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Abstract: Estimating depth from a single RGB image has a wide range of applications, such as in robot
navigation and autonomous driving. Currently, Convolutional Neural Networks based on encoder–
decoder architecture are the most popular methods to estimate depth maps. However, convolutional
operators have limitations in modeling large-scale dependence, often leading to inaccurate depth
predictions at object edges. To address these issues, a new edge-enhanced dual-stream monocular
depth estimation method is introduced in this paper. ResNet and Swin Transformer are combined
to better extract global and local features, which benefits the estimation of the depth map. To better
integrate the information from the two branches of the encoder and the shallow branch of the decoder,
we designed a lightweight decoder based on the multi-head Cross-Attention Module. Furthermore, in
order to improve the boundary clarity of objects in the depth map, a loss function with an additional
penalty for depth estimation error on the edges of objects is presented. The results on three datasets,
NYU Depth V2, KITTI, and SUN RGB-D, show that the method presented in this paper achieves better
performance for monocular depth estimation. Additionally, it has good generalization capabilities for
various scenarios and real-world images.

Keywords: monocular depth estimation; Swin Transformer; cross-attention feature fusion; edge
detection; encoder–decoder frameworks

1. Introduction

Depth estimation is a significant aspect of 3D stereovision, which plays a fundamental
role in comprehending the geometric characteristics of the scene and establishing the three-
dimensional relationships among objects and their surroundings. This technology assumes
a significant role across a spectrum of applications. For instance, in robot navigation,
it provides support for self-localization, collision prevention, and path planning efforts.
In 3D reconstruction, it helps in clarifying the orientation, posture, and geometric details of
objects. In autonomous driving, it enhances the detection of nearby vehicles and pedes-
trians, making it a vital component in generating detailed, high-resolution maps. Depth
information also boosts the accuracy and efficiency of 3D image modeling in augmented
reality, which has extensive utilization in production and life.

Methods for acquiring depth information can be divided into two main categories.
The first category comprises active depth sensing technologies such as laser radar, millimeter-
wave radar, structured light [1], and ToF (Time-of-Flight) [2]. Laser radar has centimeter-
level accuracy in depth measurements but is expensive and less effective under adverse
weather conditions. Millimeter-wave radar, on the other hand, is more affordable and
weather-resistant but offers lower precision and faces significant interference from similar
devices [3]. Structured light scanning achieves millimeter-level accuracy but is limited
in its suitability for short distances, sensitivity to ambient light, and object movement.
In contrast, ToF is cost-effective and easy to use, but produces lower-resolution depth maps
and results in high power consumption [4].

The second category includes passive depth estimation techniques such as binoc-
ular [5] and multi-ocular [6] stereo matching, along with monocular depth estimation.
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Methods of binocular and multi-ocular stereo matching calculate depth through disparity
maps, demanding extensive computational power and memory, as well as intricate proce-
dures like camera calibration. These methods face challenges in scenes with inconsistent
lighting and faint texture features, often resulting in inaccurate depth values and noise.
Conversely, monocular depth estimation operates differently by not requiring image rectifi-
cation or sophisticated equipment. It uses deep neural networks to determine the depth of
every pixel in an RGB image taken by a single camera.

Passive methods are often simpler and less expensive to use compared to active
methods. Monocular image depth estimation is especially promising for development and
application, due to its low hardware cost and adaptability to various environments. Passive
algorithms are typically divided into three types: supervised, unsupervised, and semi-
supervised methods. Supervised methods require a large volume of precisely annotated
Ground Truth data for network training, which usually results in higher depth estimation
accuracy. Although unsupervised and semi-supervised methods reduce dependency on
data, their depth estimation accuracy generally falls short of supervised methods. Currently,
estimation accuracy remains the primary consideration in applications such as autonomous
driving and robotic navigation.

In recent years, deep learning has been applied to monocular depth prediction,
with Convolutional Neural Networks being the most commonly used method for pre-
dicting depth maps [7]. However, convolutional operators have a limited global receptive
field, which makes it difficult for them to model long-range dependencies. This can ad-
versely affect the extraction of context information that is crucial for depth estimation tasks.
To address this issue, traditional convolutional encoders use consecutively stacked convo-
lutional and downsampling layers to gradually increase the receptive field and enhance
the global modeling capabilities of the encoder. However, this approach has the drawback
of losing important local information that is closely related to depth estimation tasks, due
to the reduction in spatial resolution from downsampling operations. In addition, existing
models often produce inaccurate edges of objects in the estimated depth map. In the case
that there is a boundary in the image but no depth difference (such as the pattern on a flat
carpet), many algorithms often give wrong depth estimates of the pattern.

Studying edge details for depth estimation is a crucial issue for enhancing the accuracy
of depth estimation. Accurately estimating edges has long been an unresolved challenge.
Most existing monocular estimation methods cannot accurately perceive the edges of
objects in images, and the blurriness of edges leads to difficulties in distinguishing closely
situated objects in 2D, which becomes a critical problem for tasks that require precise
differentiation of similar objects. Edge areas often experience the greatest depth variation
within an image, making them vital for the accuracy of depth estimation. In recent years,
many researchers have begun to use deep learning technologies to improve the accuracy of
depth estimation at edges. Introducing attention mechanisms and multi-scale feature fusion
are important strategies to enhance the accuracy of object edges in generated depth maps.
Attention mechanisms highlight key parts of the image and allow neural networks to focus
more on important features to improve the overall accuracy of the depth estimation. Multi-
scale feature fusion, by integrating features of different scales, can more comprehensively
capture the rough location and specific details of edges by using a wide range of contextual
information and local details to enhance the predictive performance of depth in edge
regions. However, although attention mechanisms can increase the model’s sensitivity to
key features, they may still struggle to accurately capture all relevant depth information
in scenes with complex backgrounds and subtle edges. For example, Li discussed the
challenges of using attention mechanisms in monocular depth estimation in his review [8].
Additionally, while multi-scale feature fusion can improve the recognition of edges and
details by combining features of different scales, it may face difficulties in handling small-
scale or distant objects, as these features may not be prominent or may be lost at lower
scales. Furthermore, this fusion strategy increases the complexity of the network, which
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could lead to overfitting. Therefore, exploring a simple and effective monocular depth
estimation loss function to reinforce edge information is highly necessary.

