
Citation: Li, W.; Wang, W.; Li, S.

CFIEE: An Open-Source Critical

Metadata Extraction Tool for RISC-V

Hardware-Based CFI Schemes.

Electronics 2024, 13, 1681. https://

doi.org/10.3390/electronics13091681

Academic Editor: Luis Gomes

Received: 2 April 2024

Revised: 19 April 2024

Accepted: 26 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CFIEE: An Open-Source Critical Metadata Extraction Tool for
RISC-V Hardware-Based CFI Schemes
Wenxin Li, Weike Wang * and Senyang Li

College of Electronic and Information Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; wenxin_li@sdust.edu.cn (W.L.); lisenyang@sdust.edu.cn (S.L.)
* Correspondence: wangweike@sdust.edu.cn

Abstract: Control flow critical metadata play a key role in hardware-based control flow integrity
(CFI) mechanisms that effectively monitor and secure program control flow based on pre-extracted
metadata. The existing control flow analysis tools exhibit some deficiencies, including inadequate
compatibility with the RISC-V architecture, a steep learning curve, limited automation capabilities,
and restricted data output formats. CFIEE is an open-source tool with a graphical interface for the
automated extraction of control flow critical metadata. The tool possesses the capability to analyze
RISC-V binary executables, transforming the binary into an intermediate representation (IR) in the
form of the disassembled code, and extracting the critical metadata required for studying hardware-
based CFI mechanism through a designed control flow transfer relationship analysis algorithm. The
extracted metadata include program basic blocks and their corresponding hash values, control flow
graphs, function call relationships, distribution of forward transfer instructions, etc. We selected
15 embedded system programs with processor adaptation for functional verification. The results
demonstrate the CFIEE’s capability to automatically analyze programs within the supported RISC-V
instruction set and generate comprehensive and precise metadata files. This tool can significantly
enhance the efficiency of control flow metadata extraction and furnish configurable metadata for the
hardware-based security mechanisms.

Keywords: RISC-V; control flow integrity; basic block; control flow graph

1. Introduction

The RISC-V architecture has gained considerable attention in recent years as an open
and extensible instruction set architecture (ISA). Known for its modular design and support
for customized instructions, RISC-V has become a popular choice for various applications,
including embedded systems, Internet of Things (IoT) devices, and high-performance
computing. However, with the increasing adoption of RISC-V devices, addressing the
architecture’s potential security vulnerabilities, particularly in terms of control flow secu-
rity, has emerged as an urgent concern. Control flow hijacking attacks encompass various
techniques such as buffer overflow [1] exploits and return-oriented programming [2]. These
techniques allow attackers to manipulate a program’s control flow by corrupting or over-
writing memory locations that store critical information about function calls or returns.
Control Flow Integrity (CFI) [3] mechanisms play a crucial role in modern software se-
curity by safeguarding against control-flow hijacking attacks. These mechanisms rely on
precise control flow data analysis to ensure the integrity of a program’s execution path [4].
The extraction and analysis of control flow metadata facilitate the detection of anomalies,
identification of control flow hijacking attempts, and development of effective counter-
measures. Techniques such as control flow graphs, basic block identification, and loop
detection provide insights into the execution path of a program, aiding in the identification
of potential security vulnerabilities. Furthermore, control flow information can be utilized
for runtime monitoring and intrusion detection. By comparing the actual control flow with

Electronics 2024, 13, 1681. https://doi.org/10.3390/electronics13091681 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091681
https://doi.org/10.3390/electronics13091681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4964-917X
https://orcid.org/0009-0004-8324-0911
https://doi.org/10.3390/electronics13091681
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091681?type=check_update&version=2

Electronics 2024, 13, 1681 2 of 20

the expected behavior, deviations and anomalies can be promptly detected, enabling timely
responses and the mitigation of security incidents.

Control flow analysis tools are a relatively mature research field. In the past decades,
many different control flow analysis methods and tools have been put forward by academia
and industry for static analysis [5,6], dynamic analysis [7,8], symbol execution [9,10] and so
on. These tools play an important role in identifying the control flow structure of programs,
detecting vulnerabilities and optimizing codes. However, the majority of existing control
flow analysis tools are primarily tailored for mature architectures like X86 and ARM and
thus may not seamlessly integrate with the emerging RISC-V architecture. Additionally,
these tools present certain usability barriers such as the requirement of a separate program
for invoking the analysis tool. The objective of this paper is to enable automated control
flow analysis of RISC-V binary files while also providing an intuitive graphical interface
that facilitates quick adoption and relevant research by newcomers in this field.

CFIEE (Control Flow Integrity metadata Extraction Engine) is a Python-based static
analysis tool specifically designed for RISC-V architecture. The development of CFIEE
is based on the T-Head Xuantie E906 RISC-V processor [11] supporting the RV32IMAFC
instruction set [12,13]. It utilizes our pre-designed algorithm to closely approximate the
program’s actual behavior, analyze the control transfer relationships, and extract control
flow information. CFIEE can extract critical information, including basic blocks, control
transfer instructions, function addresses, control flow graph, and sensitive data crucial for
CFI verification. Our contributions are summarized as follows:

• The CFIEE tool is a critical metadata extraction tool for RISC-V hardware-based CFI
schemes, providing output data files that serve as valuable references for the design of
hardware-based CFI mechanisms.

• We have developed an algorithm for analyzing control transfer relationships based
on the execution rules of RISC-V programs. Through static analysis, the algorithm
can approximate the actual execution path of the program, providing CFIEE with a
comprehensive analysis scope, which in turn provides researchers with comprehensive
CFI metadata.

• CFIEE will be released as an open-source project [14], providing unrestricted usage
and modification of the software to all individuals under an open-source license.

The paper is structured as follows: Section 2 introduces the control transfer instructions
in the RISC-V instruction set, explains the concept of control flow graph, and discusses
the working phases of the CFG-based CFI mechanism. In Section 3, a detailed explanation
is given regarding the software architecture, internal workflow, functions of different
components, and output files of CFIEE. Section 4 presents an application scenario where
CFIEE offers data support for hardware-based CFI mechanisms. In Section 5, a comparison
between CFIEE and tools with similar functionalities is made along with showcasing
analysis results of CFIEE on test programs. Finally, conclusions are presented in Section 6.

2. Background and Related Works
2.1. Control Transfer Instructions in RISC-V ISA

The RISC-V Instruction Set Architecture (ISA) has emerged as a significant force in
computer architecture and microprocessor design. It is an open standard instruction set
architecture that has gained widespread attention and adoption in academia and industry
due to its versatility, extensibility, and flexibility. The RISC-V ISA adheres to the principles
of Reduced Instruction Set Computing (RISC), emphasizing simplicity and efficiency. This
architectural elegance is evident in its streamlined instruction set, which allows instruc-
tions to execute in a single clock cycle, optimizing performance and energy efficiency [15].
One of the key features of RISC-V is its modularity. The ISA is structured around a base
integer instruction set, providing a foundation for various application-specific extensions.
This modular design enables tailored customization by incorporating specialized instruc-
tions to address specific computational needs while ensuring compatibility with the core
ISA. Additionally, the RISC-V ISA supports both 32-bit and 64-bit address spaces [16],

Electronics 2024, 13, 1681 3 of 20

accommodating a wide range of computing platforms and applications. This adaptability
makes RISC-V suitable for deployment in resource-constrained embedded systems and
high-performance computing environments.

Table 1 showcases the conditional branch instructions present in the RV32IMAFC in-
struction set [12,13], excluding pseudo-instructions. When a conditional branch instruction
is executed, it involves comparing the values of two source registers (rs1 and rs2), and
based on the result, the branch may or may not be taken. This decision-making process
underpins the core of conditional branch instructions, allowing programs to take different
execution paths based on logical conditions.

Table 1. Conditional branch instructions in RV32IMAFC.

