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Abstract: Clozapine is listed as one of the most effective antipsychotics and has been approved
for treating treatment-resistant schizophrenia (TRS); however, several type A and B adverse re-
actions, including weight gain, metabolic complications, cardiotoxicity, convulsions, and discon-
tinuation syndromes, exist. The critical mechanisms of clinical efficacy for schizophrenia, TRS,
and adverse reactions of clozapine have not been elucidated. Recently, the GABA isomer L-β-
aminoisobutyric acid (L-BAIBA), a protective myokine in the peripheral organs, was identified as a
candidate novel transmission modulator in the central nervous system (CNS). L-BAIBA activates
adenosine monophosphate-activated protein kinase (AMPK) signalling in both the peripheral organs
and CNS. Activated AMPK signalling in peripheral organs is an established major target for treating
insulin-resistant diabetes, whereas activated AMPK signalling in the hypothalamus contributes to the
pathophysiology of weight gain and metabolic disturbances. Clozapine increases L-BAIBA synthesis
in the hypothalamus. In addition, the various functions of L-BAIBA in the CNS have recently been
elucidated, including as an activator of GABA-B and group-III metabotropic glutamate (III-mGlu)
receptors. Considering the expressions of GABA-B and III-mGlu receptors (localised in the presynap-
tic regions), the activation of GABA-B and III-mGlu receptors can explain the distinct therapeutic
advantages of clozapine in schizophrenia or TRS associated with N-methyl-D-aspartate (NMDA)
receptor disturbance compared with other atypical antipsychotics via the inhibition of the persistent
tonic hyperactivation of thalamocortical glutamatergic transmission in the prefrontal cortex. L-BAIBA
has also been identified as a gliotransmitter, and a detailed exploration of the function of L-BAIBA in
tripartite synaptic transmission can further elucidate the pathophysiology of effectiveness for treating
TRS and/or specific adverse reactions of clozapine.

Keywords: clozapine L-β-aminoisobutyric acid; treatment-resistant schizophrenia; metabolic
complication; thalamocortical pathway

1. Introduction

Traditionally, more than 30% of patients with schizophrenia spectrum are considered
to suffer from treatment-resistant schizophrenia (TRS) [1–3]. Clozapine is evaluated as the
most effective antipsychotic agent for TRS since 30–60% of patients with TRS respond to
clozapine medication [4–6]. Therefore, clozapine is currently the only approved antipsy-
chotic for TRS treatment [7]. In fact, several guidelines recommend initiating treatment with
clozapine for patients with TRS [8–10]. Furthermore, systematic reviews and meta-analyses
have demonstrated that clozapine is associated with lower hospitalisation rates, lower
overall discontinuation rates, and better overall symptom outcomes compared with other
atypical antipsychotics [11–13].

All antipsychotics approved for the treatment of schizophrenia are antagonists of the
dopamine D2 receptor at therapeutically relevant concentrations [14,15]. The introduction
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of clozapine in the 1970s marked a significant turning point in the pharmacotherapy of
schizophrenia. As an alternative, clozapine minimised the risk of extrapyramidal symp-
toms, such as antipsychotic-induced parkinsonism and tardive dyskinesia, while demon-
strating excellent efficacy for both positive and negative symptoms of schizophrenia [16,17].
Based on these clinical advantages of clozapine, receptor-binding profile screenings have
contributed to the development of several second-generation antipsychotics (atypical
antipsychotics) that share pharmacological characteristics distinct from the preceding first-
generation antipsychotics (typical antipsychotics) (Table 1) [16,18]. It is well known that
olanzapine has a similar receptor-binding profile to clozapine, except for the 5-HT7 recep-
tor [19] (Table 1); however, the specific effectiveness of clozapine for treating TRS suggests
the pathophysiology of clozapine may involve molecules other than monoamine receptors.