We propose a new monocular depth estimation using an edge-enhanced dual-stream
deep neural network. This method uses the attention mechanism to model the relationships
among all pixels in the input image, which helps extract global and local detail information.
We also introduce a new loss to guide the network training to better estimate depth maps at
edges, reduce misjudgments, and enhance the clarity of boundaries of objects in depth maps.
Additionally, it has good generalization performance across various scenes and robust
generalization capabilities for real-world scenarios because of the adaptive characteristics
of the vision transformer.

We tested the proposed method on three public datasets: NYU Depth V2 [9], KITTI [10],
and SUN RGB-D [11]. The results demonstrate that the method in this paper achieves
better performance.

In summary, the main contributions of this paper are as follows:

1. Edge-Enhanced Dual-Stream Network (EDPNet), which combines Swin Transformer
and ResNet for the extraction of multi-scale depth information, is proposed. Both
global layout and local detail information are effectively captured by this network for
monocular image depth estimation tasks.

2. A lightweight decoder designed to reduce computational complexity is proposed.
Through the employment of a Cross-Attention Module for the fusion of encoder–
decoder features the semantic gap between encoded and decoded features is effec-
tively mitigated.

3. The loss function is also modified by introducing an edge-guided coefficient, which
adjusts the penalty intensity based on whether an area is an edge or not. This helps
intensify the penalty at edges and reduce it in non-edge areas, which further improves
the accuracy of the network in detecting edge information.

2. Related Work

Monocular depth estimation algorithms based on deep learning can be divided into
three categories: supervised, unsupervised, and semi-supervised. Unlike supervised
methods, unsupervised methods do not require precisely annotated datasets for training.
Instead, they use scene geometry constraints to estimate depth information, but their
estimation accuracy is generally lower than that of supervised methods. Semi-supervised
methods, on the other hand, use unlabeled datasets and add additional information, such as
sparse depth information and synthetic data with depth labels, to improve depth estimation.
This not only reduces dependence on Ground Truth depth maps but also enhances the scale
consistency of depth estimation. While semi-supervised methods achieve higher estimation
accuracy compared to unsupervised methods, they still fall short of the performance of
supervised methods. Furthermore, including auxiliary information can make the network
architecture more complicated.

Supervised methods train depth networks on large datasets of RGB-depth image
pairs. Eigen et al. were pioneers in applying deep learning methods to monocular depth
estimation [7], while Liu et al. [12] initially employed fully convolutional networks for
superpixel pooling and further refined the predicted depth map using conditional random
fields. Li et al. [13] also proposed using conditional random fields in a neural network.

Supervised methods can be further categorized into encoder–decoder architecture-
based methods, multitask learning methods, and deep classification methods.

1. Supervised monocular depth estimation based on encoder–decoder architecture.
In recent years, numerous researchers have introduced various monocular image
depth estimation models based on the encoder–decoder architecture, as shown in
Figure 1 [14,15]. This architecture is divided into two parts: the encoder, which ex-
tracts depth features from images, and the decoder, which predicts depth information.
Most current methods for monocular depth estimation are based on an encoder–
decoder framework. For example, Alhashim et al. proposed DenseDepth [16], which
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utilizes DenseNet-169 [17] as the encoder. During the decoding phase, bilinear in-
terpolation is used to restore resolution, and skip connections are added between
the encoder and decoder for feature fusion. This results in highly accurate predicted
depth maps. The high-quality predictions produced by DenseDepth make it a promis-
ing model for various computer vision tasks. Song et al. [18] used ResNext-101 [19]
as the backbone and introduced a Laplacian pyramid in the decoder. This pyramid
iteratively combines and upsamples the obtained depth residuals, reconstructing the
final depth map. The algorithm improves the blurriness of object edges in depth maps,
but there is still room for improvement in accuracy.

Encoder Decoder

GroundTruth depth

Input RGB Predict depth Loss 
Fuction

backpropagation

Figure 1. Encoder–decoder architecture of supervised monocular depth estimation.

2. Multitask learning methods.
Many scholars have explored combining monocular depth estimation with other
related tasks, such as semantic segmentation and surface normal estimation, to design
a joint training framework for multitask learning. For instance, Qi et al. proposed
GeoNet [20], which jointly estimates depth information and surface normals from
a single image by two networks. This joint network facilitates conversions between
depth to normals and normals to depth, improving the accuracy of both depth infor-
mation and surface normals estimation. Jiao et al. [21] proposed a joint network that
includes a semantic enhancer and an attention-driven loss. The network consists of a
shared encoder backbone and two decoders that are responsible for depth prediction
and semantic labeling, respectively. The two decoders exchange information and sup-
port one another through an attention-driven loss function. Although the algorithm
demonstrates high prediction accuracy, the object details in the depth maps may not
be precise.

3. Monocular depth estimation with discrete depth intervals.
The task of estimating the depth values from the pixel values of input images is chal-
lenging, requiring a large amount of training data and complex network architectures.
For humans, it is difficult to determine the exact depth of objects in a scene with just
one eye, but it is possible to estimate the depth interval of objects. Inspired by this,
some scholars have divided continuous depth values into discrete depth intervals
according to the depth distribution of the scene from far to near. Networks are then
trained to learn the classification of pixels’ depth intervals. Finally, the output depth
maps are combined. For example, Fu et al. proposed the DORN network [22], which
divides the image depth range into discretized depth intervals and introduces an
ordered regression loss function to train the network model. Experimental results
have shown that treating depth estimation as a classification problem can effectively
predict the depth range at farther distances, but it produces sharp discontinuities in
object shapes. Later, Bhat et al. introduced the AdaBins network [23], which divides
the depth range into depth intervals with adaptive width and quantity. The final
depth map is obtained by linearly combining the central values of pixels in each
interval, significantly improving the algorithm’s prediction accuracy.
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4. Monocular depth estimation with Transformer. In 2017, the Google team introduced
Transformer [24], a model designed for sequence modeling and transformation tasks
that achieved outstanding results. Due to Transformer’s advantage over CNNs,
specifically its effective modeling of long-range dependencies in data, researchers
have also incorporated it into computer vision tasks. In the field of single monocular
depth estimation, the Swin Transformer has been applied innovatively to address the
challenges [25]. The integration of Swin Transformer into monocular depth estimation
models has led to significant improvements in accuracy and efficiency. Cheng, Zhang,
and Tang introduced Swin-Depth [26], employing a Transformer-based method for
monocular depth estimation. This approach uses hierarchical representation learning
with linear complexity for images and includes a multi-scale fusion attention module
to capture global information more effectively.

