered S0-S1, S4-57, and S18-519. The SRR was 16%. The proposed method
successfully registered 12 pairs of point clouds (S0-51, S1-52, 52-53, S3-54, S5-56, S4-57,
57-510, S8-510, 512-513, S15-516, S16-517, S18-519) and the SRR was 63%. The proposed
2DLF method achieved the best SRR in dataset CB.

All the algorithms were implemented using C++ and ran on a desktop with an Intel®
Core™ i7-9700K CPU and a 64 Gigabyte memory. The time to register each pair of point
cloud was recorded. Figures 11 and 12 demonstrates the time needed to register the pairs
of point clouds in dataset SR and CB using the proposed 2DLF method and the comparison
methods. It can be seen from Figure 11 that the proposed 2DLF method was the most time-
efficient method in four pairs of point clouds, while the FMP-BnB method, the RANSAC
method, the LM method, the GTA method, and the K4PCS method were the most efficient
method in 3, 0, 6, 3, and 0 pairs of point clouds in dataset SR. It can be seen from Figure 12
that the FMP-BnB method, the RANSAC method, the LM method, the GTA method, the
K4PCS method, and the 2DLF method were the most time-efficient method in 7, 0, 11, 11, 5,
and 11 pairs of point clouds in dataset CB. Due to the lower point number in each station,
it took less time to register the pairs of point clouds in CB than SR. It can be concluded that
the proposed 2DLF method took a little bit more time than the FMP-BnB method, the LM
method, and the GTA method, but was obviously more time-efficient than the RANSAC
method and the K4PCS method.
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Figure 9. Translation error of point cloud pairs from dataset CB (the best result of each pair is colored in green).

Rotation Error (degree)
180.0
10.0
1.0
1 ||||||| A 0 0 A0 MK REAE O 00 e R, W fl
0.0 I
50-51 51-52 52-53 54-55 55-56 S4-57 S7-510 S8-59 §8-510 S10-511 S11-512  S512-S13  S11-S14  S14-515  S15-S16  516-517  S17-518  518-519

B FMP-BnE m RANSAC LM GTA mEK4PC5S mCM

S0-S1 | S1-S2 | S2-53 | 53-54 | S4-55 | 55-56 | S4-57 | 57-510| S8-59 | 58-510|510-511S11-512|S12-513|S11-514{S14-515|S15-516(516-517|S17-518({518-519
FMP-BnB| 0.08 19.76 | 8.84 0.29 2.19 1.96 206 |102.35 | 77.38 |177.42 | 18.08 | 3.34 1.40 | 40.28 | 17.50 0.74 | 2754 | 2.66 | 56.45
RANSAC 0.24 3.41 8.93 0.35 3.86 |129.90 | 2.22 38.90 | 78.04 |176.29 | 18.24 | 0.22 1.04 | 71.40 | 17.51 0.51 52.52 1.24 14.17
LM 1.84 546 |131.30 |100.28 | 12.89 144 | 2947 |112.73 | 3643 | 494 |103.85 | 9355 | 2.19 |[171.53 |177.05 |141.16 |170.56 | 1.53 36.98
GTA | 25.01 |116.91 |107.70 |169.42 | 20.91 |134.67 | 28.26 |153.84 | 64.75 | 66.37 | 126.72 | 14.50 | 22.42 |152.82 | 22.46 |119.56 | 89.10 | 38.86 |109.89
K4PCS | 0.84 4.24 3.89 8.79 10.39 |158.13 | 1.53 8.66 |169.48 | 1.42 11.81 | 58.03 | 35.19 6.39 3.28 3.49 3.89 4.84 2.29
2DLF 0.27 0.10 0.39 0.29 | 89.82 0.76 0.30 0.96 0.22 029 |179.69 | 89.31 0.07 | 89.11 0.74 0.31 0.20 | 90.60 0.33

Figure 10. Rotation error of point cloud pairs from dataset CB (the best result of each pair is colored in green).
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Figure 11. Run time to register point cloud pairs from dataset SR (the most time-efficient method for
each pair is colored in green).
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Figure 12. Run time to register point cloud pairs from dataset CB (the most time-efficient method for each pair is colored

in green).