Most atypical antipsychotics had been developed by exploring molecules that have
similar receptor-binding profiles to clozapine that are distinct from the preceding typical
antipsychotics, such as having a relatively lower binding affinity to the dopamine D2
receptor and higher affinity to serotonin 5-HT2A receptors [20]. Therefore, the pathophysi-
ological hypothesis proposed to distinguish between typical and atypical antipsychotics,
having a relatively low affinity to the D2 receptor and relatively high affinity to the 5-HT2A
receptor, cannot account for the distinct therapeutic advantages of clozapine against other
atypical antipsychotics.

Table 1. Receptor-binding profiles of antipsychotics.

Receptor CLZ LUR APZ Brex OLZ QTP RIS ZTP HPD
5-HT1A 124 6.8 5.6 0.12 >1000 432 423 471 >1000
5-HT2A 5.4 2.0 8.7 0.47 2.3 100 0.2 2.7 53
5-HT2C 9.4 415 76 63 14 >1000 12 2.6 >1000
5-HT7 18.0 0.5 10.3 3.7 365 307 6.6 12.0 377

H1 1.13 >1000 27.6 19 1.2 11 20.1 3.21 >1000
D1 266 262 >1000 160 100 712 244 71.0 80
D2 157 1.7 3.3 0.3 52.3 245 3.6 25.0 0.7

References [21,22] [23] [24,25] [26] [27,28] [29] [25,30] [31] [32,33]
Clozapine (CLZ), lurasidone (LUR), aripiprazole (APZ), brexpiprazole (Brex), olanzapine (OLZ), quetiapine (QTP),
risperidone (RIS), zotepine (ZTP), and haloperidol (HPD) against serotonin (5-HT) type 1A (5-HT1A), type 2A
(5-HT2A), type 2C (5-HT2C), and type 7 (5-HT7) receptors, histamine H1 (H1) receptor, and dopamine receptors
type 1 (D1) and 2 (D2). Data are equilibrium constant (Ki) values (nM).

Despite the clinical advantages of clozapine’s effectiveness for TRS, clozapine is also as-
sociated with numerous specific/serious adverse reactions, such as type B reactions (agran-
ulocytosis, eosinophilia and haematological malignancies, myocarditis, cardiomyopathy,
and convulsions) and type A reactions (weight gain and metabolic disturbance) [34–38].
Occasionally, psychiatrists must promptly discontinue clozapine or switch to other antipsy-
chotics due to these lethal type B adverse reactions. However, prompt discontinuation
often leads to clozapine discontinuation symptoms, including clozapine-discontinuation-
induced worsening of psychosis and catatonia [38–40]. These distinct clinical advan-
tages and disadvantages of clozapine compared with conventional atypical antipsychotics
suggest that clozapine likely has different mechanisms of action compared with other
atypical antipsychotics.

Tripartite synaptic transmission involving molecules other than monoamine receptors
has recently been speculated to play important roles in the pharmacological mechanisms of
clozapine’s therapeutic effects and adverse reactions, which is distinct from other atypical
antipsychotics [38,41–47]. In these pharmacodynamic researches, it has been identified that
L-β-aminoisobutyric acid (L-BAIBA) plays an important role in the pathophysiology un-
derlying the mechanisms of clozapine’s clinical efficacy for the treatment of schizophrenia
and TRS as well as in adverse reactions, such as weight gain and metabolic complica-
tions [46,47]. In other words, L-BAIBA is a candidate target molecule that can rationally
explain the mechanisms of clozapine’s therapeutic effects and adverse reactions, which
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have not been elucidated so far, via modulating various signalling pathways. In this review,
we outline the characteristics of the therapeutic effects and adverse reactions of clozapine
and then propose a compelling pathophysiological hypothesis that L-BAIBA is involved in
the underlying mechanism of clozapine, which has not been elucidated.