Employing a layered Transformer as a feature extraction encoder, Chen et al. devel-
oped an adaptive model RA-Swin [27] for monocular depth estimation. This model utilizes
self-attention computation on non-overlapping local regions and incorporates an adaptable
decoder based on the spatial resampling module and RefineNet.

3. Methods

In this section, we first formulate the dual-stream encoder, which combines ResNet
with Swin Transformer which helps extract global and local features to estimate the depth
map of the input image. Then, we present the Decoder and describe the goal of the cross-
attention fusion module. Subsequently, we detail the edge guidance loss functions. Finally,
we introduce the whole structure of EDPNet.

3.1. Encoder with Swin Transformer and ResNet

To optimally leverage the complementary characteristics of Vision Transformer and
CNN for modeling global structures and preserving local-detail information, we propose
EDPNet, which incorporates a dual-stream encoder to extract both global and local depth
information from images. This encoder consists of two branches: a Swin Transformer and a
ResNet-50, which sequentially extract the depth features from top to bottom. The integra-
tion of Vision Transformer and CNN harnesses their respective strengths, playing a crucial
role in enabling the network to effectively learn a variety of monocular depth information.

3.1.1. Swin Transformer Encoding

Although Convolutional Neural Networks have achieved significant success across
various visual tasks, their application in dense prediction tasks is limited, due to the local
receptive fields of convolutional operators, making it challenging for CNNs to learn in-
teractions of multi-scale depth information. Vision Transformer offers a global receptive
field but faces issues like the absence of multi-scale features and the high computational
complexity of self-attention. The design concept of this paper draws from the ideas of many
existing monocular depth estimation algorithms, which have contributed to expanding
global modeling capabilities and enhancing the processing of detail information. For in-
stance, some methods have adopted techniques like atrous convolution or feature pyramids.
Based on this, we propose a strategy of integrating Swin Transformer with the ResNet
architecture, aiming to enhance the model’s long-distance modeling capabilities through
Swin Transformer with lower complexity.

The designed Swin Transformer encoder architecture is illustrated in Figure 2. The
overall network is composed of consecutive dual Swin Transformer blocks, distinguished
by their use of multi-head self-attention based on standard and shifted windows (W-MSA
and SW-MSA), respectively. Apart from this, the MLP and LN layers remain the same,
computing self-attention for each image patch, with a residual connection added after
each module. In each Swin Transformer block, images are uniformly partitioned into non-
overlapping segments to model contextual information through computing self-attention
within local windows. Assuming the resolution of the segmented image is h× w and the
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number of image patches within each window is M×M, the computational complexity of
global multi-head self-attention MSA and window-based multi-head self-attention W-MSA
can be expressed as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (1)

Ω(W-MSA) = 4hwC2 + 2M2hwC (2)

The computational complexity of MSA increases quadratically with image resolution,
whereas Window-based W-MSA increases linearly with image resolution, assuming a fixed
window size M. W-MSA’s computational process can be explained as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk
+ B

)
V (3)

where Q, K, V ∈ RM2×d represent, respectively, the query matrix, key matrix, and value
matrix, dk denotes the dimension of the key matrix, and B represents the relative posi-
tional bias.

×2

×2

×18

×2

Swin
transformer

block

Linear Embedding

stage 1

Swin
transformer

block

Patch Merging

stage 2

Swin
transformer

block

Patch Merging

stage 3

Swin
transformer

block

Patch Merging

stage 4

Patch
Patition

Input Image

Decoder

Swin Transformer
block

Figure 2. Swin Transformer encoding.

The computation of self-attention based on local windows lacks interaction between
different windows, hindering the modeling of global contextual information, which is
crucial for depth estimation. To facilitate global information exchange, an alternating
approach to window partitioning is employed. Specifically, in the SW-MSA module,
the previously defined standard windows are shifted by (M/2, M/2) pixels, where M
denotes the number of image patches per window. This shift is implemented in a cyclic
manner to ensure the number of processing windows remains constant. The computational
process of the dual Swin Transformer blocks can be described as follows:

ẑl = W-MSA(LN(zl−1)) + zl−1 (4)

zl = MLP(LN(ẑl)) + ẑl (5)
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ẑl+1 = SW-MSA(LN(zl)) + zl (6)

zl+1 = W-MSA(LN(ẑl+1)) + ẑl+1 (7)

where ẑl and zl represent, respectively, the output feature maps of the SW-MSA and MLP
layers within the l − th block.The flow of the above process can be shown by pseudocode
(Algorithm 1):

Algorithm 1 Swin Transformer Algorithm

1: procedure SWINTRANSFORMER(InputImage) ▷ Input:H/4×W/4× 64
2: X ← PatchPartition(InputImage) ▷ Divide the image into small pieces
3: X ← LinearEmbedding(X) ▷ Linear embedding of each block
4: for each stage in {1, 2, 3, 4} do
5: X ←WMSA(X) ▷ Multiple self-attention in the window
6: X ← SWMSA(X) ▷ Multiple self-attention in panning window
7: X ←MLP(X) ▷ MLP
8: if stage ̸= 4 then
9: X ← PatchMerging(X) ▷ Merge adjacent block

10: end if
11: end for
12: Output← ClassifierHead(X) ▷ Classifier Head
13: return Output ▷ Input:H/32×W/32× 8C
14: end procedure

To mitigate the extensive computational demand of global self-attention, the designed
Swin Transformer encoder confines attention computations to local windows, aligning the
computational complexity linearly with image size. Additionally, it employs shifted windows
to facilitate cross-window connections, enhancing global context modeling capabilities. More-
over, to generate multi-scale feature maps suitable for the task of monocular image depth
estimation, patch-merging layers are utilized at various stages to reduce the resolution of
feature maps by 2× downsampling, while doubling the number of channels. This process is
repeated to produce feature maps at multiple scales, such as 1/4, 1/8, . . . , 1/32.

