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Abstract: Speed reducers (SR) and electric motors are crucial in modern manufacturing, especially
within adhesive coating equipment. The electric motor mainly transforms electrical power into
mechanical force to propel most machinery. Conversely, speed reducers are vital elements that
control the speed and torque of rotating machinery, ensuring optimal performance and efficiency.
Interestingly, variations in chamber temperatures of adhesive coating machines and the use of specific
adhesives can lead to defects in chains and jigs, causing possible breakdowns in the speed reducer
and its surrounding components. This study introduces novel deep-learning autoencoder models to
enhance production efficiency by presenting a comparative assessment for anomaly detection that
would enable precise and predictive insights by modeling complex temporal relationships in the
vibration data. The data acquisition framework facilitated adherence to data governance principles by
maintaining data quality and consistency, data storage and processing operations, and aligning with
data management standards. The study here would capture the attention of practitioners involved in
data-centric processes, industrial engineering, and advanced manufacturing techniques.

Keywords: anomaly detection; autoencoders; data management; deep-learning; reconstruction error;
speed reducer; vibration

1. Introduction

The manufacturing industry is undergoing a transformational shift in the Industry
4.0/5.0 era, driven by the integration of advanced technologies and data-driven approaches.
Among these innovations, predictive maintenance (PM) is becoming increasingly important,
promising to revolutionize traditional maintenance strategies by leveraging real-time data.
PM is a proactive approach to anticipating and resolving equipment failures preemptively.
It mitigates downtime, cuts maintenance expenses, and amplifies operational efficiency
and productivity. This study focuses on PM in the manufacturing sector, exploring its
significance, challenges, and pivotal role in driving the evolution of Industry 4.0/5.0 [1–4].

In contemporary manufacturing, the seamless operation of adhesive coating equip-
ment (ACE) is pivotal to achieving production efficiency and product quality. One integral
component of this intricate machinery is the speed reducer. This device is fundamen-
tal in guiding workpieces through a multifaceted production cycle, where chambers are
maintained at varying temperatures, each with specific characteristics. While this process
allows for the application of adhesives such as Chemlok 205 (water-based solvent primers)
+ MIBK and Chemlok 6108 Mix (solvent adhesives), these variations in temperature and
adhesive properties have raised concerns about the performance and reliability of the
system. Figure 1 shows the overview of the ACE, showcasing the different components
and sub-systems, providing an introductory glimpse into the apparatus.
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Figure 1. An overview of the adhesive coating equipment. (a) The bushing undergoes a controlled
heating process within a preheated oven to maintain a uniform surface temperature. (b) Subse-
quently, it is conveyed to a designated spray booth where the atomized adhesive (Chemlok 6108) is
applied onto the inner surface of the tube via a specialized nozzle. (c) Following that application,
the bushing proceeds through a base coat drying oven to undergo a drying cycle. (d) After the base
coat stage, the bushing advances to another spray booth, where a topcoat of adhesive (Chemlok
205 + MIBK) is administered using a similar method employed in the previous stage. (e) Finally,
the topcoat undergoes drying within a dedicated oven, mirroring the drying process observed in the
preceding stage.

Speed reducers (SR) are vital components in various industrial applications that help
control and regulate the speed and torque of electric motors to ensure the efficient operation
of machinery such as conveyor systems, pumps, mixers, and manufacturing equipment.
However, faults or anomalies in SRs can seriously affect industrial processes, affecting
equipment reliability, increasing energy consumption, and leading to unexpected downtime
or even catastrophic equipment failure. For instance, a malfunctioning SR can cause
excessive wear and tear on mechanical components, increased friction, and overheating,
resulting in premature equipment failure and expensive repairs. Therefore, detecting and
diagnosing faults in SR quickly is crucial to prevent disruptions to industrial operations,
minimize maintenance costs, and ensure the safety and productivity of manufacturing
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processes. Utilizing efficient anomaly detection (AD) methods using vibration signals
is instrumental for detecting potential problems at their nascent stages. This proactive
approach facilitates timely maintenance interventions and enhances the overall operational
efficiency and performance of equipment [5–7].

Vibration analysis (VA) is a powerful tool for detecting general industrial machinery
anomalies. Engineers and maintenance professionals can identify unusual patterns or
deviations from expected behavior by monitoring and analyzing the vibration signatures
produced during operation. VA can reveal early signs of wear, imbalance, misalignment,
bearing defects, and other mechanical issues, allowing for timely intervention and pre-
ventive maintenance. In addition, VA enables PM strategies, where potential faults or
failures are detected before they escalate into critical issues. VA would ensure SR reliability,
efficiency, and safety in various industrial applications [8–10].