2. Clozapine-Induced Metabolic Complications

Weight gain is the most prevalent adverse reaction of atypical antipsychotic medi-
cations. Weight gain induced by atypical antipsychotics usually occurs during the early
stages of antipsychotic treatment (within the first year), with an increase of 7% over base-
line weight observed in approximately two-thirds of antipsychotic-treated patients [48,49].
Diabetes treatment in patients treated with clozapine is manageable by following current
diabetes treatment guidelines [50,51]. Thus, a history of diabetes in TRS patients does
not constitute a contraindication to clozapine medication [52]. Among pharmacological
interventions, metformin has an excellent safety profile and is the most effective for weight
gain stabilisation [53–55]. Topiramate has also been demonstrated to be as effective as
metformin in suppressive effects on clozapine-induced weight gain [56,57]. Glucagon-
like peptide-1 (GLP1) receptor agonists have been recently shown to effectively mitigate
clozapine-induced metabolic disturbances [58]. However, weight gain induced by antipsy-
chotics other than clozapine, including olanzapine and quetiapine, reaches a plateau within
the therapeutic dose range, whereas the unique features of weight gain with clozapine
indicate a linear dose-dependent manner ranging from therapeutic to supratherapeutic
doses [59]. This specific linear dose-dependent weight gain induced by clozapine indicates
that different mechanisms might underlie the weight gain induced by other antipsychotics.

Atypical antipsychotic-induced metabolic complications have been considered to be
related to the inhibition of the histamine H1 and serotonin 5-HT2A receptors, which leads to
the disturbance of energy regulation systems in the hypothalamus [60,61]. The inhibition of
the H1 and 5-HT2A receptors suppresses the synthesis of inositol trisphosphate (IP3), which
activates the calcium-induced calcium-releasing system (CICR) via the enhancement of the
IP3 receptor (Figure 1) [62,63]. The elevation in intracellular calcium ion levels activates
adenosine triphosphate (ATP) synthase, leading to an increase in ATP and/or a decrease in
adenosine monophosphate (AMP) levels (Figure 1) [61,63,64]. Therefore, CICR suppression
induced by H1 and 5-HT2A receptor inhibition secondarily increases intracellular AMP
levels, leading to the activation of adenosine monophosphate (AMP)-activated protein
kinase (AMPK) (Figure 1) [46,60,61,64]. This hypothesis has been supported by the clinical
findings on high-affinity H1 and 5-HT2A receptor antagonistic antipsychotics, including
zotepine, quetiapine, olanzapine, and clozapine listed as being high-risk for metabolic
complications [59]. However, the activation of AMPK in the peripheral organs is one of the
major therapeutic targets for insulin-resistant diabetes [55,65,66], whereas the activation of
AMPK signalling in the hypothalamus increases feeding and reduces energy expenditure
in the body [66].

Chronic administration of therapeutically relevant doses of clozapine, quetiapine,
brexpiprazole, and lurasidone decreased IP3 synthesis, and increased AMP levels in the rat
hypothalamus [46,47,67]. However, contrary to expectations, AMPK signallings were acti-
vated and unaffected by high-risk (clozapine and quetiapine) and low-risk (brexpiprazole
and lurasidone) antipsychotics for weight gain, respectively [44–47,68]. Both clozapine and
quetiapine are high-affinity antagonists of the histamine H1 receptor and the 5-HT2A recep-
tor, whereas brexpiprazole and lurasidone are high-affinity 5-HT2A receptors but have low
binding affinity to the H1 receptor [60,69]. Therefore, enhanced intra-hypothalamic AMPK
signalling plays fundamental roles in antipsychotic-induced metabolic complications and
weight gain, but decreasing IP3 with increasing AMP levels via inhibition of H1 and/or
5-HT2A receptors alone cannot explain the pathophysiology of antipsychotic-induced
weight gain. Similar to clozapine, an H1 and 5-HT2A high-affinity atypical antipsy-
chotic agent, olanzapine, which was established to also be a high-risk antipsychotic for
weight gain, decreased IP3 synthesis [70,71]; however, olanzapine has been reported to
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enhance [61,72,73] and suppress [74,75] hypothalamic AMPK signalling with contradictory
results. A recent study by Ferreira et al., which set the plasma concentration of olanzap-
ine ranging from the maximum therapeutic concentration to the supratherapeutic level,
demonstrated that olanzapine suppressed the hypothalamic AMPK signalling [75]. Con-
sidering that, clinically, olanzapine (lower than 10 mg/day) dose-dependently increased
body weight, but above 10 mg/day, the weight gain induced by olanzapine displayed
plateaus [59]; olanzapine has a dose-dependent biphasic effect on hypothalamic AMPK
signalling, with activation by low-dose and suppression by high-dose. Further studies need
to clarify these our hypothesis and the detailed mechanisms of dose-dependent biphasic
action of olanzapine on AMPK signalling in the hypothalamus.
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Figure 1. Schematic presentation of hypothalamic signalling associated with traditional hypothe-
sis regarding the mechanisms of antipsychotic-induced metabolic complications and weight gain.
Red and blue arrows indicate activation and inhibition, respectively. Abbreviations: H1 recept-
or—histamine H1 receptor, 5-HT2A receptor—serotonin 5-HT2A receptor, IP3—of inositol trisphos-
phate, CICR—Ca2+-induced Ca2+-releasing system, ATP—adenosine triphosphate, AMP—adenosine
monophosphate, and AMPK—AMP-activated protein kinase.