The encoder of Swin Transformer chooses a model from the Swin Transformer series,
known as Swin-S, based on the available computational resources. Swin-S is of moderate
size and computational complexity. Additionally, to enhance its feature extraction abilities,
Swin-S is pre-trained on the larger ImageNet-22K dataset.

3.1.2. ResNet-50 Encoding

While the designed Swin Transformer encoder addresses the issues of lacking multi-
scale features and high computational complexity, it falls short in spatial inductive bias
compared to convolutional encoders. In CNNs, properties like local connectivity and the
two-dimensional neighborhood structure are embedded into each convolutional layer,
enhancing the model’s ability to capture spatial hierarchies. However, in Swin Transformer,
except for the MLP layers, these properties are absent in the self-attention layers. This
lack of spatial inductive bias means the Swin Transformer encoder struggles to learn
certain depth cues independently, resulting in less accurate detail in the depth maps
it predicts. For instance, depth cues such as occlusions require a local receptive field,
which CNNs are better equipped to learn. Additionally, although Zheng et al.’s use of
Vision Transformer instead of a CNN for semantic segmentation achieved competitive
results, its performance on details like object edges was unsatisfactory, underscoring Vision
Transformer’s limitations in modeling local information [28].

To better preserve local information and learn low-level features and depth cues like
occlusions, EDPNet incorporates an additional convolutional encoder. The widely popular
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feature extraction model ResNet-50 was chosen as the backbone for this branch to accelerate
network training speed [29].

The ResNet-50 encoder architecture is illustrated in detail in Figure 3. This architecture
produces multi-scale feature maps at different scales, such as 1/4, 1/8, ..., 1/32, through
various stages. The RGB image input H ×W × 3 initially passes through a convolution
layer with a kernel size of 7 × 7 and 64 filters, followed by a max pooling layer with
a window size of 3× 3. This reduces the image size to H/4×W/4× 64. The feature
map of size H/4×W/4× 64 is then fed into successive residual blocks. Stages 1 to 4
contain 3, 4, 6, and 3 residual blocks, respectively. The first layer of each Stage is always
residual block 1, with the remaining layers being residual block 2. The size of the feature
maps gradually decreases and the number of channels increases in each Stage beyond
Stage 1. This transforms the multi-scale feature map sizes from H/4 ×W/4 × 256 to
H/8×W/8× 512, then to H/16×W/16× 1024, and, finally, to H/32×W/32× 2048.

Residual Block2

Residual Block2

Residual Block2

Residual Block2

Residual Block2
Residual Block

Residual Block2

Residual Block2

Residual Block2

Residual Block

Residual Block

Residual Block

BTNK1:64.1

BTNK1:128.2

BTNK1:256.2

BTNK1:512.2
input: H×W×3

output:
H/32×W/34×2048

Conv: 7×7.64

Figure 3. ResNet-50 encoding.

The ResNet-50 encoder is optimized for monocular image depth estimation by re-
moving the pooling layer and fully connected layer in the final stage. This modification
allows the data to be fed directly into subsequent modules without any changes to meet the
requirements of the regression task. The branch is pretrained on the ImageNet-1K dataset
for image classification tasks to initialize the weight parameters. During the training of
EDPNet, the convolutional layers and batch normalization parameters of the first two
stages of the ResNet-50 encoder branch are fixed to their pretrained values. To facilitate
the interaction of depth features extracted by both encoder branches, skip connections
are introduced between Swin Transformer and ResNet-50 encoder and the decoder. This
helps guide the decoder in upsampling to produce clear and accurate high-resolution
depth maps.

3.2. Cross-Attention Feature Fusion-Based Decoder

Estimating depth maps from single RGB images involves leveraging both global and lo-
cal depth features to learn various monocular depth cues. Thus, how to effectively integrate
the multi-scale depth features extracted by the dual-stream encoder to guide the decoder in
depth map restoration poses a significant challenge. Traditional decoding schemes typically
employ skip connections to merge encoded and decoded features, utilizing either pixel-
wise addition followed by convolution (Add-Conv) or channel concatenation followed by
convolution (Concat-Conv) to fuse features. However, due to the local correlation inherent
in convolution operations, the flow of semantic information is limited, affecting the model’s
ability to predict accurate pixel depth values. Furthermore, since the two encoder branches
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operate independently and extract image features with semantic discrepancies, traditional
fusion methods can lead to insufficient feature aggregation or even feature mismatches.

Our CAM is designed based on the structure of the cross-attention mechanism pro-
posed in Transformer and the window mechanism in Swin Transformer [24]. The method
mainly applied in the field of depth estimation is to model the prediction problem of the
depth map as the solution of the maximum depth probability of all pixels. To effectively
merge features from the dual-stream encoder and shallow decoder features, we introduce a
window-based Cross-Attention Module (CAM), leveraging the cross-attention mechanism
to model the correlations between different features. The proposed method initially refor-
mulates the depth map prediction problem as solving for the maximum depth probability
of all pixels. Assuming the input RGB image is I ∈ RH×W×3, with the total number of
pixels being N, the process of predicting the corresponding depth map for the RGB image
can be described as follows:

y∗i = p∗i · dmax (8)

where i denotes the index value for each pixel in the input image, p∗i in the range [0, 1]
represents the maximum depth probability for each pixel in the input image, dmax denotes
the maximum depth of the scene corresponding to the predicted image in meters, and y∗i
indicates the predicted depth value for each pixel. The model predicts the maximum
depth probability map corresponding to the input image, which, when multiplied by the
scene’s maximum depth value, yields the predicted depth map. This approach optimizes
depth estimation by utilizing the relative depth relationships among pixels rather than
directly predicting the absolute depth value of each pixel. The structure of EDPNet is
shown in Figure 4.