Several methods and techniques are used to detect anomalies in machinery, focus-
ing on vibration-based approaches due to their effectiveness in identifying early signs
of mechanical faults. One commonly used technique is spectral analysis [11–13], which
involves analyzing the frequency spectrum of vibration signals to detect abnormal pat-
terns that may indicate faults, such as bearing wear or gear damage. Another approach
is time-domain analysis [14–17], which focuses on extracting statistical features from vi-
bration signals, such as RMS values or kurtosis, on identifying deviations from normal
operating conditions. Machine learning algorithms, including supervised [18–20] and
unsupervised techniques [21–23], have become more prevalent in detecting anomalies
in industrial machinery applicable to industry 4.0/5.0. Supervised algorithms, such as
SVM [24] or random forests [25], are trained on labeled vibration data to identify normal
and abnormal operating conditions. Unsupervised algorithms, such as k-means clustering
or autoencoders, can detect anomalies without labeled data by recognizing patterns that
deviate significantly from the norm. Moreover, advanced signal processing techniques,
such as wavelet analysis [26–29] or Hilbert transform [30–32], can enhance the effectiveness
of vibration-based AD by providing insights into the time-frequency characteristics of the
signals. These methods enable engineers to identify subtle changes in vibration patterns
associated with incipient faults, facilitating proactive maintenance and reducing downtime
in industrial machinery.

Numerous studies in recent years have explored the effectiveness of autoencoders
across various domains for detecting anomalies [33–37]. This literature has highlighted
the versatility of autoencoders in multiple domains. Different types of autoencoders, such
as vanilla [38], variational [39], convolutional [40], and recurrent [41], offer flexible archi-
tectures suited to varying data types. These models have demonstrated the capability
to learn meaningful representations of input data and effectively reconstruct anomalies.
Further study into the performance and applicability of each autoencoder type is vital for
advancing AD techniques and addressing real-world challenges in cybersecurity [42,43],
finance [44,45], manufacturing [46–49], healthcare [50,51], and beyond. The chosen case
study on ACE is highly relevant to real-world industrial applications, and has the po-
tential to benefit from effective AD techniques. Our primary objective is to evaluate the
effectiveness of various deep-learning models and autoencoders in detecting anomalies
and malfunctions within the SRs employed in ACE. The case study will demonstrate the
proposed techniques in a real-world industrial setting, providing valuable insights into the
effectiveness and applicability of vibration-driven AD for improving equipment reliability
and performance.

Traditional AD relied on predefined rules, including statistical methods, rule-based
systems, and feature engineering. However, these methods needed to work on complex
patterns and required manual tuning. Autoencoders revolutionized AD by enabling
automatic feature learning and superior performance in identifying subtle anomalies
across various domains. The landscape of deep-learning methodologies has evolved
significantly in the pursuit of AD. Early endeavors predominantly focused on singular
model approaches, each demonstrating commendable capabilities in isolation. However,
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as the complexity of AD tasks grows, so does the necessity for comparative analysis
across multiple deep-learning architectures. Our study builds upon this foundation to
elucidate the nuanced performance variations between prominent models, including GRU,
CNN, RNN, and LSTM. While previous studies laid the groundwork by showcasing the
efficacy of individual models, our work leaps forward by conducting a comprehensive
comparative assessment. By systematically evaluating each model’s performance under
identical conditions, we provide a holistic understanding of their strengths, weaknesses,
and suitability for AD tasks. Our findings deepen our understanding of deep-learning-
based AD, and offer invaluable insights for practitioners seeking to leverage these models
in real-world applications.

In [52], the study proposes a method for AD in metro train Brake Operating Units
(BOU) using a one-class LSTM autoencoder. It involves extracting BC pressure data, split-
ting it into subsequences, and training the autoencoder with normal data. Anomalies are
detected by comparing mean absolute errors with a predefined threshold. Experimen-
tal results validate the method’s effectiveness. Interestingly, in [53], the study explores
intelligent systems for structural health monitoring, emphasizing the importance of auto-
matically detecting structure changes. Two deep-learning approaches, a physics-informed
autoencoder and a data-driven autoencoder, are applied to a small building model test
rig. Both outperform traditional methods, demonstrating enhanced damage detection
and localization capabilities. However, in [54], the study addresses cybersecurity chal-
lenges in Industry 4.0, emphasizing the need for advanced AD methods. It proposes a
variational fuzzy autoencoder (VFA) methodology for identifying defects resulting from
cyberattacks in production lines. The system achieves accurate anomaly evaluation and
categorization in complex environments by leveraging fuzzy entropy and Euclidean fuzzy
similarity measurement.