3. Clozapine and TRS
3.1. Efficacy of Clozapine in TRS

TRS is internationally defined by the Treatment Response and Resistance in Psychosis
(TRRIP) Working Group and includes the following aspects: the presence of persistent
symptoms—including positive and negative symptoms, and cognitive impairment—over
at least 12 weeks of at least moderate severity caused by moderate levels of functional
impairments [76]. Symptom classifications and thresholds should be based on standard-
ised and validated clinical rating scales. Insufficient response to medication with at least
two different antipsychotic medications, with a minimum treatment duration of
twelve weeks (six weeks for each antipsychotic agent). This corresponds to a minimum
dose equivalent to 600 mg per day of chlorpromazine. Confirmation of adequate treatment
adherence is defined as the patient having taken at least 80% of the prescribed dose. To
achieve this, at least two methods should be employed, including counting tablets, patient
and caregiver reports, and review of medical records and documentation. Additionally,
plasma drug concentrations should be monitored at least once for each antipsychotic
agent [76,77].

Incontrovertible evidence supports the superior efficacy of clozapine compared with
other atypical antipsychotics in improving positive symptoms and global psychopathology
in TRS [5,13,78,79]. Considering the lack of evidence to support using polypharmacy
of antipsychotics other than clozapine that is as effective as clozapine, the efficacy of
clozapine in TRS is evaluated as being more robust [80]. Furthermore, patients treated with
clozapine have also shown improvements in treatment adherence, resulting in decreased
rehospitalisation rates [80,81].
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3.2. Candidate Pathophysiology of TRS

Some research groups have emphasised the importance of distinguishing between
primary and secondary TRS: primary TRS already presents with antipsychotic-resistant
clinical features at the onset of the schizophrenia spectrum, whereas secondary TRS de-
velops at later stages of the schizophrenia spectrum after an initial adequate response to
antipsychotics [82–84]. Dopaminergic supersensitivity induced by consecutive exposure
to antipsychotics has been speculated as a candidate mechanism of secondary TRS [85].
Persistent exposure to antipsychotics upregulates postsynaptic D2 receptors, leading to
further psychotic exacerbation [85]. The estimated overall response rate to antipsychotic
medications ranges from 40% to 60% [86,87]. The response rate to antipsychotic med-
ication in antipsychotic-naïve patients is estimated to be approximately 75%; however,
the response rate in a second trial using antipsychotic medications other than clozapine
was considerably lower, ranging from 20% to 45% [88,89]. Response rates to clozapine
have been reported to be maximally up to 80% when treatment is initiated within the first
2–3 years after resistance is established [87,88,90]. With subsequent initiation of clozap-
ine medication, the response rate might be as low as 30% [87]. The efficacy of clozapine
against TRS is significant compared with other antipsychotics but decreases depending
on the duration of antipsychotic exposure, which is similar to other antipsychotics. These
clinical findings regarding duration-dependent resistance at least partially support the
dopaminergic supersensitivity hypothesis [85].