Name Mnemonic

branch equal beq
branch not equal bne
branch less than blt

branch greater than or equal bge
branch less than unsigned bltu

branch greater than or equal unsigned bgeu

Table 2 illustrates the unconditional jump instructions within the RV32IMAFC instruc-
tion set, excluding pseudo-instructions. The “jal” instruction, an essential member of this
category of instructions, is an abbreviation for “jump and link”. Upon execution, it uncondi-
tionally jumps to a specific section of the program while simultaneously storing the return
address in the “x1” register, which is commonly referred to as the “ra” register. In contrast,
the “j” instruction represents another form of unconditional jump instruction within the
RV32IMAFC instruction set. Like “jal,” it unconditionally diverts program execution to a
designated location. However, unlike “jal,” the “j” instruction does not undertake the task
of preserving the return address. The “jalr” instruction represents an additional aspect of
the RV32IMAFC instruction set, embodying the concept of indirect jumps where the target
address is not explicitly specified in the disassembly code but derived from the contents of
rs1 register. This flexibility in specifying jump targets lends itself to various programming
scenarios where dynamic or indirect addressing is required.

Table 2. Unconditional jump instructions in RV32IMAFC.

Name Mnemonic

jump and link jal
jump j

jump and link register jalr

2.2. Control Flow Graph

Control Flow Graph (CFG) is a graphical structure utilized for representing the pro-
gram’s control flow, which is typically in the form of a directed graph [17]. The CFG nodes
are commonly referred to as basic blocks, which represent uninterrupted code units within
the program. Different basic blocks are usually connected by control flow edges, which are
directed edges that connect different basic blocks in the CFG. These edges represent the
jump or branch relationships during program execution, signifying that upon completion
of one basic block’s execution, control flow will be transferred to another basic block.

The control flow edges can be categorized into forward and backward edges [18].
A forward edge represents the normal direction of control flow in a program, that is, a
directed edge from one basic block to another. This type of edge represents the program’s
control flow transfer along the normal execution path. For instance, forward edges arise
when program execution proceeds sequentially to the next basic block or when the true
path of a conditional branch is executed. Backward edges are utilized to represent loops or
conditional branches in a program, enabling the program to backtrack from one basic block

Electronics 2024, 13, 1681 4 of 20

to a previously executed basic block. These edges reflect the non-linear control flow of the
program. For instance, within a loop structure, a backward edge occurs when an iteration
is completed and the program returns to the beginning of the loop, facilitating multiple
executions of code within its body.

2.3. Phases of CFG-Based CFI Mechanisms

Most CFI mechanisms can be categorized into two distinct phases [19], each contribut-
ing to the overarching goal of enhancing program security.

CFG Construction and Analysis: In the first stage, the CFI mechanism needs to
obtain the CFG of the program through a specific analysis process. The accuracy and
comprehensiveness of the CFG directly influence the effectiveness of the control flow policy.
There are three different approaches to construct control flow graphs: static, dynamic
and hybrid. Static analysis is a prevalent technique for constructing CFGs. This method
involves a meticulous examination of the program, such as the source code and binary
executable file [20–22]. Static analysis is often conducted during the program’s compilation
or preprocessing phase, ensuring that the CFG is established before execution. One of
the dynamic CFG reconstruction methods was proposed by Yount et al. [23]. Dynamic
analysis takes a different approach by constructing the CFG during program execution [24].
This real-time approach allows the mechanism to adapt to the program’s actual behavior,
ensuring that the CFG accurately reflects runtime conditions. While dynamic analysis
can provide a precise representation of the program’s control flow, it may introduce some
overhead due to the need for continuous monitoring during execution. Nonetheless, it is a
valuable technique for scenarios where the control flow structure may change dynamically.
V.H. Sahin proposed Turna, which is a tool for building control flow graphs using a hybrid
approach [25]. Hybrid approaches combines static and dynamic analysis methods, static
analysis provides a framework for the initial control flow graph, and then dynamic analysis
is used to refine the graph or verify the control flow. For example, a hybrid approach may
use static analysis to establish an initial CFG and then dynamically refine it during program
execution to account for runtime variations. Once the CFG is established, the mechanism
defines the permissible control flow transfer targets based on CFG.

Runtime Control Flow Verification: The second phase of the CFI mechanism, which
takes place during runtime when the program is being executed, plays a crucial role in en-
suring the security and integrity of the running program. During this phase, the CFI mech-
anism continuously monitors the control flow transfers within the running program [26].
By continuously monitoring these control flow transfers, the CFI mechanism aims to verify
whether they adhere to the predetermined Control Flow Graph (CFG) constructed in the
first phase [27]. The CFG serves as a blueprint for legitimate control flow paths within the
program. Any attempt to transfer control outside of this predefined range raises suspicion
and triggers a security response. When the CFI mechanism detects an unauthorized con-
trol flow that lacks verification and deviates from the expected path, it promptly initiates
appropriate security measures to mitigate potential threats. These security responses can
vary depending on system configurations and requirements but may involve terminating
or suspending execution of the program. In addition to halting execution, performing
exception handling procedures becomes essential when dealing with unauthorized control
flow transfers. Exception handling allows for graceful recovery from unexpected events or
errors encountered during runtime. By employing proper exception handling techniques,
developers can ensure that any abnormal termination caused by unauthorized control flow
transfers does not result in data corruption or system instability.

3. Technical Specifications

CFIEE is a critical metadata extraction tool for RISC-V hardware-based CFI mecha-
nisms implemented in Python. It is compatible with any computer system that supports
Python 3. To utilize its disassembly functionality, the tool requires the installation of the
riscv32/64-unknown-elf toolchain on the user’s computer system.

Electronics 2024, 13, 1681 5 of 20

3.1. Overview of CFIEE Architecture

The CFIEE architecture, as illustrated in Figure 1, offers a comprehensive depiction
of its functionality. This tool accepts either an RISC-V executable or disassembled file as
input, which subsequently undergoes processing through three distinct processes within
the CFIEE framework. Ultimately, it generates metadata files pertaining to CFI.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 20

3. Technical Specifications
CFIEE is a critical metadata extraction tool for RISC-V hardware-based CFI mecha-

nisms implemented in Python. It is compatible with any computer system that supports
Python 3. To utilize its disassembly functionality, the tool requires the installation of the
riscv32/64-unknown-elf toolchain on the user’s computer system.

3.1. Overview of CFIEE Architecture
The CFIEE architecture, as illustrated in Figure 1, offers a comprehensive depiction

of its functionality. This tool accepts either an RISC-V executable or disassembled file as
input, which subsequently undergoes processing through three distinct processes within
the CFIEE framework. Ultimately, it generates metadata files pertaining to CFI.

Figure 1. Overview of CFIEE architecture.

3.1.1. Input Files
In scenarios such as reverse engineering and malware analysis, it is frequently en-

countered to have only binary files without access to the corresponding source code. The
behavior of a program can be better understood by analyzing compiled binaries and ob-
taining actual execution path information. Considering this aspect, CFIEE utilizes binary
files as the foundation for analysis. CFIEE is capable of accepting RISC-V executables as
input. Specifically, the tool can analyze ELF files generated by compiling under the
RV32IMAFC instruction set. CFIEE ensures proper analysis when the program utilizes an
instruction set within this range.

Additionally, CFIEE can process disassembled files in TXT format if provided by the
user. In such cases, users can pre-disassemble the executable file using the RISC-V tool-
chain and save the resulting disassembly as a .txt file. This flexibility in input format wid-
ens the tool’s applicability, catering to varying user preferences and simplifying the anal-
ysis process.

3.1.2. Internal Processes
The internal process of CFIEE is illustrated in Figure 1, encompassing three funda-

mental components: data preprocessing, control flow analysis, and data curation and out-
put. The “data preprocessing” phase is dedicated to formatting the contents of the disas-
sembly file to adhere to CFIEE’s processing format. This crucial step aims to eliminate any
extraneous content that may result from specific compilation options during program
compilation. Preprocessing ensures the extraction of disassembly instructions, enabling
smooth subsequent processing.

Figure 1. Overview of CFIEE architecture.