CAM

upsample

CAM

upsample

CAM

upsample

CAM

upsample × 2

CONV

MaxPool

stage 0

BTNK2

stage 1

BTNK1

×2

BTNK2

stage 2

BTNK1

×3

BTNK2

stage 3

BTNK1

×5

BTNK2

stage 4

BTNK1

×2

1*1conv

Input

output

Decoder

CONV × 2

Sigmoid

edge-guidence

×2

×2

×18

×2
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Linear Embedding

stage 1

Swin
transformer

block

Patch Merging

stage 2

Swin
transformer

block

Patch Merging

stage 3

Swin
transformer

block

Patch Merging

stage 4

Patch
Patition

Swin-S ResNet-50

Figure 4. The structure of EDPNet.

The decoder alternates between placing CAM modules and upsampling modules to
produce the final depth map output, as shown in Figure 5. The encoded feature E4 from
Swin Transformer first passes through a 1× 1 convolution to reduce the channel dimension
to a fixed value Nc, resulting in the decoded feature D4. The process goes through four
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stages; each stage has its input encoding and decoding feature maps represented by Ei, E′i ,
and Di, respectively. The output feature map of each stage is represented by D(i−1), where
i represents the order of the four stages from bottom to top; i can take values from 1 to
4 inclusive.

Each stage consists of a CAM and an upsampling module, where the CAM outputs a
feature map of the same resolution as its input, and the upsampling module increases the
resolution of the feature map by 2× through bilinear interpolation. To achieve a lightweight
decoder, the channel dimension of the feature maps during the decoding stage is always Nc,
set to 64. After the fourth stage, a feature map of size H/4×W/4× Nc is produced. This
map then goes through two upsampling modules, two convolutional layers, and a sigmoid
function. The result is a maximum depth probability map for each pixel, where the score at
each pixel represents the probability of maximum depth. The final depth map is obtained
according to Equation (8), allowing for continuous depth estimation at each pixel. The
specific structure of the CAM is shown in Figure 5. The module employs a window-based
multi-head cross-attention W-MCA mechanism to calculate the self-similarity between
encoding and decoding features. This effectively merges both global and local features.
The features Ei and E′i from the two encoder branches are first concatenated at the channel
level, then processed through a 3× 3 convolutional layer to adjust the channel dimension
to Nc, matching the decoding feature Di.

3*3conv

Layer Norm

W-MCA

E'
iEi

Layer Norm

Di

Layer Norm

MLP

upsample

Di－1

CAM

wVe
w Ke

w Qd

L'
i

Li

(a)

Layer Norm

Ve
wKe

wwQd

Concat

(b)

Figure 5. Decoder module. (a) CAM; (b) WCAM.

After performing the convolutional operation, we obtain the query matrix Qd
w from Di

using the weight matrix WQ. Similarly, the key matrix Ke
w and value matrix Ve

w are obtained
from Ei and E′i using the weight matrices WK and WV , respectively. The cross-attention
between the encoding and decoding features is then calculated within the partitioned
windows. We first partition Qd

w, Ke
w, and Ve

w into windows of size M × M, where M is
set to 7. Next, we compute the cross-attention, and after that we calculate the multi-
head cross-attention. The feature map is then passed through the MLP, LN layers, and a
residual connection before being output to an upsampling module that enhances the spatial
resolution. In summary, the entire computational process of the CAM can be described
as follows:

Qd
w = LN(Di) (9)
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Ke
w = LN(Conv3×3(Ei ⊗ E′i)) (10)

Ve
w = LN(Conv3×3(Ei ⊗ E′i)) (11)

Li = W-MCA(Qd
w, Ke

w, Ve
w) + Di (12)

W-MCA(Qd
w, Ke

w, Ve
w) = softmax

(
Qd

w(Ke
w)

T
√

dk
+ B

)
Ve

w (13)

L′i = MLP(LN(Li)) + Li (14)

where ⊗ denotes channel-wise concatenation of Ei and E′i , Li and L′i represent, respectively,
the feature maps input into the second LN layer and the output of the CAM. The dimension-
ality of the key vectors is represented by dk. The learnable matrix B represents the relative
positional embeddings between each query matrix and key matrix. After computing the
cross-attention for all windows, the windows are rearranged and placed according to their
spatial positions in the image.

3.3. Loss Function
3.3.1. Loss for Depth Prediction Error

The Berhu loss function is presented as a piecewise function that effectively constrains
the depth prediction errors at different scales. The specific expression of the function is
as follows:

B(d∗i − di) =

{
|d∗i − di| if |d∗i − di| ≤ c
(d∗i −di)

2+c2

2c if |d∗i − di| > c
(15)

Here, d∗i and di denote the depth prediction and the actual value for the ith pixel point,
respectively, and i is the index of pixels in all images of each batch during the training
process; c is a threshold. When the depth prediction error is less than or equal to the preset
threshold c the Berhu loss function behaves as an L1 loss, which is straightforward and
facilitates effective backpropagation of gradients. Conversely, when the error exceeds the
threshold, the function transitions to an L2 loss, increasing the gradient values with the
error to mitigate the vanishing gradient problem. Set c = 0.2 maxi |d∗i − di|.

To optimize multi-scale depth prediction results, we designed a corresponding full-
resolution multi-scale loss function based on the Berhu loss function. This function guides
the optimization of feature maps at different stages of the decoder towards the same goal,
thereby alleviating issues of detail loss and object edge blurring. The expression of the
full-resolution multi-scale loss function is

Lmulti =

{
1

Ns
∑Ns

i=1 |d
∗
i − di| if |d∗i − di| ≤ c

1
2Ns ·c ∑Ns

i=1[(d
∗
i − di)

2 + c2] if |d∗i − di| > c
(16)

Here, Lmulti represents the loss corresponding to the two output results ds
out, with Ns

being the number of pixels for the corresponding output results, and s ∈ {1, 2}.