The specific features of clozapine, such as low affinity and rapid dissociation from D2
receptors, are considered to be candidate mechanisms via which clozapine-induced D2
receptor supersensitivity is less than that of other antipsychotics [20,38,69,91,92]. However,
several line studies have demonstrated that the dissociation rate of clozapine from D2
receptors is not significantly faster compared with the rates of other antipsychotics, such as
quetiapine, amisulpride, remoxipride, and sulpiride [20,93–95]. These pharmacodynamic
findings suggest that the efficacy of clozapine in secondary TRS cannot be solely explained
by either its low affinity or rapid dissociation from D2 receptors, even if the pathophysiology
of TRS involves D2 receptor supersensitivity.

3.3. Candidate Targets of Clozapine Other Than Monoamine Receptors

Although schizophrenia is commonly speculated to be a pathophysiologically con-
tiguous spectrum between treatment-responsive schizophrenia and TRS, several findings
suggest that TRS might be a subtype with extreme characteristics from the perspective of
neurodevelopmental disorders [96,97]. In other words, there are possibly two subtypes
of pathophysiology of TRS, one being secondary treatment resistance due to long-term
exposure to antipsychotic drugs, and the other already developing as TRS during the
onset period. Approximately 70–80% of patients with TRS have been reported to present
antipsychotic-resistant clinical features from the first episode [96,97]. Furthermore, pre-
dictors of antipsychotic resistance in schizophrenia are similar to the clinical features of
‘neurodevelopmental’ schizophrenia, such as being male, being of a younger age at onset,
poor premorbid adjustment, and a longer duration of untreated illness [98,99]. So far,
various studies have revealed impairments in cognitive components, such as sensorimotor
function, attention, working memory, visuospatial processing, verbal intelligence, and mem-
ory in TRS patients compared with treatment-responsive schizophrenia [100–103]. These
cognitive impairments are more suggestive of impaired function of glutamate transmission
(via thalamocortical pathways) than monoamine transmission (via the mesolimbic and
mesocortical systems). These cognitive impairment features of TRS suggest it may be caused
by dysfunction of glutamatergic transmission (via thalamocortical pathways) rather than
monoaminergic transmission (via mesolimbic and mesocortical pathways) [15,38,41–44,104].

Quantitative reviews of mRNA and protein expression of N-methyl-D-aspartate gluta-
mate receptor (NMDA-R) in post-mortem studies have demonstrated that both mRNA and
protein expression of the NR1 subunit of NMDA-R in the prefrontal cortex decreased in
patients with schizophrenia compared with healthy volunteers [105]. mGluR5 (I-mGluR)
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signalling in the dorsolateral prefrontal cortex decreased, indicating that NMDA-R hypo-
functions [106]. In the post-mortem frontal cortex of untreated patients with schizophrenia,
downregulation of group II metabotropic glutamate receptors (II-mGluR), such as mGlu2/3,
was reported [107]. Conversely, III-mGlu receptor expression in schizophrenia remains
unreported, whereas the activation of the III-mGlu receptor suppressed the hyperacti-
vated transmission induced by NMDA-R impairment in wild-type and II-mGluR deficit
models [42,108].

In other line studies, both post-mortem and experimental animal model studies also
demonstrated that impairment of the GABA-B receptor plays an important role in the patho-
physiology of schizophrenia. Decreased GABA-B receptor expression in the hippocampus,
prefrontal cortex, inferior temporal cortex, and entorhinal cortex in schizophrenia has been
reported [109,110]. Decreased GABA-B receptor expression in the prefrontal cortex and
hippocampus of the DBA/2J schizophrenia model compared with C57BL/6J mice was
also revealed [111]. Clinically, clozapine is evaluated as the most effective antipsychotic
to improve sensorimotor gating dysfunction in patients with schizophrenia [112]. Mal-
adaptive perseveration with strategies that cannot lead to the desired outcome resulting
from cognitive and behavioural inflexibility via possible sensorimotor gating dysfunc-
tion in the thalamocortical pathway is considered a characteristic feature of schizophre-
nia [38,60,69,113,114]. Pre-pulse inhibition (PPI) has been established as an endo-phenotype
of sensorimotor gating function. Clozapine improved PPI deficits in an experimental ani-
mal model, ZFP804A mutant mice, and an NMDA/glutamate receptor (ketamine)-induced
model [115,116]. Baclofen has also been indicated to counter PPI disruption of the acoustic
startle reflex produced by the blockading of the NMDA-R [111]. Notably, the effects of
baclofen on PPI deficit were comparable to those of clozapine but more prominent than
those of the typical antipsychotic, haloperidol [111]. These behavioural studies suggest that
the impacts of a GABA-B deficit contribute to sensorimotor impairment in schizophrenia.