3.1.1. Input Files

In scenarios such as reverse engineering and malware analysis, it is frequently en-
countered to have only binary files without access to the corresponding source code. The
behavior of a program can be better understood by analyzing compiled binaries and obtain-
ing actual execution path information. Considering this aspect, CFIEE utilizes binary files
as the foundation for analysis. CFIEE is capable of accepting RISC-V executables as input.
Specifically, the tool can analyze ELF files generated by compiling under the RV32IMAFC
instruction set. CFIEE ensures proper analysis when the program utilizes an instruction set
within this range.

Additionally, CFIEE can process disassembled files in TXT format if provided by
the user. In such cases, users can pre-disassemble the executable file using the RISC-V
toolchain and save the resulting disassembly as a .txt file. This flexibility in input format
widens the tool’s applicability, catering to varying user preferences and simplifying the
analysis process.

3.1.2. Internal Processes

The internal process of CFIEE is illustrated in Figure 1, encompassing three funda-
mental components: data preprocessing, control flow analysis, and data curation and
output. The “data preprocessing” phase is dedicated to formatting the contents of the
disassembly file to adhere to CFIEE’s processing format. This crucial step aims to eliminate
any extraneous content that may result from specific compilation options during program
compilation. Preprocessing ensures the extraction of disassembly instructions, enabling
smooth subsequent processing.

The core of CFIEE lies in the “control flow analysis” stage. Starting with the initializa-
tion function of the program, CFIEE examines and analyzes the control flow of the program.
The analysis process includes extracting potential executable functions, decrypting the
control flow transfer relationship in these functions, and identifying each basic block.

Electronics 2024, 13, 1681 6 of 20

The “data curation and output” phase primarily concentrates on consolidating the
valuable information acquired during the preceding stages and presenting it in either
textual or graphical formats. These organized data are then outputted into appropriate
files, facilitating further analysis.

3.1.3. CFI-Related Metadata Files

Table 3 showcases the output files of CFIEE. As of the current version, the tool gen-
erates eight output files, including three text files associated with basic blocks, three files
regarding control transfer instructions, a control flow diagram represented as a vector
diagram, and a function call diagram. Notably, a binary file in the bin format is established,
containing all forward transfers’ addresses. Each line consists of a 32-bit binary number,
where the initial 16 bits represent the binary address of the jump instruction, and the final
16 bits delineate the target address of the jump instruction. These documents can provide
data reference for CFI scheme.

Table 3. Output files of CFIEE.

Filename File Type Introduction

xxx_basic_block .txt Basic blocks’ information
xxx_bin_basic_block_info .txt Blocks’ info in binary form
xxx_hex_basic_block_info .txt Blocks’ info in hexadecimal form

xxx_forward_transfers .txt All forward transfer instructions and
target instructions

xxx_control_transfer .bin Metadata related to forward transfers
xxx_CFG .svg Program-wide control flow graph

xxx_forward_transfers_per_function .svg Show the number of transfer
instructions within each function

xxx_function_call_relationship .svg Demonstrate the program’s function
call relationships

3.2. Workflow of CFIEE

This section introduces the workflow of CFIEE. Figure 2 showcases the step-by-step
workflow process.

It begins with an initial input or data collection stage, followed by multiple analysis
and processing steps, and concludes with generating desired outputs or results. If the
input file is an RISC-V executable file, CFIEE will invoke the RISC-V toolchain in the
data preprocessing module to disassemble it, generating a disassembly code file in TXT
format. Depending on the file format, CFIEE will then proceed to extract it for instruction
recognition or retain it in its original format.

The preprocessed disassembly code will be forwarded to the analysis module for
control flow analysis. CFIEE initially extracts function-related data from the disassembly
code, identifying all potentially executable functions within the program. Subsequently, it
analyzes the control flow transition relationships, which is followed by partitioning the
disassembly code into basic blocks within the range of executable functions.

In the data collation and output module, CFIEE computes the hash value of each basic
block based on the basic block instructions using the hash algorithm specified by the user
and consolidates the basic block information. Additionally, the module handles the sorting
and output of control transfer instructions. It gathers control transfer instructions within
each function, identifies their corresponding target instructions, and pairs them accordingly.
This module also organizes information pertaining to output functions, including the count
of forward control transfer instructions within each function and the program’s function
call relationships.

Electronics 2024, 13, 1681 7 of 20

Electronics 2024, 13, x FOR PEER REVIEW 7 of 20

accordingly. This module also organizes information pertaining to output functions, in-
cluding the count of forward control transfer instructions within each function and the
program’s function call relationships.

Figure 2. Workflow of CFIEE.

3.3. Functions of CFIEE
The detailed presentation of CFIEE’s functions is illustrated in Figure 3, showcasing

the key functionalities embedded within the tool’s source code, encompassing data ma-
nipulation, statistical analysis, and data visualization.

Figure 2. Workflow of CFIEE.

3.3. Functions of CFIEE

The detailed presentation of CFIEE’s functions is illustrated in Figure 3, showcas-
ing the key functionalities embedded within the tool’s source code, encompassing data
manipulation, statistical analysis, and data visualization.

3.3.1. Data Preprocessing

During the data preprocessing stage, CFIEE offers the disassembly functionality
for ELF files, automatically selecting the disassembled file once the disassembly process
is finalized. In situations where the input files are already in a disassembled format,
CFIEE takes an adaptive approach to tailor its processing recommendations based on the
specific format of these files. This intelligent adaptation ensures that optimal preprocessing
decisions are presented to the user regardless of whether they are working with raw

Electronics 2024, 13, 1681 8 of 20

binary or pre-disassembled files. The execution of the data preprocessing process is jointly
managed by the “file_preprocess.py” and “CFIEE.py” scripts.

As shown in Figure 3, the process consists of three main functions. The function
“judge_file_type()” is housed in “CFIEE.py” and aims to determine the need for additional
processing of the current disassembly file based on pre-established rules. This function
will provide a tag value to subsequent related functions based on the file format. The
functions “extract_disassemble_introduction()” and “rewrite_objdump_file()” are situated
in the script file “file_preprocess.py”. Their respective responsibilities involve extracting
the necessary instructions from the disassembly file and reconstructing it. The restructured
files reside in the same directory as the source files. This systematical approach ensures the
efficient and accurate extraction of the required instructions while eliminating redundant
information to enable subsequent analysis within the CFIEE framework.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20

Figure 3. CFIEE’s function composition.

3.3.1. Data Preprocessing
During the data preprocessing stage, CFIEE offers the disassembly functionality for

ELF files, automatically selecting the disassembled file once the disassembly process is
finalized. In situations where the input files are already in a disassembled format, CFIEE
takes an adaptive approach to tailor its processing recommendations based on the specific
format of these files. This intelligent adaptation ensures that optimal preprocessing deci-
sions are presented to the user regardless of whether they are working with raw binary or
pre-disassembled files. The execution of the data preprocessing process is jointly managed
by the “file_preprocess.py” and “CFIEE.py” scripts.

As shown in Figure 3, the process consists of three main functions. The function
“judge_file_type()” is housed in “CFIEE.py” and aims to determine the need for additional
processing of the current disassembly file based on pre-established rules. This function will
provide a tag value to subsequent related functions based on the file format. The functions
“extract_disassemble_introduction()” and “rewrite_objdump_file()” are situated in the
script file “file_preprocess.py”. Their respective responsibilities involve extracting the nec-
essary instructions from the disassembly file and reconstructing it. The restructured files
reside in the same directory as the source files. This systematical approach ensures the effi-
cient and accurate extraction of the required instructions while eliminating redundant in-
formation to enable subsequent analysis within the CFIEE framework.

3.3.2. Control Flow Analysis
The overall process is divided into three parts: “extract function information”, “ana-

lyze control transfer relationship”, and “divide basic blocks”. To begin with, the analysis
modules receive the disassembled file as input. The tool starts by extracting various details

Figure 3. CFIEE’s function composition.

3.3.2. Control Flow Analysis

The overall process is divided into three parts: “extract function information”, “analyze
control transfer relationship”, and “divide basic blocks”. To begin with, the analysis
modules receive the disassembled file as input. The tool starts by extracting various details
from the disassembly file, such as function names, start and end addresses, and instruction
locations. This initial extraction provides a foundation for further analysis.