A study in [55] presented a deep-learning LSTM autoencoder for continuous monitor-
ing and AD in sodium-cooled fast reactor cold traps. The model is trained on normal and
startup operation regimes using data from the mechanisms engineering test loop (METL)
facility. Anomalies induced by blowers’ temporary choke are detected through the mean
absolute error loss function. Results show effective AD with a sensor-averaged signal-to-
noise ratio < 1. Another study in [56] introduced AIrSense, an AI-based framework for
enhancing reliability in air quality sensing applications using low-cost sensors. It employs
AD and repair procedures on raw sensor data before calibration, considering temporal
sequences and feature correlations. Experiments on 12 sensors show improved calibration
performance, highlighting the significance of data cleaning in sensor applications. One
on hand, a study in [57] addresses real-time AD in industrial furnaces, which is crucial
for timely maintenance. It proposes a method involving filtering and preprocessing time
series data, followed by applying distinct univariate deep-learning models based on au-
toencoders. Various autoencoder architectures are tested, with LSTM layers proving the
most effective in accurately detecting anomalies and issuing timely alarms in real-time
monitoring scenarios.

On the other hand, another study in [58] introduces a novel bidirectional LSTM
and GRU neural network-based hybrid autoencoder for real-time AD in time series data.
Trained on features from healthy machine operation, the autoencoder reconstructs new
data. If the reconstruction error exceeds a threshold, anomalies are detected, prompting
maintenance actions. The study also presented a deep-learning-based approach for super-
vised multi-time series AD in industrial sensor data. It combines CNN and RNN using
independent CNNs, termed convolutional heads, to handle anomalies in multi-sensor
systems without preprocessing. When evaluated on an industrial case study monitoring a
service elevator, the Multi-head CNN-RNN architecture demonstrated promising results
for detecting various anomaly types [59]. Prior research has explored the application of
autoencoder and individual deep-learning models; however, there have been limited en-
deavors in conducting comparative evaluations among a suite of deep-learning models
combined with autoencoder techniques.
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The remaining sections of the paper are arranged as follows: Section 2 provides a
breakdown of the proposed methodology, deep-learning model architecture, data prepro-
cessing, training and testing, and performance metrics. Section 3 describes the working
principle of the ACE, sensor placement, and data acquisition steps. In contrast, Section 4
discusses the comparative assessment of the models and draws insight to select the best
model, while Section 5 discusses the limitations and open issues of the study. The study
summary is provided in Section 6.

2. Materials and Methods
2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are potent tools for AD tasks, particularly
in image analysis. Inspired by the intricate organization of neurons in the visual cortex
of animals, CNNs meticulously analyze input images through multiple layers. By em-
ploying convolutional operations with small filters (kernels), they extract vital features
such as edges, textures, and shapes. Integrated pooling layers condense spatial dimen-
sions, while fully connected layers facilitate final anomaly classification. During training,
CNNs optimize their weights using algorithms like stochastic gradient descent (SGD) and
backpropagation, minimizing a loss function that quantifies differences between predicted
and actual outputs. This ability to learn hierarchical representations directly from raw
data autonomously has revolutionized AD across various domains, including computer
vision and medical imaging. The CNN architecture used is similar to the research in [60].
The mathematical expression for a convolutional layer can be represented as:

Z[l] = f (W [l] ∗ A[l−1] + b[l]) (1)

where Z[l] is the output of the lth layer, W [l] represents the weights of the layer, A[l−1] is the
input from the previous layer, b[l] is the bias term, and f is the activation function.

2.2. Gated Recurrent Units

GRUs are a popular type of RNN architecture that addresses the problem of vanishing
gradients and improves the learning of long-range dependencies in sequential data. While
similar to LSTM networks, GRUs have a more straightforward structure with reset and
update gates. The architecture of a GRU model is showcased in Figure 2, highlighting
its internal gating mechanism for memory and information flow control in sequential
data processing. The update gate, reset gate, and final output are reflected in blue, green,
and yellow colors, respectively. The mathematical expressions for gated recurrent units are
as follows:

Figure 2. A flow diagram of a GRU neural network model showcasing its internal gating mechanisms
for memory and information flow control in sequential data processing.

ut = σ(Wz · [ht−1, xt]) (2)



Electronics 2024, 13, 1700 6 of 19

rt = σ(Wr · [ht−1, xt]) (3)

h̃t = tanh(W · [rt ⊙ ht−1, xt]) (4)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (5)

2.3. Long-Short Term Memory

Unlike RNNs, LSTMs can capture and retain crucial information from preceding se-
quences, enabling informed decision-making across multiple iterations. LSTMs comprise
input, short-term, and long-term memory managed by specialized gating mechanisms.
These mechanisms, Input, Forget, and Output gates, play pivotal roles in data filtration,
retaining pertinent information while discarding extraneous data. Leveraging specialized
memory cells and gating structures, LSTMs excel in learning and predictive tasks across
diverse temporal domains, making them indispensable in various applications requiring
sequential data analysis. Figure 3 illustrates the model architecture, showcasing the spe-
cialized memory cells and gates, enabling effective learning and prediction tasks across
different temporal domains, with red, green, and blue dashed lines delineating the input
gate, forget gate, and output gate, respectively [61]. The mathematical expressions for the
LSTM are as follows:

i1 = σ(Wi1 · (Ht−1, xt + biasi1)) (6)

i2 = tanh(Wi2 · (Ht−1, xt + biasi2)) (7)

iinput = i1 ∗ i2 (8)

f = σ(W f orget · (Ht−1, xt) + bias f orget) (9)

Ct = Ct−1 ∗ f + iinput (10)

o1 = σ(Woutput1 · (Ht−1, xt) + biasoutput1) (11)

o2 = tanh(Woutput2 · (Ct + biasoutput2) (12)

Figure 3. A flow diagram illustrating the Long Short-Term Memory (LSTM) neural network model.