A recent study using molecular docking calculations for the X-ray crystal structure of
the GABA-B receptor suggested that clozapine, like baclofen, might bind to the GABA-B
receptor [117]. Both clinical and preclinical studies have suggested that clozapine enhances
GABA-B receptor function, and the direct binding of clozapine to the GABA-B receptor
has not been demonstrated but, rather, has been denied [59,118,119]. Considering these
previous findings, the enhancement of GABA-B receptor function with clozapine may
be mediated by an indirect mechanism of clozapine rather than a direct agonist action.
Therefore, the hypothesis regarding the stimulatory effects of clozapine on GABA-B receptor
function is intriguing for understanding the underlying pathophysiology of the clinical
efficacy of clozapine in TRS.

4. Impacts of L-BAIBA as the Pharmacodynamic Target of Clozapine

As mentioned above, the exploration of the pathophysiology of schizophrenia has
developed over the last fifty years, whereas neither the mechanism of efficacy in TRS nor
adverse reactions of clozapine have been clarified [120]. The characteristic mechanisms of
clozapine absent in other atypical antipsychotics have not been elucidated [120].

4.1. Impacts of L-BAIBA on Metabolic Complications Induced by Clozapine

In 2012, we detected L-BAIBA release in the frontal cortex using microdialysis; how-
ever, a detailed release mechanism and function in the brain remain to be clarified [121].
Although the BAIBA enantiomer, a structural GABA isomer, was discovered in human
urine in 1951 [122], its function has remained to be elucidated till the 2010s.

In the peripheral organs, BAIBA was rediscovered as a protective myokine that regu-
lates adipose tissue browning, enhances insulin sensitivity, and improves obesity induced
by a high-fat diet [123–125]. BAIBA increases Akt, AMPK, and insulin receptor substrate sig-
nalling and decreases the expression of gluconeogenic enzymes [125]. Activation of AMPK
signalling is listed as a major therapeutic target for treating insulin-resistant diabetes [65,66].
Several clinical studies and meta-analyses have reported that antipsychotic-induced weight
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gain and metabolic complications are meaningfully improved and prevented with the
AMPK activator metformin [53,55,126–128].

However, the activation of hypothalamic AMPK signalling may contribute to the
pathophysiology of antipsychotic-induced weight gain and metabolic complica-
tions [46,60,61,64], since hypothalamic AMPK regulates both sides of the energy balance
equation (feeding and energy expenditure) in the body [66]. Many pharmacodynamic
studies have revealed that high-risk antipsychotics for weight gain and metabolic com-
plications, such as clozapine, olanzapine, quetiapine, and zotepine activate AMPK sig-
nalling, but lower-risk antipsychotics, such as lurasidone and brexpiprazole, decrease
and do not affect AMPK signalling in the hypothalamus and other brain regions, respec-
tively [45,46,60,61,68,129,130]. Based on previous clinical and preclinical findings, it is
hypothesised that clozapine activates hypothalamic signalling associated with AMPK via
enhanced BAIBA signalling. The BAIBA enantiomer activates AMPK signalling in the
hypothalamus and astrocytes [46,47,67] (Figure 2). According to our hypothesis, chronic
administration of therapeutically relevant doses of clozapine increases the synthesis and
release of the BAIBA enantiomer, but neither brexpiprazole nor lurasidone affects BAIBA in
the hypothalamus [46,47,67]. This effect of clozapine on the BAIBA enantiomer is primarily
on L-BAIBA, whereas the D-BAIBA level in the hypothalamus is lower than the limit of
detection [46,47,67]. Therefore, L-BAIBA is a candidate molecule in the brain contributing
to the pathophysiology of clozapine-induced weight gain and metabolic complications.
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Figure 2. Proposed hypothesis about the mechanism of clozapine-induced metabolic complication
of weight gain associated with enhanced L-β-aminoisobutyric acid (L-BAIBA) signalling in the
hypothalamus. Red and blue arrows indicate activation and inhibition, respectively.