Next, CFIEE employs a recursive search algorithm based on program logic to ana-
lyze each function. By scrutinizing transfer instructions within these functions, CFIEE
anticipates the target addresses the program will access during execution. If any transfer
instructions are found within the specific function under analysis, CFIEE delves into the
functions corresponding to those target addresses for further examination. Algorithm 1
shows the specific logic of the algorithm.

Electronics 2024, 13, 1681 9 of 20

Algorithm 1. Find to_visit functions

Input: disassemble_file_info; func_name; function_call_instr; visited_functions
Output: to_visit_functions; visited_functions; function_call_instr

1. if visited_functions_id is None:

initialize visited_functions set

2. Initialize function_call_instr
3. Read disassemble file and store the lines in the variable lines
4. Get the function address range for the current function
5. Search for called functions in the function range:

for each line in function_instr[func_name]:
if instruction is ‘jal’ or ‘j’:

jump_target <- Get jump target operand
if jump_target is outside func_addr_range:

Append line to call_instrs
else if jump_target is within any function’s address range:

Add corresponding function name to to_visit_functions
called_func_name <- func_name

else if instruction is branch instruction:
jump_target <- Get jump target operand
if this is the last instruction in current function:

Add next function’s name to to_visit_functions
called_func_name <- func_name

if jump_target is within any function’s address range:
Add corresponding function name to to_visit_functions
called_func_name <- func_name

6. Update function_call_instr dictionary
7. if no called functions found:

Add the next sequential function as to visit

8. Recursively search for called functions in the called functions
9. Return to_visit_functions, visited_functions_id, visited_functions, and function_call_instr

It is based on the transfer instructions within the function. If there are transfer instruc-
tions inside the function that the program is currently analyzing, CFIEE will analyze the
function where these destination addresses are located. If there are no jump instructions
within the current function, CFIEE will mark the next function adjacent to it as a possible
function to execute.

After extracting the functions that are likely to be executed, the tool analyzes the control
transfer relationships within these functions. It identifies all control transfer instructions
and analyzes the target addresses based on the type of transfer instruction. Figure 4
illustrates the analysis logic of CFIEE for function call and return relationships. Prior
to analyzing the function call and return relationships, CFIEE has extracted all function
address ranges, function call instructions and function return instruction data. When
analyzing the function call relationships, whether a function call is generated is determined
by the target address of an unconditional jump instruction and the starting address of a
specific function. If the condition is true, the call relationship between the current function
and the jump target function will be established.

In the process of analyzing the disassembly, a pattern of function calls similar to nested
calls caught our attention. For instance, function 1 contains a “jal” instruction that will
unconditionally jump to function 2 after saving the return address. At the end of function 2,
there is an unconditional jump instruction of type “j”. When the program reaches this
point, it will jump directly to function 3. Finally, the program executes the return operation
at the return instruction of function 3. In response to this scenario, we developed the
corresponding analysis logic and incorporated it into the function call relationship. Once
the analysis of the function call relationship is completed, it will serve as reference data for

Electronics 2024, 13, 1681 10 of 20

analyzing the function return relationship. The analysis approach for the function return
relationship is similar to the previous analysis. CFIEE will analyze the function return
relationship and determine the target address based on the function call relationship and
the address information of the “ret” instruction.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 20

address ranges, function call instructions and function return instruction data. When an-
alyzing the function call relationships, whether a function call is generated is determined
by the target address of an unconditional jump instruction and the starting address of a
specific function. If the condition is true, the call relationship between the current function
and the jump target function will be established.

In the process of analyzing the disassembly, a pattern of function calls similar to
nested calls caught our attention. For instance, function 1 contains a “jal” instruction that
will unconditionally jump to function 2 after saving the return address. At the end of func-
tion 2, there is an unconditional jump instruction of type “j”. When the program reaches
this point, it will jump directly to function 3. Finally, the program executes the return op-
eration at the return instruction of function 3. In response to this scenario, we developed
the corresponding analysis logic and incorporated it into the function call relationship.
Once the analysis of the function call relationship is completed, it will serve as reference
data for analyzing the function return relationship. The analysis approach for the function
return relationship is similar to the previous analysis. CFIEE will analyze the function
return relationship and determine the target address based on the function call relation-
ship and the address information of the “ret” instruction.

Figure 4. The analysis logic of CFIEE on function call and return.

It is worth noting that the analysis procedures in CFIEE are static, meaning that they
do not account for dynamic changes or runtime behavior. This limitation results in CFIEE
currently being unable to analyze the target address of indirect jumps, which may hinder
its effectiveness in certain scenarios. CFIEE divides basic blocks based on control transfer
relationships obtained from previous analyses and specific division rules specified in Ta-
ble 4. During the division of basic blocks, we take into consideration the possibility of
jump or branch target instructions within certain basic blocks. To address this, we have
introduced two functions in the basic block division process: “create_basic_blocks_in_or-
der()” and “create_basic_blocks_start_with_taken_target()”. The first function strictly

Figure 4. The analysis logic of CFIEE on function call and return.

It is worth noting that the analysis procedures in CFIEE are static, meaning that they
do not account for dynamic changes or runtime behavior. This limitation results in CFIEE
currently being unable to analyze the target address of indirect jumps, which may hinder its
effectiveness in certain scenarios. CFIEE divides basic blocks based on control transfer rela-
tionships obtained from previous analyses and specific division rules specified in Table 4.
During the division of basic blocks, we take into consideration the possibility of jump or
branch target instructions within certain basic blocks. To address this, we have introduced
two functions in the basic block division process: “create_basic_blocks_in_order()” and
“create_basic_blocks_start_with_taken_target()”. The first function strictly adheres to the
basic block division rules, which is based on the disassembly file and the control transfer
relationships derived from the previous analysis. It divides the basic blocks in accordance
with the address order of the instructions. On the other hand, the second function, “cre-
ate_basic_blocks_start_with_taken_target()”, focuses specifically on creating a new basic
block starting at an address where a jump or branch target instruction resides. This allows
us to capture any potential changes in control flow caused by these instructions effec-
tively. By executing these two functions, CFIEE is able to sort the basic blocks according
to their starting addresses, ultimately providing accurate and comprehensive basic block
information. The sorted basic block information, when combined with the subsequent
generated CFG, enables researchers to effectively analyze the program’s execution path
and identify potential deadlock issues. Furthermore, through analysis of the program’s
loop structure, researchers can pinpoint loops that may cause performance bottlenecks and
optimize them accordingly. Additionally, it helps to understand how different parts of the
program interact.

Electronics 2024, 13, 1681 11 of 20

Table 4. The division rules of basic blocks.

BB Edge Rules

Begin
edge

1. First instr. of any function
2. Target instruction of uncond. jumps or cond. branches
3. Instr. following any cond. branch or uncond. jump

End
edge

1. Last instr. of any function
2. An uncond. jump instr. or a cond. branch instr.
3. The “ret” instruction

3.3.3. Data Curation and Output

The data sorting and output module of CFIEE gathers comprehensive information
on basic blocks and computes their corresponding hash values. The calculation process
accepts binary or hexadecimal instructions of the basic blocks as input, allowing users to
select both the hash algorithm and the desired length of the resulting hash value. Currently,
CFIEE offers four options for hash algorithms: MD5, SHA-1, SHA256, and SHA512. Users
can select any of these algorithms based on their specific requirements. In addition to
algorithm selection, CFIEE also allows the user to specify the length of the generated hash
value. Available options include 8-bit, 16-bit, 32-bit, and custom length. This feature allows
users to balance storage efficiency and accuracy according to their needs. Furthermore,
we plan to enhance CFIEE by incorporating support for custom hash algorithms in future
updates. In addition, CFIEE can effectively organize and output necessary control transfer
instructions and functional information, providing researchers with comprehensive and
accurate data information.

To simplify the process and enhance modularity, we encapsulate the main functions
within the process into two different entities: “export_results()” and “generate_CFG()”.
Specifically, the “export_results()” function can systematically arrange data files and present
them in a user-friendly text format. On the other hand, the “generate_CFG()” function
plays a key role in building the control flow graph of a program, which provides researchers
with a visual representation of the control flow in a RISC-V executable.