2.4. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) constitute a category of neural networks specif-
ically engineered to handle sequential data by preserving a memory of previous inputs.
In contrast to feedforward neural networks, which linearly analyze data, RNNs incorpo-
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rate an internal state or memory, enabling them to process sequences of inputs over time
effectively. Mathematically, an RNN can be expressed as follows:

ht = f (Whhht−1 + Wxhxt + bh) (13)

yt = g(Whyht + by) (14)

where ht is the hidden state (memory) at time step t, xt is the input at time step t, Whh
and Wxh are weight matrices for the recurrent and input connections, respectively, Why is
the weight matrix for the output connections, bh and by are bias vectors, and f and g are
activation functions, such as the sigmoid or tanh functions.

At every time step t, the hidden state ht undergoes an update influenced by the current
input xt and the preceding hidden state ht−1. This iterative approach empowers RNNs
to grasp temporal relationships within sequential data. Nonetheless, conventional RNNs
encounter challenges associated with the vanishing gradient issue, which hampers their
capacity to capture distant dependencies effectively. More sophisticated RNN variations
like LSTM and GRU have been introduced to overcome this obstacle. These models
integrate gating mechanisms that control the information flow, enabling them to capture
long-term dependencies with greater efficacy.

2.5. Autoencoders

Autoencoders represent a category of neural networks employed in unsupervised
learning tasks, primarily focusing on dimensionality reduction and feature learning. This
architecture comprises two main components: an encoder and a decoder. The encoder
function compresses the input data into a condensed latent space representation, while the
decoder reconstructs the initial input based on this condensed representation. Mathemati-
cally, an autoencoder can be represented as follows:

Encoder : h = fθ(x) (15)

Decoder : x̂ = gϕ(h) (16)

For a dataset with n samples, the reconstruction loss L using means square error (MSE)
and mean absolute error (MAE) can be expressed as follows:

LMSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (17)

LMAE =
1
n

n

∑
i=1

|xi − x̂i| (18)

where x is the input data, h is the latent representation (also called encoding), x̂ is the
reconstructed output, and fθ and gϕ are the encoder and decoder functions parameterized
by θ and ϕ, respectively.

2.6. Proposed Methodology

The proposed methodology for anomaly detection in this study harnesses the power
of autoencoders and deep-learning models. This innovative approach aims to effectively
capture intricate patterns and temporal dependencies inherent in sequential data obtained
from an SR within industrial ACE. The process commences with preprocessing the sequen-
tial data, which is then inputted into the autoencoder network. Here, the autoencoder
network learns to compress the input data into a lower-dimensional latent space representa-
tion while simultaneously reconstructing it. The system computes the reconstruction error
by comparing the reconstructed output with the original input. Subsequently, the DLAE
models are trained on these reconstruction errors to understand the system’s typical be-
havior. These models capture temporal dependencies and spatial patterns within the
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reconstruction errors, enabling accurate differentiation between normal operations and
anomalies. During inference, the trained models predict the reconstruction errors for new
data samples, allowing anomalies to be detected based on significant deviations from
the expected reconstruction errors. The performance of the models in AD is quantified
using regression metrics such as MSE, MAE, and RMSE. By integrating the complementary
strengths of autoencoders and DLAE models, this methodology establishes a robust AD
framework for ACE’s electric motor speed reducer system.

The original dataset is structured as a time sequence, where each sequence X com-
prises fixed length time window data [x1, x2, x3, . . . , xt]. The data will be reshaped into
a two-dimensional array representing samples and time steps, ensuring compatibility
with the DLAE architecture. The DLAE encoder works as a layer that folds sequences,
converting features into batches of time-based feature sequences. The interaction between
the autoencoder (AE) scheme is shown in Figure 4, with the LSTM, RNN, GRU, and CNN
cells trained to identify essential features in the input sequence. Each time series Xi is
transformed into a 2D dataset and fed into the encoder. The first layer of the encoder
processes each sample sequentially, with the relevant information identified by each cell
passed on to the subsequent cells, leading to the final cell outputting encoded features as a
vector. After folding the input data on timesteps, the decoder acts as a sequence unfolding
layer to reconstruct the data’s structure. Detailed interactions between the decoder and the
cells showcase the output reconstruction process. Utilizing reconstruction error rates can
establish a threshold for AD. The DLAE decoder reproduces the fixed-size input sequence
from the reduced representation in the latent space, enabling AD based on deviation from
expected reconstruction accuracy.