3.3.2. Loss for Punishing Depth Prediction Error on Edges of Objects

Edge information is an important clue for predicting depth [30]. To address the blurred
edges and sparse data in training datasets leading to incomplete object boundaries and
artifacts in predicted depth maps, we designed an edge-guided branch and edge-guided
coefficient E to direct the variation of the loss function Lmulti. When the gradient is close to 0,
the edge-guided branch identifies the region as non-edge, reducing the penalty strength
of the loss function; when the gradient approaches 1, the region is identified as an edge,
increasing the penalty strength of the loss function.
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First, the edge-guided branch calculates the gradient result for each pixel using the
Sobel operator and normalizes it:

G = (|∇x|+ |∇y|)/255 (17)

The edge-guided coefficient E varies with G as follows, as shown in Figure 6:

E = f (G) =
2β(eλG − 1)

eλ − 1
+ 1− β (18)

where, as G increases from 0 to 1, E gradually increases from 1− β to 1+ β, set β = 0.1, λ = 2:

Ledge = E · Lmulti =

{
1

Ns
∑Ns

i=1 |d
∗
i − di| · E if |d∗i − di| ≤ c

1
2Ns ·c ∑Ns

i=1[(d
∗
i − di)

2 + c2] · E if |d∗i − di| > c
(19)

By calculating losses at each level, we form an integrated edge-enhanced multi-scale
loss function, denoted as Lall :

Lall = m

√√√√ 2

∑
s=1

ωsLedge (20)

where Lall is the overall constraint during the training process, ωs are the multi-scale weight
coefficients, and m is a scaling factor. Setting an appropriate scaling factor can accelerate
network training and allow for faster convergence. Set m = 10.

E

G

Figure 6. Edge guidance coefficient E.

By adopting an innovative edge-enhanced multi-scale loss function design, not only
is global prediction accuracy focused on, but also the capture and optimization of local
details are emphasized. This ensures that features at different scales are effectively learned.
By integrating guidance from edge information, the model’s ability to detect object contours
is enhanced. This improves the loss function in regions with edges but no depth, and boosts
learning in areas with both edges and depth, which leads to a clearer distinction between
recognized depth map boundaries.

4. Experiments

For this section, we conducted experimental testing and comparative evaluation
of the EDPNet algorithm. Firstly, we will introduce the evaluation criteria adopted by
this algorithm, as well as the datasets used for training and testing, and the detailed
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experimental settings. Then, we detail how we quantitatively and qualitatively assessed
and compared the EDPNet algorithm with other typical methods, and, finally, how we
tested the effectiveness of the key modules of the algorithm through ablation experiments.

4.1. Evaluation Index

In the field of monocular depth estimation, error and accuracy are commonly used
for evaluation because they directly reflect the model’s performance in predicting depth
from a single image, focusing on the core challenge of accurately capturing the 3D structure
of a scene. Error metrics include absolute relative error, square relative error, root mean
squared error, and root mean squared logarithmic error. Accuracy metrics include accuracy
under three different threshold values. In monocular depth estimation, the primary task is
to infer the distance of objects from the camera, which inherently involves understanding
the scene’s geometry. Accuracy measures how close the estimated depths are to the true
depths, while error metrics (like absolute relative error, squared relative error, RMSE)
specifically quantify the deviation of estimated depth values from Ground Truth values
across the dataset. These metrics directly address the problem’s geometric nature by
assessing the precision of depth values, which is crucial for applications requiring accurate
3D reconstructions. We assume that the total number of pixels in all evaluated images is N,
and that d∗i and di are the predicted and true depth values of pixel i, respectively, where
0 ≤ i ≤ N − 1.

Absolute relative error (AbsRel): As a dimensionless metric, this is used to evaluate
the average relative deviation between all pixels’ depth prediction values and their actual
values in an image. This reflects the average accuracy of predicted depth values, calculated
as the average of the absolute value of the difference between predicted depths and actual
depths relative to the actual depths. This metric is commonly utilized to gauge the per-
formance of depth prediction models, especially in their ability to accurately capture the
three-dimensional structure of a scene, as indicated in Equation (21):

AbsRel =
1
N

N

∑
i=1

|d∗i − di|
di

(21)

Square Relative Error (SqRel): As a dimensional metric, this calculates the average of
the ratio of the squared difference between the predicted depth values for all pixels and
their true depth values to the true depth values. This metric places more emphasis on the
impact of large errors. By analyzing this metric, depth prediction models can be more
effectively evaluated and improved upon, particularly in their performance on areas with
significant depth variations. The formula is as shown in Equation (22):

SqRel =
1
N

N

∑
i=1

(d∗i − di)
2

di
(22)

Root Mean Square Error (RMSE): RMSE measures the square root of the average of
the squares of differences between the predicted and true depth values of all the pixels in
the image. It assesses the dispersion of depth values between the predicted depth map and
the Ground Truth (GT) depth map. The formula is as shown in Equation (23):

RMSE =

√√√√ 1
N

N

∑
i=1

(d∗i − di)2 (23)

Root Mean Square Logarithmic Error (RMSElog): RMSElog applies a logarithmic
transformation to the depth values in the RMSE metric, reducing the impact of larger errors
on the standard deviation. The formula is as shown in Equation (24):
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RMSElog =

√√√√ 1
N

N

∑
i=1

[log(d∗i )− log(di)]2 (24)

Accuracy: Accuracy is calculated by counting the number of pixels in the image for
which the ratio of the predicted depth value to the true depth value, and its inverse, have
their maximum within a specified threshold range. The ratio of the number of these pixels
within the threshold range to the total number of pixels in the image represents the accuracy.
The specific formula is as shown in Equation (25):

Accuracy =
1
N

N

∑
i=1

[max(
d∗i
di

,
di
d∗i

) < δ] (25)

Here, δ is the accuracy threshold, with δ1 = 1.25, δ2 = 1.252, and δ3 = 1.253 being used
in this context. Among these evaluation metrics for assessing the quality of monocular
image depth estimation algorithms, higher accuracy indicates better performance, while
lower values for the other metrics also indicate better performance.

4.2. Datasets

Training on high-quality datasets is crucial for enhancing the performance of network
models, and this is also true for monocular image depth estimation tasks. Several research
institutions have released datasets for MDE, which vary in scene types and depth ranges.
This section will focus on the commonly used NYU Depth V2 [9], KITTI [10], and SUN
RGB-D [11].