4.2. BAIBA Enantiomer Metabolism and Distribution

There are biologically two BAIBA enantiomers: D-BAIBA (R-BAIBA) and L-BAIBA
(S-BAIBA) [131,132]. Although the structures of the BAIBA enantiomers are similar, their
metabolic pathways function independently (Figure 3). D-BAIBA is synthesised from
thymine and degraded by alanine-glyoxylate aminotransferase-2 [133]. Dihydropyrimidine
dehydrogenase (DPYD) generates dihydrothymines from thymine [134]. Dihydropyrim-
idinase (DPYS) forms N-carbamoyl-β-aminoisobutyric acid (N-carbamoyl-BAIBA) from
dihydrothymine. Finally, D-BAIBA is produced by beta-ureidopropionase (UPB1) from N-
carbamoyl-BAIBA. This D-BAIBA synthesis process occurs in the cytosol, whereas D-BAIBA
is depredated to D-methylmalonic semialdehyde (D-MMS) via glyoxylate aminotransferase
2 (AGXT2). Meanwhile, L-BAIBA is produced via the catabolism of the branched amino
acid L-Valine in the mitochondria [135–137] (Figure 3). L-Valine is formed via ammonia and
the oxidation reaction of methyl malonyl half aldehyde (L-methylmalonylsemialdehyde,
L-MMS). L-MMS produces L-BAIBA in a reaction with the mitochondrial enzyme
4-aminobutyrate aminotransferase (ABAT) [138]. It has been reported that the production
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of L-BAIBA by ABAT is a bidirectional reaction, so the same enzyme can catalyse the
conversion of L-BAIBA to L-MMS [135,139]. Furthermore, ABAT depredates GABA [140].
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The literature on the distribution of D-BAIBA and L-BAIBA in plasma, urine, and
tissues is contradictory. Most studies report that D-BAIBA is the main enantiomer of
BAIBA in urine [132,141–144]. Another study suggested L-BAIBA is the major BAIBA
enantiomer in the plasma [132], whereas others have reported that the more prevalent
isoform is D-BAIBA [46,47,67,144,145]. Chronic administration of therapeutically relevant
doses of clozapine increased L-BAIBA levels but did not affect D-BAIBA levels, resulting in
unchanging overall plasma levels of the BAIBA enantiomer [46,47,67].

4.3. BAIBA Function in the CNS

Several functions of the BAIBA enantiomer in the CNS have been identified, such
as the activation of glycine and GABA-A receptors [146,147]; however, the affinities
of the BAIBA enantiomer to these receptors are relatively low, and subsequent func-
tional analysis of the BAIBA enantiomer has not progressed. Clozapine also enhances
the III-mGlu receptor and GABA-B receptors and denies direct binding to these rece-
ptors [42,108,117,148,149]. Considering that BAIBA is an isomer of GABA and is struc-
turally similar, it is reasonable to predict that it may bind not only to GABA-A receptors
but also to GABA-B receptors. The IC50 values of L-BAIBA to the III-mGlu receptor and
GABA-B receptors are in approximately micromole orders [47].
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The glycine receptor agonistic action of the BAIBA enantiomer can contribute to the
interpretation of the pathophysiology of the effectiveness of clozapine in TRS. Various
meta-analysis studies have elucidated that candidate NMDA-R modulators, including
glycine, D-serine, N-acetyl-cysteine, and sarcosine, have exhibited favourable effects as
augmentation therapy for atypical antipsychotics other than clozapine; however, when
given to patients intaking clozapine, these modulators cannot improve but rather exacerbate
schizophrenia symptoms [150–152].