Figure 4. Proposed model architecture illustrating the DLAE components for AD.

2.6.1. Deep-Learning Model Architecture

The deep-learning model architecture is designed to detect anomalies in vibration data
by using RNN, GRU, CNN, and LSTM for sequence modeling. The LSTM model consists of
an encoder–decoder structure. The encoder utilizes stacked LSTM layers with decreasing
units, each followed by dropout regularization, to extract features from the input sequence.
The decoder mirrors this structure with LSTM layers to decode the encoded features into a
sequence. Time-distributed dense layers provide the output predictions.

Similarly, the GRU model follows an encoder–decoder layout with GRU layers instead
of LSTM layers. The RNN model employs a simpler RNN architecture with increasing and
decreasing units in both the encoder and decoder sections.

In contrast, the CNN model uses its convolution layers to extract features from the
input sequence, followed by upsampling layers in the decoder part to reconstruct the
output sequence. Dropout layers are included to prevent overfitting. The training process
uses MAE loss and is optimized using the Adam optimizer. This architecture can capture
temporal dependencies and efficiently reconstruct sequential data, making it well-suited for
AD tasks in industrial settings. Table 1 showcases the overall parameters of the individual
DLAE models used in this study.
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Table 1. DLAE model architecture parameters.

Model Parameters Values

LSTM, GRU

Units (Encoder) 512, 256, 128, 64, 32
Units (Decoder) 32, 64, 128, 256, 512

Activation function tanh
Dropout rate 0.1

Batch Size 512, 128
Epoch 50

Validation Split 0.1

CNN

Units (Encoder) 128, 64, 32
Pooling (Encoder) 2 × 2 Max Pooling
Units (Decoder) 32, 64, 128

Pooling (Decoder) 2 × 2 UpSampling
Activation function ReLU

Dropout rate 0.1
Batch Size 128

Epoch 50
Validation Split 0.1

Kernel Size 3

RNN

Units (Encoder) 128, 64, 32
Units (Decoder) 32, 64, 128

Activation function tanh
Dropout rate 0.1

Batch Size 128
Epoch 50

Validation Split 0.1

2.6.2. Data Pre-Processing

Practical data analysis requires a critical first step: pre-processing. It is essential when
preparing data for deep-learning models. Various pre-processing techniques are employed
to clean and transform raw vibration data for AD. The process starts by importing essential
libraries and configuring the environment. It includes setting up GPU utilization for faster
computation. Next, data are loaded from CSV files, representing vibration measurements
over time. Each file undergoes several pre-processing steps:

• Data cleaning and formatting: the raw data are loaded into Pandas DataFrames,
where missing values are handled, and columns are correctly labeled. Time data are
converted into a standardized format for analysis.

• Data visualization: graphs are plotted to visualize the vibration data over time, aiding
in understanding its patterns and identifying potential anomalies.

• Data standardization: Techniques like min/max normalization standardize vibration
data. It ensures that all features have a similar scale and distribution.

• Segmentation: the data are segmented into smaller intervals, and outliers are removed
by calculating each segment’s mean and standard deviation.

• Sequence generation: data sequences are created to train the DLAE model. Each
sequence represents a window of observations over time.

2.6.3. Training and Testing

During training, a callback function called ModelCheckpoint monitors the validation
loss. It constantly checks for any improvement in validation loss and saves the model
weights whenever such an improvement occurs. It ensures that the best-performing model
is saved for future use. The training process uses the fit method, where the training data
(denoted as xtrain) is passed as input and target output. This setup is typical for autoencoder-
type models, which aim to reconstruct the input data. The training runs for 50 epochs,
each with a batch size of 512 samples. Additionally, the validation-split parameter sets
10% of the training data aside for validation. Two callbacks are employed during training:
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EarlyStopping and ModelCheckpoint. EarlyStopping halts the training process if the
validation loss fails to improve for a specified number of epochs, thus preventing overfitting.
Lastly, the training progress is visualized by plotting the training and validation loss curves
using Matplotlib. This visualization helps monitor the model’s learning process and aids in
identifying issues such as overfitting or underfitting. Performance metrics such as MSE,
MAE, and RMSE are crucial for evaluating the effectiveness and accuracy of a model in
capturing and predicting patterns within the data, providing quantifiable measures of
its predictive capabilities and overall performance. The mathematical expressions are
explained as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi) (19)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (20)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (21)

3. Experiment, Data Acquisition, Management, and Visualization

ACEs are pivotal in various industries, particularly automotive and machinery. These
machines are designed to spray adhesives efficiently onto multiple components, including
automotive, metal rubber, and shock absorber metal parts. Additionally, they can be used
for surface painting parts in the machinery industry. One of the key advantages of these
machines is their high degree of automation, which streamlines production processes
and reduces the need for manual intervention. The ACE encompasses 220 jigs, with a
maximum capacity of five workpieces per jig. Hence, the processing rate per jig for
the ACE stands at 5 s. Moreover, ACEs are environmentally friendly, as they minimize
waste and ensure precise adhesive application, reducing environmental impact. Another
significant benefit is their high productivity, allowing for rapid and efficient coating of
components, thereby contributing to enhanced operational efficiency and cost-effectiveness.
Overall, ACE offers a compelling solution for industries seeking to optimize manufacturing
processes, improve product quality, and achieve higher productivity levels while adhering
to environmental standards.