4. Application Scenarios of CFIEE

As a control flow static analysis tool, CFIEE can provide detailed and accurate data for
the design and implementation of CFI mechanisms, especially CFG-based CFI. Researchers
can develop suitable CFI mechanisms for RISC-V embedded devices through analysis
results such as basic block information, control flow graphs, and the number of jump
instructions within each function output by the tool. Below, we outline a straightforward
method for utilization.

“xxx_control_transfer.bin” in Table 3 contains the forward jump instruction and the address
information of the current instruction in binary form. Additionally, “xxx_bin_basic_block_info.txt”
and “xxx_hex_basic_block_info.txt” contain binary and hexadecimal representations of
basic block data alongside their respective hash values. Figure 5 shows the hardware circuit
diagram of a basic CFI mechanism constructed using these data. In this mechanism, the
hash values of basic blocks and the PCs corresponding to control transfer instructions are
stored within designated registers. When the hash verification unit recognizes the last
instruction of the basic block, it calculates the hash value of the current basic block and
compares it with the pre-obtained hash value. If the results are the same, it proves that
the instructions in the current basic block have not been tampered with. Simultaneously,
the “Target Verification” unit in the CFI verification unit is responsible for comparing the
PC of the control transfer instruction with its pre-analyzed target instruction. The CFI
verification unit is equipped with registers for storing interrupt entry addresses and a
shadow stack for validating function return addresses, ensuring the integrity of program
interrupts and return addresses. Prior to entering the interrupt, the CFI verification unit
examines whether the current interrupt entry address is stored in the register; if not, it is

Electronics 2024, 13, 1681 12 of 20

considered an exception for interrupt entry address. During a function call, the program
pushes the return address (RA) onto the main stack and updates the stack pointer (SP).
Simultaneously, the CFI verification unit copies RA from the main stack to the shadow
stack. Upon function return, before executing the return instruction, the program retrieves
RA from the main stack and performs a return operation. However, prior to this execution
of return instruction, the CFI verification unit validates RA against that on the shadow
stack. If there is a match with RA on the shadow stack, it proceeds with normal return;
otherwise, it identifies an abnormality in the return address. Any differences detected in the
CFI verification unit imply potential tampering or alterations in the program’s control flow.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 20

“xxx_control_transfer.bin” in Table 3 contains the forward jump instruction and the
address information of the current instruction in binary form. Additionally,
“xxx_bin_basic_block_info.txt” and “xxx_hex_basic_block_info.txt” contain binary and
hexadecimal representations of basic block data alongside their respective hash values.
Figure 5 shows the hardware circuit diagram of a basic CFI mechanism constructed using
these data. In this mechanism, the hash values of basic blocks and the PCs corresponding
to control transfer instructions are stored within designated registers. When the hash ver-
ification unit recognizes the last instruction of the basic block, it calculates the hash value
of the current basic block and compares it with the pre-obtained hash value. If the results
are the same, it proves that the instructions in the current basic block have not been tam-
pered with. Simultaneously, the “Target Verification” unit in the CFI verification unit is
responsible for comparing the PC of the control transfer instruction with its pre-analyzed
target instruction. The CFI verification unit is equipped with registers for storing interrupt
entry addresses and a shadow stack for validating function return addresses, ensuring the
integrity of program interrupts and return addresses. Prior to entering the interrupt, the
CFI verification unit examines whether the current interrupt entry address is stored in the
register; if not, it is considered an exception for interrupt entry address. During a function
call, the program pushes the return address (RA) onto the main stack and updates the stack
pointer (SP). Simultaneously, the CFI verification unit copies RA from the main stack to the
shadow stack. Upon function return, before executing the return instruction, the program
retrieves RA from the main stack and performs a return operation. However, prior to this
execution of return instruction, the CFI verification unit validates RA against that on the
shadow stack. If there is a match with RA on the shadow stack, it proceeds with normal
return; otherwise, it identifies an abnormality in the return address. Any differences de-
tected in the CFI verification unit imply potential tampering or alterations in the pro-
gram’s control flow.

Figure 5. An example diagram of a CFI mechanism hardware circuit.

The verification of CFI mechanisms typically requires multiple cycles. To ensure a
sufficient time margin for CFI verification, we have positioned the CFI mechanism be-
tween the IF and MEM phases in this work. The synchronization between the execution
time of the processor, CFI verification module, user program, and other factors determines
the alignment of CFI verification with program execution time. During the IF to MEM
phase, it is possible for the EX and MEM phases to execute multiple cycles; in such cases,
the running time of CFI verification may be shorter than that of the IF to MEM phase. If
the verification process exceeds this pipeline section’s running time, it necessitates a stall

Figure 5. An example diagram of a CFI mechanism hardware circuit.

The verification of CFI mechanisms typically requires multiple cycles. To ensure a
sufficient time margin for CFI verification, we have positioned the CFI mechanism between
the IF and MEM phases in this work. The synchronization between the execution time of
the processor, CFI verification module, user program, and other factors determines the
alignment of CFI verification with program execution time. During the IF to MEM phase,
it is possible for the EX and MEM phases to execute multiple cycles; in such cases, the
running time of CFI verification may be shorter than that of the IF to MEM phase. If the
verification process exceeds this pipeline section’s running time, it necessitates a stall signal
from the CFI verification unit to halt pipeline operation until completion of CFI verification.
This is a trade-off between system performance and security

This article primarily offers a basic example of the Control Flow Integrity (CFI) mech-
anism without delving into specific CFI design intricacies. The main focus remains on
providing an introductory illustration rather than exhaustive CFI design details. Future
research will utilize the data files from CFIEE to craft CFI solutions suitable for RISC-V
architecture. These efforts will delve deeper into CFI intricacies, aiming to create more
specific and efficient CFI solutions tailored for the nuances of RISC-V architecture.

5. Evaluations
5.1. Comparison with Other Tools

Currently, there exist several control flow analysis tools available for the RISC-V archi-
tecture. For comparison purposes, our evaluation focuses on two specific tools: angr [9] and
Turna [25]. Angr has garnered significant attention in the field of reverse engineering, and
Turna’s adoption of a hybrid approach enables it to generate a comprehensive Control Flow
Graph (CFG). We have compiled a comparative analysis of their usability and capability to
generate control flow information, as presented in Table 5.

Electronics 2024, 13, 1681 13 of 20

Table 5. Comparison of CFIEE and other tools.

Features CFIEE angr [9] Turna [25]

GUI
√

× ×
Without Extra Programming

√
×

√

Drawing CFG
√ √ √

Hash Calculation
√ √

×
Function Call Relationship

√ √
×

Among these three tools, CFIEE stands out as the only one with a GUI operation
interface. As angr is a Python library, users need to write a Python program in order to
invoke it for further analysis. Unlike angr, both CFIEE and Turna streamline user interaction
by eliminating the necessity for users to write additional application programs. Regarding
Control Flow Graph (CFG) output functionality, all three tools demonstrate the capability
to generate outputs. Both CFIEE and angr can output the hash value of the program basic
blocks and the calling relationship of the function. Notably, Turna, being primarily a CFG
reconstruction tool, currently lacks these specific functionalities.

While angr and Turna were specifically chosen for comparison in this evaluation due
to their usability and ability to generate control flow information, it is important to note
that each tool has its own strengths and weaknesses depending on specific requirements or
research objectives. We acknowledge the capabilities of angr in obtaining detailed program
execution data through static analysis and simulation operations. We also appreciate
Turna’s idea of using a hybrid approach to rebuild CFG. However, the primary focus of
CFIEE research remains centered on offering a straightforward and efficient approach to
furnish precise and readily accessible metadata essential for the hardware-based Control
Flow Integrity (CFI) mechanism in RISC-V embedded systems. CFIEE aims to provide
crucial data, such as hash values of basic blocks, program control flow graphs, instruction
jump relationships, and function calling connections. These data are easily and swiftly
obtainable through the configuration of the Python environment and the RISC-V toolchain
within CFIEE.