4.2.1. NYU Depth V2 Dataset

The NYU Depth V2 dataset [9] is the most frequently used indoor scene dataset
in the field of monocular image depth estimation and serves as the primary training
dataset for supervised methods. It was created by Silberman et al. using a Kinect depth
camera to collect color images and corresponding depth maps from 464 scenes, comprising
approximately 120,000 RGB-depth image pairs. Out of these, images from 249 scenes are
used for training, while images from 215 scenes are utilized for testing. The RGB images
have a resolution of 640 × 480, and the true depth range of the entire dataset spans from
0.5 m to 10 m. Additionally, the authors employed a coloring algorithm to fill in 1449 depth
maps, resulting in densely aligned image pairs. These 1449 image pairs are divided into a
training set of 795 pairs and a test set of 654 pairs.

4.2.2. SUN RGB-D Dataset

The SUN RGB-D dataset [11] is a large-scale benchmark dataset constructed by
Song et al., featuring rich scene diversity. This dataset was captured using four differ-
ent RGB-D depth cameras, comprising color images and corresponding depth maps from
10,335 real indoor scenes. The entire dataset is densely annotated by humans, including
object categories, two-dimensional shapes, and three-dimensional spatial layouts. Of these
images, 5285 are designated for training and 5050 for testing, with a depth limit of up
to 10 m.

4.2.3. KITTI Dataset

The KITTI dataset [10] is one of the most commonly used outdoor-scene datasets in
the field of computer vision. It also serves as the most prevalent benchmark dataset for
unsupervised/semi-supervised monocular image depth estimation methods. This dataset
was collected by Geiger et al. using a mobile platform equipped with two color cameras
(FL2-14S3C-C), two grayscale cameras (FL2-14S3M-C), one Velodyne HDL-64E rotating 3D
laser scanner, and a OXTS RT3003 inertial and GPS navigation system, with a maximum
measurement distance of 120 m. It comprises images from 61 different outdoor scenes,
totaling approximately 93,000 RGB-depth image pairs. Images from 32 scenes are used for
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training, while images from 29 scenes are used for testing. The original RGB images have a
resolution of 1242 × 375.

4.3. Implementation Details

EDPNet was developed on the Ubuntu-18.04 operating system utilizing the PyTorch
1.5.1 framework to construct a dual-stream encoder–decoder network architecture. Aside
from the two encoder branches, the rest of the network parameters were initialized using
the Xavier method. During the training phase, the batch size was set to eight, with the
Adam optimizer for adjustments, where β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Following
the approach of Bhat et al., a 1Cycle learning rate decay method was used, with the initial
learning rate for the Swin Transformer encoder branch set at 6× 10−5 and for the ResNet-50
encoder branch set at 10−4. A linear strategy was used to adjust the learning rate for the
first 30% of iterations, followed by a cosine strategy for learning rate decay, with the total
cycle set to 80 epochs. Training was conducted on a system equipped with a dual-channel
32GiB memory i7-7800X processor and two NVIDIA GeForce GTX 1080Ti graphics cards
with 11GiB of VRAM each. All the hyperparameters are in Table 1.

Table 1. EDPNet model hyperparameters.

Hyperparameter Value

Hardware Configuration i7-7800X CPU, 32GiB RAM, 2x NVIDIA GTX 1080Ti
Operating System Ubuntu-18.04
Framework PyTorch
Parameter Initialization Xavier method
Batch Size 8
Total Epochs 80
Optimizer Adam β1 = 0.9, β2 = 0.999, ϵ = 10−8

Learning Rate Decay Method 1Cycle
Initial Learning Rate for Swin Transformer 6× 10−5

Initial Learning Rate for ResNet-50 10−4

Learning Rate Adjustment Strategy 30% warm-up, 70% cosine strategy rate decay

The algorithm was trained and tested on NYU Depth V2 [9], KITTI [10]. To alleviate
overfitting and enhance the generalizability of EDPNet to real-world scenarios, data aug-
mentation techniques were employed to expand the training set. These techniques included:
(1) Random horizontal flipping: training RGB images were horizontally flipped, with a
50% probability. (2) Random color transformation: the channel values of training RGB
images were randomly multiplied by a scaling factor ranging from 0.8 to 1.2. (3) Random
rotation: training images were rotated around an axis passing through the image center
and perpendicular to the image plane. The rotation angles ranged between −2.5° and 2.5°
for the NYU Depth V2 dataset and between −1° and 1° for the KITTI dataset.

Additionally, to verify the proposed algorithm’s generalization capability across vari-
ous scene types, for this chapter we conducted zero-shot cross-dataset evaluation experi-
ments on the diverse SUN RGB-D dataset. The EDPNet model was trained on the NYU
Depth V2 dataset without any fine-tuning, then evaluated on the SUN RGB-D dataset for
its depth estimation performance. Compared to training and testing the model on subsets
of the same dataset, the results from the zero-shot cross-dataset evaluation more accurately
represent the proposed model’s depth estimation capabilities in real-world scenarios.

In all the evaluation experiments, the depth maps predicted by the network were
readjusted to match the median depth with that of the Ground Truth. Moreover, the final
output depth map was calculated by averaging the prediction results of an image and its
mirrored image, ensuring accuracy and consistency in depth estimation.
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4.4. Experimental Results and Analysis

In order to ensure objectivity and fairness, the index calculation methods we used
were all common methods in the field, and the parameters of the comparison model were
all taken from the best results given in their original papers.

4.4.1. Analysis of the Results of the Indoor Dataset NYU DepthV2

The NYU Depth V2 dataset is widely used to evaluate depth estimation models, due
to its diverse indoor scenarios. Based on the NYU Depth V2 dataset, for this section we
conducted quantitative and qualitative analysis of various supervised monocular depth
estimation methods. The quantitative and qualitative analysis is shown in Table 2 and
Figure 7:

Table 2. The index calculation results on the NYU Depth V2 dataset.