The strategic placement of the NI 9234 on top of the SR, connected to the electric
motor via a chain belt, is shown in Figure 5. The placement of the sensors is critical in
capturing mechanical vibrations from the SR during operation, which provides us with
real-time and accurate data on the health status of the SR. The vibration sensors allow
us to detect potential anomalies or malfunctions early on. We have carefully considered
the location of the vibration sensors to ensure optimal coverage of critical components
and effective monitoring of mechanical performance. This sensor placement strategy is a
crucial part of our proposed methodology for AD, as it provides valuable insights into the
operational integrity of the SR and contributes to the overall effectiveness of the predictive
maintenance framework.

Our study is motivated by a significant observation of the operation of ACE. It has
been noted that chains, which are connected diagonally to the topmost part of the equip-
ment, frequently break. This recurring issue is believed to have a cascading effect on
the performance of the SR, which is crucial to the equipment’s functionality. We placed
vibration sensors on top of the SR connected to the electric motor via chain belts to address
this issue. These sensors will capture and analyze mechanical vibrations that could indicate
early signs of deterioration or impending failures.
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Figure 5. Experiment view capturing the vibration sensor, electric motor, and speed reducer.

Raw vibration data capture vibrations and oscillations in machinery, structures, or sys-
tems, providing a rich pool of information for analysis. As shown in Figure 6, these data
reflect the complex interplay of forces, resonances, and mechanical interactions within the
system, offering valuable clues about its performance, operational conditions, and potential
anomalies. The AD process utilizes a high-performance computing system powered by
an AMD Ryzen 5 5600X Octa-Core Processor, paired with 64 GB of RAM and supported
by an NVIDIA GeForce RTX 3070 GPU with 8 GB and 32 GB of dedicated memory. These
insights (from the raw data) can help optimize maintenance schedules, predict failures,
enhance operational efficiency, and ensure the reliability and safety of industrial assets.
Understanding their characteristics and nuances is essential to unlocking the full potential
of raw vibration data in engineering domains.

Figure 6. Visualization of the vibration raw data from the speed reducer.

Given the vibration data variable x (raw data) in the range (xmin and xmax), the nor-
malized value can be calculated as follows:

xnorm =
x − xmin

xmax − xmin
(22)

Variables in the raw data have different scales, and it is right to ensure all variables
have similar scales, preventing one variable from dominating the others simply because
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of their large magnitude. Figure 7a shows the raw vibration data, while Figure 7b shows
the normalized vibration dataset. During our data collection phase, we encountered a
significant issue. Unbeknownst to us, the gateway had compressed the raw dataset, leading
to distortion of the data. To address this, we implemented normalization techniques to
standardize the scale of the vibration data, ensuring accurate analysis. It effectively counters
any scaling discrepancies introduced by the gateway, thereby standardizing the scale of the
data points across the dataset. This standardization is crucial, as it allows for consistent
analysis and comparison of the vibration signals, even in the presence of previous scaling
issues. It not only enhances the accuracy and reliability of our findings, but also acts as a
guardian of the dataset’s integrity. By ensuring that the data are consistently represented
and standardized, normalization paves the way for meaningful insights into the underlying
phenomena, instilling confidence in the reliability of our analysis.

Figure 7. Plot showing the original data alongside detected anomalies. (a) Raw data, (b) normal-
ized data.

4. Result and Discussion

The trajectories of training and validation loss are essential indicators of how well
machine learning models perform and generalize. The dataset consists of 118,687 samples
for training, each with 64 features. The AD model comprises 65,729 parameters, all of
which are trainable, contributing to its robustness and adaptability. In our study, we trained
four models—LSTM, GRU, RNN, and CNN—and observed distinct behaviors in their loss
trends. For the LSTM model, as shown in Figure 8a, we noticed fluctuations in training and
validation losses over the epochs displayed on the x-axis. Despite these fluctuations, both
losses showed a decreasing trend, indicating that the model was effectively learning and
improving its performance.

Figure 8. Comparison of training and validation loss (a) LSTM, (b) GRU, (c) RNN, (d) CNN.