5.2. Functional Evaluation

For functional evaluation, we selected 15 programs from the Beebs benchmark [28].
In order to better test the functionality of CFIEE, we made some changes to the code of
the test programs. We modified the initial “fputc” function to add the serial port output
related function of the T-head Xuantie E906 processor. In terms of a tool chain, we used
the Xuantie-900-gcc-elf-newlib-x86_64-V2.6.1 RISC-V tool chain. This tool chain retains the
functions of the original RISC-V tool chain and adds optimization options for the T-Head
processors. The test platform utilized was CentOS 7. As CFIEE is developed based on
Python 3, our test environment employs Python version 3.11.0.

The quantitative test results of the selected programs are presented in Table 6. These
results consist of two sets of data: the number of basic blocks and the number of forward
transfer instructions. The count of basic blocks can partially reflect the program’s complex-
ity, while the count of forward transfer instructions can reflect the transfer frequency of the
program control flow.

Table 6. Analysis results of selected programs in Beebs benchmark.

Program Name Traversed Func. Traversed Instr. Basic Blocks Edges Forward Transfers

cover 40 5514 1632 2765 1287
crc 38 5587 1633 2768 1289

ctl_stack 19 477 108 166 66
dijkstra 40 5703 1647 2791 1298

duff 39 5567 1624 2749 1280
fir 14 267 49 70 30

Electronics 2024, 13, 1681 14 of 20

Table 6. Cont.

Program Name Traversed Func. Traversed Instr. Basic Blocks Edges Forward Transfers

insertsort 39 5561 1618 2744 1279
jfdcint 39 5750 1618 2745 1276

lcdnum 15 293 58 83 35
nettle_des 41 7283 1621 2743 1278
nettle_md5 40 6402 1636 2773 1292

qurt 41 5912 1725 2928 1363
rijndael 44 9725 1736 2931 1358

sglib_dllist 17 506 135 217 92
sglib_rbtree 19 614 155 244 113

Table 7 showcases one of the basic blocks present in the “basic_block.txt” file, which is
the output of CFIEE. Each basic block’s metadata include essential elements such as block
number, label, entry address, length, all instructions, and two possible transfer targets.
The block number serves as a unique identifier for each basic block within the program.
The entry address indicates the starting point of the basic block within the program’s
memory space. Length refers to the size or extent of a particular basic block in terms
of its instruction count. All instructions listed in each basic block’s metadata provide a
comprehensive overview of what operations are performed within that particular segment.
In cases where the final instruction of a basic block is a conditional branch, there will be
two transfer targets mentioned in its metadata. A conditional branch allows for decision
making based on certain conditions being met or not met during program execution. The
presence of two transfer targets signifies that control flow can diverge into two separate
paths depending on whether those conditions are satisfied or not. On the contrary, when
the final instruction in a basic block is an unconditional jump, it means that the control flow
will directly transfer to another location without any condition being evaluated. In this
scenario, the basic block associated with this jump will have only one target for transferring
control. The absence of a second target implies that there is no alternative path or decision
point to be considered after executing this particular instruction.

Table 7. Example of “basic_block.txt” file format.

One of the Basic Blocks in “basic_block.txt”

Basic_block Name: 48
In Function: <main>
Start address: 2940
End address: 2940
Start instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>
End instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>
Length: 1
Taken_Target address: 2934
Taken_Target instruction: 2934: 00040513 mv a0, s0
Not_Taken_Target address: 2944
Not_Taken_Target instruction: 2944: 0000d2b7 lui t0,0xd
Instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>

The two figures in Figure 6 display the binary and hexadecimal representations of
the basic block metadata. For both files, we consistently assigned the same data elements,
including basic block numbers, binary or hexadecimal instructions and addresses, and
hash values obtained from instructions and user settings. This standardization of data
elements ensures uniformity and facilitates efficient analysis and comparison during the
evaluation process.

Electronics 2024, 13, 1681 15 of 20

Electronics 2024, 13, x FOR PEER REVIEW 15 of 20

Table 7. Example of “basic_block.txt” file format.

One of the Basic Blocks in “basic_block.txt”
Basic_block Name: 48
In Function: <main>
Start address: 2940
End address: 2940
Start instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>
End instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>
Length: 1
Taken_Target address: 2934
Taken_Target instruction: 2934: 00040513 mv a0, s0
Not_Taken_Target address: 2944
Not_Taken_Target instruction: 2944: 0000d2b7 lui t0,0xd
Instruction: 2940: fe941ae3 bne s0, s1, 2934 <main+0x110>

The two figures in Figure 6 display the binary and hexadecimal representations of
the basic block metadata. For both files, we consistently assigned the same data elements,
including basic block numbers, binary or hexadecimal instructions and addresses, and
hash values obtained from instructions and user settings. This standardization of data el-
ements ensures uniformity and facilitates efficient analysis and comparison during the
evaluation process.

(a) (b)

Figure 6. (a) Block’s metadata in binary form; (b) block’s metadata in hexadecimal form.

Figure 7a presents an exemplar of forward control transfer instructions extracted by
CFIEE. To streamline data analysis, we systematically categorize all forward control trans-
fer instructions within the specified analysis range according to their corresponding func-
tions, storing them in the data file generated by the tool. Pairing transfer instructions with
their respective target instructions facilitates easier analysis and comparison. It is worth
noting that when dealing with branch jump instructions, we specifically focus on storing
only the target instruction when the branch is “taken”. This approach helps us prioritize
relevant information while avoiding unnecessary duplication or cluttering of data.

The binary metadata associated with the control transfers showcased in Figure 7a are
provided in Figure 7b, which contains all addresses of forward transfers. Each line consists
of a 32-bit binary number, where the initial 16 bits represent the binary address of the
jump instruction, and the final 16 bits delineate the target address of the jump instruction.
These binary data can be directly utilized by researchers in CFI solutions, such as being
stored in the secure memory of hardware for utilization by hardware-based CFI mecha-
nisms. In the current format, the hardware overhead caused by storing the data of this file
into memory is 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐵𝑦𝑡𝑒𝑠 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 ∗ 324 (1)

Figure 6. (a) Block’s metadata in binary form; (b) block’s metadata in hexadecimal form.

Figure 7a presents an exemplar of forward control transfer instructions extracted by
CFIEE. To streamline data analysis, we systematically categorize all forward control transfer
instructions within the specified analysis range according to their corresponding functions,
storing them in the data file generated by the tool. Pairing transfer instructions with their
respective target instructions facilitates easier analysis and comparison. It is worth noting
that when dealing with branch jump instructions, we specifically focus on storing only the
target instruction when the branch is “taken”. This approach helps us prioritize relevant
information while avoiding unnecessary duplication or cluttering of data.

The binary metadata associated with the control transfers showcased in Figure 7a are
provided in Figure 7b, which contains all addresses of forward transfers. Each line consists
of a 32-bit binary number, where the initial 16 bits represent the binary address of the jump
instruction, and the final 16 bits delineate the target address of the jump instruction. These
binary data can be directly utilized by researchers in CFI solutions, such as being stored
in the secure memory of hardware for utilization by hardware-based CFI mechanisms.
In the current format, the hardware overhead caused by storing the data of this file into
memory is

overhead(Bytes) =
Forwardtrans f ersnum ∗ 32

4
(1)

The current binary file format is not specifically designed for a particular CFI mecha-
nism, and researchers have the flexibility to modify its data format and volume according
to their research requirements.

Furthermore, Figure 7c illustrates the count of transfer instructions per function
across four selected programs. This visualization offers a comprehensive insight into the
control flow behavior and distribution within the codebase, thereby enhancing researchers’
understanding of the program’s structural intricacies. By examining the number of transfer
instructions per function, researchers can identify patterns and trends that reveal how
information flows through different parts of the code.

Figure 8 illustrates an example of function call relationships generated by CFIEE.
CFIEE analyzes function call relationships based on unconditional jump instructions within
functions. In Figure 8, asterisk labels (*) are appended at the end of specific nodes, signifying
functions reached through the ‘j’ instruction. This comprehensive representation aids in
understanding the function call relationships and the flow of control within the codebase,
incorporating both “jal” and “j” instructions to offer a more precise and detailed analysis.