Most neuroscientists have traditionally considered that primary information process-
ing is implemented in the cortex and that the thalamus functions as a communication
pathway for sensory input to the cortex [153]. Two signal transformation modes have
been typically observed in thalamocortical glutamatergic neurones, bursting and tonic
modes. The bursting mode is effective for detecting environmental changes, whereas the
tonic mode is suitable for perceptual processing [154]. A well-known hypothesis regarding
bottom-up cognition-promoting systems is that the hyperactivation of glutamatergic trans-
mission in thalamocortical pathways plays important roles in several cognitive components,
such as sensorimotor gaiting, sensory integration, and executive function [155]. Therefore,
the thalamus probably plays an important role in implementing transformations between
detection and perception modes [156]. The persistent tonic activation of thalamocorti-
cal projections has been observed in several models of schizophrenia, autism spectrum
disorders, and attention-deficit/hyperactive disorder [42,60,69,130,157–163].

Systemic administration of NMDA-R antagonists drastically enhances thalamic glu-
tamatergic neuronal activities via the inhibition of intra-thalamic GABAergic disinhibi-
tion (from the reticular thalamic nucleus to the mediodorsal thalamic nucleus, resulting
in the activation of glutamatergic transmission from the thalamus to several cortex re-
gions [42,47,158,164–166] (Figure 4)). Several studies have revealed that some atypical
antipsychotics improve this tonic hyperactivation of thalamocortical glutamatergic trans-
mission [38,41,43–47,60,67–69,114,129,130,159,166–168].
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Figure 4. Our proposed hypothesis for the target of action of L-BAIBA on glutamatergic transmission
in the thalamocortical pathway. RTN: reticular thalamic nucleus, MDTN: mediodorsal thalamic
nucleus, and FPC: prefrontal cortex.

The local administration of several antipsychotics into the mediodorsal thalamic
nucleus (MDTN) has been demonstrated to inhibit MK801-induced tonic activation of
glutamatergic transmission in the thalamocortical pathway by suppressing glutamatergic
neuronal activity in the MDTN [159,164,168]. In addition, local administration of clozapine
into the mPFC suppresses MK801-induced hyper-glutamatergic transmission [42]. Studies



Biomolecules 2023, 13, 1288 10 of 17

have shown that the suppressive actions of clozapine on the tonic activation of thalamocor-
tical glutamatergic transmission are predominant in the cortex rather than the thalamus,
which is a distinguishing feature compared with other atypical antipsychotics [38,41–43].

5. Conclusions

Based on the accumulated recent clinical and preclinical findings, the present review
introduced the possibility that L-BAIBA, a novel protective myokine in the peripheral or-
gans, plays important roles in the mechanisms of the clinical actions of clozapine regarding
its efficacy in treating TRS and its adverse reactions, such as weight gain and metabolic com-
plications. In peripheral organs, L-BAIBA improves insulin-resistant diabetes by activating
AMPK, and activated AMPK in the hypothalamus leads to weight gain. The suppression
of IP3 synthesis through the inhibition of the H1 and 5-HT2A receptors has been con-
sidered a major mechanism of weight gain and metabolic complications associated with
atypical antipsychotics. Low-risk atypical antipsychotics for weight gain (brexpiprazole
and lurasidone) and clozapine decrease IP3 synthesis, leading to increasing intracellular
AMP levels, whereas the effects on AMPK activity are different between low-risk antipsy-
chotics for weight gain and clozapine. Both brexpiprazole and lurasidone do not activate
AMPK signalling, but clozapine activates AMPK signalling in the hypothalamus. Therefore,
L-BAIBA contributes to the pathophysiology of clozapine-induced metabolic complica-
tions via independent IP3 pathways. Persistent tonic hyperactivations of thalamocortical
glutamatergic transmission produce sensorimotor deficits, which are considered a major
component of cognitive impairment in TRS. Increasing L-BAIBA signalling in both the
thalamus and prefrontal cortex attenuates the persistent tonic hyperactivations of thalamo-
cortical glutamatergic transmission induced by NMDA-R disturbance via the activation of
the GABA-A, GABA-B, glycine, and III-mGlu receptors. These recent preclinical findings
suggest that the stimulatory effects of clozapine on L-BAIBA are, at least partially, involved
in the mechanisms of clozapine’s clinical actions, such as its efficacy in TRS and met-
abolic complications.
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