In contrast, as shown in Figure 8b, the GRU model showed a smoother decrease in
training and validation losses over the epochs. The training loss decreased steadily from
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the initial epochs, indicating effective learning, while the validation loss followed a similar
decreasing trend, albeit with more fluctuations. The RNN model, as shown in Figure 8c,
presented a different pattern, with fewer visible epochs (0 to 7) on the x-axis. Initially,
the training loss showed an upward trend, suggesting challenges in learning. However,
the loss decreased from the third epoch onwards, indicating improved model performance.
The validation loss followed a similar trend, albeit with fluctuations. Lastly, as shown
in Figure 8d, the CNN model consistently decreased training and validation losses over
epochs. While the training loss decreased steadily, the validation loss exhibited fluctuations,
but generally followed a decreasing trend, indicating effective learning and generalization.

Figure 9a–d shows the visualization of anomalies detected across the DLAE mod-
els. The blue line represents the raw data, while the red line represents the anomalies
detected. Anomalies were identified where the MAE loss exceeds the set threshold, visually
representing these anomalies. The LSTM and CNN models had almost similar anomaly
prediction samples, while the GRU had very high anomaly prediction samples compared
to the RNN with the anomalies detected. We analyze the distribution of reconstruction
errors in the training data to detect anomalies in the data and establish a threshold. This is
performed by calculating the mean absolute error (MAE) loss values during training and
determining the 95th percentile of the distribution. The threshold is then set based on this
percentile value, ensuring that 95% of the data points fall below it. During inference, any
deviation beyond this threshold is considered a potential anomaly. To adjust the sensitivity
of the AD system, we can fine-tune the percentile value.

Figure 9. Anomalies detected using an autoencoder-based approach for LSTM, GRU, RNN, and CNN
models. The plot showcases highlighted regions indicating abnormal patterns in the data, aiding in
predictive maintenance and system health monitoring. (a) LSTM, (b) GRU, (c) RNN, (d) CNN.

Interestingly, by comparing the original and reconstructed data as shown in
Figure 10a–d, we can assess the accuracy of the AD framework. Anomalies detected
in the DLAE model correspond to discrepancies between the original data and recon-
structed data across the LSTM, GRU, and CNN models, with the RNN showing little or
low glimpses of reconstructing the original data. Additionally, as observed in the figure,
the DLAE models comprising the LSTM, GRU, and CNN validated the severity of detected
anomalies. Moreover, the RNN showed larger discrepancies between the original and the
reconstructed data, which showed the model performing poorly.



Electronics 2024, 13, 1700 14 of 19

Figure 10. Reconstruction plot showcasing the performance of LSTM, GRU, RNN, and CNN autoen-
coders in capturing anomalies within vibration data from industrial machinery. Each curve represents
the reconstructed data overlaid with the original signal, demonstrating the efficacy of each model in
capturing anomalies and preserving signal characteristics. (a) LSTM, (b) GRU, (c) RNN, (d) CNN.

The following bar plot in Figure 11a depicts the performance of four models (LSTM,
GRU, RNN, and CNN) based on three error metrics: MSE, MAE, and RMSE. Upon examin-
ing the bar plot, it is evident that for all three error metrics:

• MSE: The CNN model has the lowest MSE, followed closely by the GRU model.
The LSTM and RNN models exhibit slightly higher MSE values than GRU and LSTM.

• MAE: Similar to MSE, the CNN model achieves the lowest MAE, indicating better
performance in terms of average absolute error. Again, the GRU model closely follows
the CNN model regarding performance. The LSTM and RNN models have higher
MAE values than GRU and CNN.

• RMSE: The CNN model also demonstrates the lowest RMSE, signifying superior
performance regarding the root mean squared error. Once more, the GRU model
closely trails the CNN model in performance. The RNN and LSTM models exhibit
higher RMSE values than GRU and CNN.

Figure 11. Side-by-side comparison of performance metrics (MSE, MAE, RMSE) across various
deep-learning models, illustrated with a (a) bar plot, (b) heatmap, (c) box plot.
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Based on the bar plot, it is evident that the CNN model consistently outperforms the
other models across all three error metrics, indicating its superiority in terms of predictive
accuracy. The GRU model closely follows the CNN model in terms of performance. On the
other hand, the RNN and LSTM models exhibit higher error values, suggesting relatively
poorer performance than GRU and CNN. Therefore, the bar plot highlights the CNN
model as the best-performing model among the four considered in this analysis regarding
predictive accuracy and error minimization. On the other hand, the RNN and LSTM models
exhibit relatively inferior performance.

Heatmap analysis: As shown in Figure 11b, the heatmap provides a comprehensive
overview of the model performances across different error metrics. The CNN model
consistently outperforms the other models across all metrics, displaying the lowest error
values for MSE, MAE, and RMSE. The GRU model closely follows the CNN model in
performance, demonstrating slightly higher error values, but still outperforming the LSTM
and RNN models. The LSTM and RNN models exhibit relatively higher error values across
all metrics, indicating inferior performance compared to CNN and GRU.