The Control Flow Graph (CFG) serves as a crucial metadata for Control Flow Integrity
(CFI), ensuring the output of a complete and accurate CFG was a primary objective during
the development of CFIEE. In Figure 9, we present a portion of the control flow graph
obtained for the “lcdnum” program. Some basic blocks are labeled with “start with taken
target” at the end of their names, indicating that the start address of the basic block serves
as the target address of a control transfer instruction. The solid black arrows in Figure 9
represent unconditional jumps and “taken” branches resulting from branch jumps, while
the red dotted arrows indicate branches of branch jumps that are not taken.

Additionally, in certain basic blocks, a combination of function name and address may
appear in the “Taken target” column. This labeling signifies the target address specifically

Electronics 2024, 13, 1681 16 of 20

designated for the ret instruction. Since a function may be called by different functions
at various times, the ret instruction within a function may have multiple return target
addresses. To facilitate researchers in analyzing the ret instruction, we include all target
addresses and corresponding functions in the “Taken target” line. This comprehensive
representation of the CFG through CFIEE enhances the analysis of control flow integrity and
provides valuable support for researchers in understanding the intricacies of the codebase.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20

The current binary file format is not specifically designed for a particular CFI mech-
anism, and researchers have the flexibility to modify its data format and volume according
to their research requirements.

Furthermore, Figure 7c illustrates the count of transfer instructions per function
across four selected programs. This visualization offers a comprehensive insight into the
control flow behavior and distribution within the codebase, thereby enhancing research-
ers’ understanding of the program’s structural intricacies. By examining the number of
transfer instructions per function, researchers can identify patterns and trends that reveal
how information flows through different parts of the code.

(a)

(b)

(c)

Figure 7. (a) An example of metadata for control transfer instructions; (b) binary metadata associ-
ated with control transfer instructions in (a); (c) the number of transfer instructions per function in
four selected programs.

Figure 7. (a) An example of metadata for control transfer instructions; (b) binary metadata associated
with control transfer instructions in (a); (c) the number of transfer instructions per function in four
selected programs.

Electronics 2024, 13, 1681 17 of 20

Electronics 2024, 13, x FOR PEER REVIEW 17 of 20

Figure 8 illustrates an example of function call relationships generated by CFIEE.
CFIEE analyzes function call relationships based on unconditional jump instructions
within functions. In Figure 8, asterisk labels (*) are appended at the end of specific nodes,
signifying functions reached through the �j’ instruction. This comprehensive representa-
tion aids in understanding the function call relationships and the flow of control within
the codebase, incorporating both “jal” and “j” instructions to offer a more precise and
detailed analysis.

Figure 8. An example of the function call relationship output by CFIEE.

The Control Flow Graph (CFG) serves as a crucial metadata for Control Flow Integ-
rity (CFI), ensuring the output of a complete and accurate CFG was a primary objective
during the development of CFIEE. In Figure 9, we present a portion of the control flow
graph obtained for the “lcdnum” program. Some basic blocks are labeled with “start with
taken target” at the end of their names, indicating that the start address of the basic block
serves as the target address of a control transfer instruction. The solid black arrows in
Figure 9 represent unconditional jumps and “taken” branches resulting from branch
jumps, while the red dotted arrows indicate branches of branch jumps that are not taken.

Additionally, in certain basic blocks, a combination of function name and address
may appear in the “Taken target” column. This labeling signifies the target address spe-
cifically designated for the ret instruction. Since a function may be called by different func-
tions at various times, the ret instruction within a function may have multiple return target
addresses. To facilitate researchers in analyzing the ret instruction, we include all target
addresses and corresponding functions in the “Taken target” line. This comprehensive
representation of the CFG through CFIEE enhances the analysis of control flow integrity
and provides valuable support for researchers in understanding the intricacies of the
codebase.

Figure 8. An example of the function call relationship output by CFIEE.
Electronics 2024, 13, x FOR PEER REVIEW 18 of 20

Figure 9. Part of “lcdnum” CFG.

6. Conclusions
In this paper, we present CFIEE, an open-source critical metadata extraction tool de-

signed for enhancing hardware-based CFI research in the RISC-V architecture. CFIEE im-
plements automatic static analysis of the control flow of RISC-V executable files, signifi-
cantly lowering the usage threshold with its graphical interface operation. Researchers
can utilize the program control flow graph, program basic block information, and other
data output by CFIEE to analyze potential deadlocks, loop exceptions, and other issues
within a given program. Furthermore, CFIEE offers valuable metadata for research on
hardware-based CFI mechanisms that can aid in the development of secure and effective
RISC-V control flow protection mechanisms.

Figure 9. Part of “lcdnum” CFG.

Electronics 2024, 13, 1681 18 of 20

6. Conclusions

In this paper, we present CFIEE, an open-source critical metadata extraction tool
designed for enhancing hardware-based CFI research in the RISC-V architecture. CFIEE
implements automatic static analysis of the control flow of RISC-V executable files, signif-
icantly lowering the usage threshold with its graphical interface operation. Researchers
can utilize the program control flow graph, program basic block information, and other
data output by CFIEE to analyze potential deadlocks, loop exceptions, and other issues
within a given program. Furthermore, CFIEE offers valuable metadata for research on
hardware-based CFI mechanisms that can aid in the development of secure and effective
RISC-V control flow protection mechanisms.

This software simplifies the extraction of critical metadata and automates control
flow analysis, reducing the burden of manual data extraction tasks. This increase in
efficiency allows researchers to focus more on in-depth analysis and experimentation,
ultimately designing more efficient CFI mechanisms that better secure RISC-V devices. The
visualization of control flow metadata by CFIEE provides researchers with an accurate
depiction of complex control flow relationships, facilitating quicker comprehension and
validation of research findings.

While CFIEE currently offers a relatively comprehensive set of functions, there are
still opportunities for improvement in terms of operational performance and scope of
application. CFIEE currently lacks the capability to handle forward register-related jumps
due to its static analysis nature [29]. However, it does possess corresponding analysis logic
for indirect jumps of the “ret” type.

Since the initial presentation of this work [30], we aim to delve into indirect control
flow analysis. On the software front, our plan involves integrating CFIEE with RISC-V
compatible simulators to utilize simulation execution data for enhancing static analy-
sis. Additionally, we intend to embark on a combined static–dynamic analysis approach.
Regarding research into mechanisms, we will leverage existing lightweight hardware pro-
tection mechanisms [31] and integrate CFIEE’s data support to investigate a more secure
and efficient hardware-based RISC-V CFI mechanism. Furthermore, the metadata utilized
in the hardware CFI mechanism has the potential for additional compression [32].

CFIEE is an open-source tool released under an open license, and we encourage users
to extend and enhance its capabilities.

Author Contributions: W.L. and W.W. wrote this paper; W.W. conceived the proposed scheme and
reviewed the manuscript; W.L. designed the proposed software and the experiments; S.L. joined in
the data analysis and discussion phases. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No. 62201325), the Science and Technology Support Plan for Youth Innovation of Colleges and
Universities in Shandong Province of China (No. 2023KJ096), and the Shandong Provincial Natural
Science Foundation (No. ZR2020QF027).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lhee, K.S.; Chapin, S.J. Buffer overflow and format string overflow vulnerabilities. Softw. Pract. Exper. 2003, 33, 423–460.

[CrossRef]
2. Roemer, R.; Buchanan, E.; Shacham, H.; Savage, S. Return-oriented programming: Systems, languages, and applications. ACM

Trans. Inf. Syst. Secur. (TISSEC) 2012, 15, 1–34. [CrossRef]
3. Abadi, M.; Budiu, M.; Erlingsson, U.; Ligatti, J. Control-flow integrity principles, implementations, and applications. ACM Trans.