4. Discussion
4.1. Accuracy and Time Efficiency

The proposed method achieved a comparable accuracy compared with the FMP-BnB
method and the K4PCS method and a better accuracy compared with the RANSAC method,
the LM method, and the GTA method in dataset SR. The successful registration rate is
only lower than that of the K4PCS method and better than that of the RANSAC method
and LM method in dataset SR. In dataset CB, the proposed method successfully registered
the maximum number of pairs of point clouds, and the accuracy is better than that of the
comparison methods.

Both in dataset SR and CB, the time efficiency of the proposed method is comparable
with that of the FMP-BnB method, the LM method, and the GTA method, and it is more
time-efficient than the RANSAC method and the K4PCS method. The time cost of the
proposed method is mainly determined by two factors: (1) the number of line pairs to match
and (2) the time efficiency of the line match result in the evaluation algorithm. To reduce the
number of line pairs, the angle between the two lines is checked before matching. The line
pair is directly abandoned if the angle between the two lines is smaller than the threshold.
The match is skipped if the angles between two lines in the source ortho-projected image
and the target ortho-projected image are significantly different. Finding the nearest point of
the transformed source ortho-projected image in the target ortho-projected image is time-
consuming. To make the line match result evaluation algorithm more time-efficient, a grid
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filtering can be applied to the source ortho-projected image and the target ortho-projected
image to reduce the point number.

4.2. Limitations

When the point clouds that need to be registered are scanned in a closed room, the gen-
erated ortho-projected image may be a square or rectangle. In such situation, the matching
between the source ortho-projected image and the target ortho-projected image may result
in a wrong matching result. As illustrated in Figure 13a,b, the proposed method cannot
distinguish these two situations and may lead to a wrong matching result. Fortunately,
the indoor scenes often have doors and static objects (as illustrated in Figure 13c), and these
doors and static objects can help us to avoid such ambiguity. The successful registration of
dataset SR proved that the proposed method can successfully deal with such situations.

ly l3 = ’

1
O static object &

L

static object

door &

l3 ll
(a) (b) (©)

Figure 13. Ambiguity situations in line-based ortho-projected image matching. (a) ortho projected
image of a rectangle room; (b) ambiguity situation of (a); (c) doors and static objects in the room.

For point pairs with one scanned inside a room and one outside the room (for ex-
ample, S11 and S12 in dataset CB), the registration may fail due to it being hard to find
enough corresponding lines in the source and target ortho-projected images. Besides this,
some pairs of point clouds scanned in large rooms may only exist one corresponding line
due to the limited scanning distance of the used equipment, as illustrated in Figure 14a,b.
The failed pairs of S4-S5, 58-S9, S10-511, S11-S14, S14-S15, and S17-518 belong to this case.

(b)

Figure 14. Case where the source and target ortho-projected images only have one corresponding
line due to the limited scanning distance. (a) Target ortho-projected image generated from S17 in
CB; (b) source ortho-projected image generated from S18 in CB. The lines inside the red circle are

corresponding walls.
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5. Conclusions

This paper proposes a 4DOF registration method to coarsely register pairwise indoor
point clouds that takes full advantage of the knowledge that the equipment is levelled or the
tilt compensated is by a built-in inclination sensor. The 4DOF registration was decomposed
into horizontal alignment and vertical alignment. The horizontal alignment was achieved
by the matching of point cloud generated by ortho-projected images. This paper proposed
a new ortho-projected image generation method using points the between floor and ceiling
and a new ortho image-matching method that uses 2D line features detected from source
and target ortho-projected images. Besides this, this paper proposed to achieve vertical
alignment using the height difference of the floor and ceiling between the source points
and target points. Two datasets, one with five stations and the other with 20 stations,
were used to evaluate the performance of the proposed method. The experimental results
show that the proposed method achieved an 80% successful registration rate in a simple
scene, which is better than the FMP-BnB method (70%), the RANSAC method (70%),
the LM method (50%), and the GTA method (70%). The proposed method achieved a better
successful registration rate (63%) in challenging scenes than the FMP-BnB method (10%),
the RANSAC method (21%), the LM method (5%), the GTA method (0%), and the K4PCS
method (16%). The proposed method was more time-efficient than the RANSAC method
and the K4PCS method. Even though the proposed method still has some limitations in
indoor point cloud registration, it provides an alternative to solve the indoor point cloud
registration problem.

In this paper, ortho-projected images were generated using only vertical plane points.
Due to occlusion and the limited scanning range, it may fail to find enough lines in the
source and target ortho-projected images and thus fail to register the point clouds. In the
future, all source and target points may be exploited to generate ortho-projected images to
improve the robustness of the method.
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