Box plot analysis: Besides the heatmap analysis, the box plot, as shown in Figure 11c,
provides insights into the variability of error values for each model across the three metrics.
Consistent with the heatmap findings, the CNN model showcases the smallest spread of
error values, indicating more consistent performance. The GRU model follows closely
in performance, displaying slightly higher variability but still outperforming the LSTM
and RNN models. The LSTM and RNN models exhibit higher variability in error values,
reflecting less consistent performance than GRU and CNN.

Overall implications: Both visualizations confirm the superiority of the CNN model in
predictive accuracy, as it consistently achieves the lowest error values and demonstrates
minor variability across all error metrics. The GRU model also performs competitively,
while the LSTM and RNN models exhibit less consistent performance and higher error
variability. Integrating insights from the heatmap and box plot provides a comprehen-
sive understanding of the model’s performance and valuable guidance for selecting the
most effective deep-learning model. A detailed comparison of the overall MAE, MSE,
and RMSE results is provided in Table 2 for a comprehensive assessment of the model’s
predictive capabilities.

Table 2. Global performance comparison of DLAE models.

Model MSE (%) MAE (%) RMSE (%) RET *

LSTM 0.2841 0.4130 0.5539 0.0562
GRU 0.2676 0.4186 0.5076 0.0539
RNN 0.2983 0.4661 0.5982 0.1806
CNN 0.2643 0.4115 0.5037 0.0201

* Reconstruction Error Threshold

5. Limitations and Open Issues

Combining autoencoders with deep learning models like LSTM, GRU, RNN, and CNN
is a reliable feature learning and AD approach across various applications, including pre-
dictive maintenance. However, this method faces several challenges and open issues. One
significant challenge is the poor quality and sensitivity of the collected vibration signals.
Low-sensitivity signals can result in noisy data, making it difficult for the models to learn
meaningful representations and accurately detect anomalies [62].Additionally, the complex
and high-dimensional nature of vibration data poses a challenge for dimensionality reduc-
tion techniques used by autoencoders. Balancing information compression with preserving
important features is crucial yet challenging. Moreover, deep learning models’ compu-
tational complexity and training time can be significant, especially when combined with
autoencoders. It poses practical challenges, particularly in real-time or resource-constrained
environments [63].
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Furthermore, interpreting these models’ learned representations and decision-making
processes can be challenging, hindering trust and acceptance, particularly in critical domains
like industrial systems [64]. Lastly, ensuring the generalization and adaptability of the models
to unseen data or changing environments remains an ongoing challenge, requiring further
study and innovation [65]. To address these challenges and open issues, advancements in
data preprocessing, model architecture design, regularization techniques, and interpretability
methods are necessary, alongside domain-specific knowledge and expertise.

6. Conclusions and Future Works

This study proposes a novel anomaly detection (AD) based on deep-learning au-
toencoders (DLAE). The proposed method uses vibration data from a speed reducer (SR)
within adhesive coating equipment (ACE) under prolonged automobile bushing produc-
tion. These are the main steps carried out in the proposed method: (1) A novel method
is presented to assess the AD of SR using vibration data. We ensured the position of the
NI 9234 sensor close to the bearing casing of the SR to help capture the normal and faulty
patterns from the SR during its working conditions. (2) DLAE is utilized to perform the
AD of the SR. The experiment showcases that the method effectively detects anomalies
from the vibration signals. Our DLAE model captures long-term dependencies in time
series data with a comparative assessment between the DLAE models. The autoencoder
generates encoded features while preserving these dependencies. The MAE from training
the model serves as the threshold for AD. Observations with reconstruction loss exceeding
the threshold are flagged as anomalies during testing. The anomalies detected through the
DLAE models give insight into replacing the chain within the ACE.

For future works, we would delve into two methodologies: (1) Optimizing sensor
placement and integrating multi-sensor data are essential to improving the effectiveness
of AD systems. By placing sensors in the correct positions, comprehensive vibration data
can be captured, reflecting the actual health status of the equipment. (2) Integrating data
from multiple sensors strategically positioned across different equipment components can
provide a more holistic view of the equipment’s health. Leveraging advanced techniques
in sensor fusion and data integration can also extract valuable insights from the collective
information gathered, enhancing the AD system’s overall predictive capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Anomaly detection
ACE Adhesive coating equipment
CNN Convolutional Neural Networks
CSV Comma separated values
DLAE Deep learning autoencoder
GRU Gated recurrent units
LSTM Long Short-Term Memory
MAE Mean absolute error
METL Mechanisms engineering test loop
MSE Mean square error
SGD Stochastic gradient descent
RET Reconstruction Error Threshold
RMSE Root mean square error
RNN Recurrent Neural Network
SR Speed reducer
VFA Variational fuzzy autoencoders
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