Inf. Syst. Secur. (TISSEC) 2009, 13, 1–40. [CrossRef]

https://doi.org/10.1002/spe.515
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/1609956.1609960

Electronics 2024, 13, 1681 19 of 20

4. Mishra, T.; Chantem, T.; Gerdes, R. Survey of Control-flow Integrity Techniques for Real-time Embedded Systems. ACM Trans.
Inf. Syst. Secur. (TISSEC) 2022, 21, 1–32. [CrossRef]

5. Dariz, L.; Ruggeri, M.; Selvatici, M. A static microcode analysis tool for programmable load drivers. In Proceedings of the
2015 IEEE 15th International Working Conference on Source Code Analysis and Manipulation (SCAM), Bremen, Germany,
27–28 September 2015; pp. 265–270. [CrossRef]

6. Almossawi, A.; Lim, K.; Sinha, T. Analysis Tool Evaluation: Coverity Prevent; Carnegie Mellon University: Pittsburgh, PA, USA,
2006; pp. 7–11.

7. Nethercote, N.; Seward, J. Valgrind: A framework for heavyweight dynamic binary instrumentation. ACM Sigplan Not. 2007,
42, 89–100. [CrossRef]

8. Luk, C.-K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Reddi, V.J.; Hazelwood, K. Pin: Building customized
program analysis tools with dynamic instrumentation. ACM Sigplan Not. 2005, 40, 190–200. [CrossRef]

9. Wang, F.; Shoshitaishvili, Y. Angr—The Next Generation of Binary Analysis. In Proceedings of the 2017 IEEE Cybersecurity
Development (SecDev), Boston, MA, USA, 24–26 September 2017; pp. 8–9.

10. Cadar, C.; Dunbar, D.; Engler, D.R. Klee: Unassisted and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the OSDI, San Diego, CA, USA, 8–10 December 2008; pp. 209–224.

11. T-Head Xuantie E906 Datasheet. Available online: https://www.xrvm.cn/product/xuantie/E906 (accessed on 25 March 2024).
12. Waterman, A.; Asanovi, K. (Eds.) The RISC-V Instruction Set Manual; Volume I: Unprivileged ISA, Document Version 20190608-

Base-Ratified; RISC-V International: Zurich, Switzerland, 2019.
13. Waterman, A.; Asanovi, K. (Eds.) The RISC-V Instruction Set Manual; Volume II: Privileged Architecture Document Version

20190608-Priv-MSU-Ratified; RISC-V International: Zurich, Switzerland, 2019.
14. CFIEE: A Critical Metadata Extraction Engine for RISC-V Hardware CFI Scheme. Available online: https://github.com/Taurus0

52/CFIEE (accessed on 25 March 2024).
15. Kanter, D. RISC-V offers simple, modular ISA. Microprocess. Rep. 2016, 1, 1–5.
16. Waterman, A.; Lee, Y.; Patterson, D.; Asanovic, K. The RISC-V Instruction Set Manual; Volume I: User-Level ISA’, Version 2.0;

RISC-V International: Zurich, Switzerland, 2014.
17. Allen, F.E. Control flow analysis. ACM Sigplan Not. 1970, 5, 1–19. [CrossRef]
18. Jing, J.; Jiang, L.-H.; Liu, T.-M.; Wang, Z.-Y.; Wang, R.-M. A precision-tunable CFG reconstruction algorithm. In Proceedings

of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China,
20–22 December 2013; pp. 2095–2099. [CrossRef]

19. Jang, H.; Park, M.C.; Lee, D.H. IBV-CFI: Efficient fine-grained control-flow integrity preserving CFG precision. Comput. Secur.
2020, 94, 101828. [CrossRef]

20. Park, M.C.; Lee, D.H. BGCFI: Efficient Verification in Fine-Grained Control-Flow Integrity Based on Bipartite Graph. IEEE Access
2023, 11, 4291–4305. [CrossRef]

21. Niu, B.; Tan, G. Per-Input Control-Flow Integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 914–926. [CrossRef]

22. Yin, W.; Jiang, L.; Yin, Q.; Zhou, L.; Li, J. A control flow graph reconstruction method from binaries based on XML. In Proceedings
of the 2009 International Forum on Computer Science-Technology and Applications, Chongqing, China, 25–27 December 2009;
pp. 226–229. [CrossRef]

23. Yount, C.; Patil, H.; Islam, M.S.; Srikanth, A. Graph-matching-based simulation-region selection for multiple binaries.
In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
Philadelphia, PA, USA, 29–31 March 2015; pp. 52–61. [CrossRef]

24. Barbar, M.; Sui, Y.; Zhang, H.; Chen, S.; Xue, J. Live path control flow integrity. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceedings, Gothenburg, Sweden, 30 May–1 June 2018; pp. 195–196. [CrossRef]

25. Sahin, V.H. Turna: A control flow graph reconstruction tool for RISC-V architecture. Computing 2023, 105, 1821–1845. [CrossRef]
26. Li, S.; Wang, W.; Li, W.; Zhang, D. Hardware-Based Software Control Flow Integrity: Review on the State-of-the-Art Implementa-

tion Technology. IEEE Access 2023, 11, 133255–133280. [CrossRef]
27. Tauner, S.; Telesklav, M. Comparative analysis and enhancement of CFG-Based hardware-assisted cfi schemes. ACM Trans. Embed.

Comput. Syst. (TECS) 2021, 20, 1–25. [CrossRef]
28. Pallister, J.; Hollis, S.; Bennett, J. BEEBS: Open benchmarks for energy measurements on embedded platforms. arXiv 2013,

arXiv:1308.5174. [CrossRef]
29. Burow, N.; Carr, S.A.; Nash, J.; Larsen, P.; Franz, M.; Brunthaler, S.; Payer, M. Control-Flow Integrity: Precision, Security, and

Performance. ACM Comput. Surv. 2017, 50, 1–33. [CrossRef]
30. Li, W.; Wang, W.; Li, S.; An, Z. A Static CFG Extraction Scheme for RISC-V Runtime CFI. In Proceedings of the 9th International

Symposium on System Security, Safety, and Reliability (ISSSR 2023), Hangzhou, China, 10–11 June 2023; pp. 444–445. [CrossRef]

https://doi.org/10.1145/3538275
https://doi.org/10.1109/SCAM.2015.7335424
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1064978.1065034
https://www.xrvm.cn/product/xuantie/E906
https://github.com/Taurus052/CFIEE
https://github.com/Taurus052/CFIEE
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/3441110.3441146
https://doi.org/10.1016/j.cose.2020.101828
https://doi.org/10.1109/ACCESS.2023.3234184
https://doi.org/10.1145/2810103.2813644
https://doi.org/10.1109/IFCSTA.2009.176
https://doi.org/10.1109/ISPASS.2015.7095784
https://doi.org/10.1145/3183440.3195093
https://doi.org/10.1007/s00607-023-01172-y
https://doi.org/10.1109/ACCESS.2023.3337043
https://doi.org/10.1145/3476989
https://doi.org/10.48550/arXiv.1308.5174
https://doi.org/10.1145/3054924
https://doi.org/10.1109/ISSSR58837.2023.00073

Electronics 2024, 13, 1681 20 of 20

31. An, Z.; Wang, W.; Li, W.; Li, S.; Zhang, D. Securing Embedded System from Code Reuse Attacks: A Lightweight Scheme with
Hardware Assistance. Micromachines 2023, 14, 1525. [CrossRef] [PubMed]

32. Kanuparthi, A.; Rajendran, J.; Karri, R. Controlling your control flow graph. In Proceedings of the 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016; pp. 43–48. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/mi14081525
https://www.ncbi.nlm.nih.gov/pubmed/37630061
https://doi.org/10.1109/HST.2016.7495554

	Introduction
	Background and Related Works
	Control Transfer Instructions in RISC-V ISA
	Control Flow Graph
	Phases of CFG-Based CFI Mechanisms

	Technical Specifications
	Overview of CFIEE Architecture
	Input Files
	Internal Processes
	CFI-Related Metadata Files

	Workflow of CFIEE
	Functions of CFIEE
	Data Preprocessing
	Control Flow Analysis
	Data Curation and Output

	Application Scenarios of CFIEE
	Evaluations
	Comparison with Other Tools
	Functional Evaluation

	Conclusions
	References