Methods
Error Accuracy

AbsRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑

Make3d [31] 0.349 1.214 - 0.447 0.745 0.897
Eigen [7] 0.158 0.641 0.214 0.769 0.950 0.988
Laina [32] 0.127 0.573 0.195 0.811 0.953 0.988

GeoNet [20] 0.128 0.569 - 0.834 0.960 0.990
DORN [22] 0.115 0.509 - 0.828 0.965 0.992

SharpNet [33] 0.139 0.502 0.157 0.836 0.966 0.993
BTS [34] 0.110 0.392 0.142 0.885 0.978 0.994
Yin [35] 0.108 0.416 0.148 0.875 0.976 0.994

DenseDepth [16] 0.103 0.390 - 0.895 0.980 0.996
DAV [36] 0.108 0.412 - 0.882 0.980 0.996

TransDepth [37] 0.106 0.365 - 0.900 0.983 0.996
SwinDepth [26] 0.100 0.354 0.042 0.909 0.986 0.997

Adabins [23] 0.103 0.364 - 0.903 0.984 0.997

EDPNet 0.099 0.363 0.121 0.903 0.986 0.997

The bolded part is the best.

(a)Input (b)GroundTruth (c)MSDCnet (d)AdaBins (e)EDPNet

Figure 7. Depth estimation results on different algorithms on the NYU Depth V2 dataset (The red
box shows details).
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The quantitative experimental analysis indicated improvements across all metrics with
our proposed algorithm. SwinDepth employs the Swin Transformer architecture, which
effectively captures long-distance dependencies through its adaptive window mechanism,
which optimizes the integration of global contextual information. Although SwinDepth
demonstrates excellent performance in depth estimation tasks, its ability to capture details,
especially in edge regions, may not match that of EDPNet. On the other hand, the Ad-
abins method estimates depth by dividing images into different adaptive bins, utilizing
an innovative approach to improve the granularity and accuracy of depth predictions.
Additionally, it uses a small Transformer network to predict interval sizes and achieves
better depth estimation. While Adabins is highly effective in enhancing the granularity
of depth estimates, it may not capture global context and long-distance dependencies as
well as Transformer-based models. The EDPNet method we have introduced combines the
ability to model long distances and enhance edge information, ensuring the integration of
global contextual information and the reproduction of high-quality edge details in indoor
depth estimation tasks. It better understands the boundaries and details of objects within
indoor scenes, thereby providing more precise and refined depth predictions.

4.4.2. Analysis of the Results of the Outdoor Dataset KITTI

The KITTI dataset, widely utilized for evaluating depth estimation models, due to
its real-world driving scenarios, served as the basis for our quantitative and qualitative
analyses of the various supervised monocular depth estimation methods. The quantitative
results are displayed in Table 3, assessing the accuracy and robustness of depth estimation
methods. The qualitative findings are illustrated in Figure 8, vividly highlighting the
capabilities of depth estimation in complex outdoor environments.

Table 3. The index calculation results on the KITTI dataset.

Methods
Error Accuracy

AbsRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑

Make3d [31] 0.280 8.734 0.361 0.601 0.820 0.926
Eigen [7] 0.203 6.307 0.282 0.702 0.898 0.967
Liu [12] 0.201 6.471 0.273 0.680 0.898 0.967

Garg [38] 0.169 5.104 0.273 0.740 0.904 0.962
Monodepth2 [39] 0.106 4.630 0.193 0.876 0.958 0.980

DORN [22] 0.072 2.727 0.120 0.932 0.984 0.994
Yin [35] 0.072 3.258 0.117 0.938 0.990 0.998

GAN [40] 0.098 3.933 0.173 0.890 0.964 0.985
SharpNet [33] 0.093 2.727 0.120 0.886 0.965 0.986

BTS [34] 0.060 2.798 0.096 0.955 0.993 0.998
TransDepth [37] 0.064 2.755 0.098 0.956 0.994 0.999
SwinDepth [26] 0.064 2.643 0.097 0.957 0.994 0.999

DPT [41] 0.062 2.573 0.092 0.959 0.995 0.999
AdaBins [23] 0.058 2.360 0.088 0.964 0.995 0.999

EDPNet 0.057 2.357 0.089 0.964 0.995 0.999

The bolded part is the best.

The experimental results indicate that the approaches discussed in this chapter achieve
better outcomes in the majority of outdoor scenarios. Notably, the Dense Prediction
Transformer (DPT) method, which utilizes Vision Transformer as its backbone network,
demonstrates impressive performance in outdoor scenes. This suggests that Transformer’s
handling of global information surpasses that of convolutional networks in efficacy. Fur-
thermore, the AdaBins network surpasses the network proposed in this chapter, in terms
of RMSElog, indicating that the AdaBins method’s adaptive bins technique contributes to
refining the precision and accuracy of depth prediction. However, it is still evident from
the visualization results that our algorithm significantly enhances edge details.
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(a)Input (b)MSDCnet (c)AdaBins (d)EDPNet (e)Details of Depth estimation result on
KITTI

Figure 8. Depth estimation results on different algorithms on the KITTI dataset (The red box
shows details).

4.4.3. Analysis of the Results of the Dataset SUN RGB-D

The SUN RGB-D dataset contains a vast array of RGB-D images from various indoor
environments, encompassing a wide range of scene types, providing a challenging test
platform for depth estimation models. For this section, we evaluated the EDPNet model’s
generalization capability by training it on the NYU Depth V2 dataset and then testing it
directly on the SUN RGB-D dataset without further training, assessing its adaptability
to unseen scenes. The quantitative analysis results are presented in Table 4, while the
qualitative analysis findings are depicted in Figure 9.

Table 4. The index calculation results on the SUN RGB-D dataset.

Methods
Error Accuracy

AbsRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑

Chen [28] 0.166 0.494 - 0.757 0.943 0.984
Yin [35] 0.183 0.541 - 0.696 0.912 0.973
BTS [34] 0.172 0.515 - 0.740 0.933 0.980

AdaBins [23] 0.159 0.476 - 0.771 0.944 0.983

EDPNet 0.156 0.478 0.158 0.780 0.948 0.986

The bolded part is the best.

(a)Input (b)GroundTruth (c)MSDCnet (d)AdaBins (e)EDPNet

Figure 9. Depth estimation results on different algorithms on the SUN RGB-D dataset (The red box
shows details).

Based on the results obtained on the SUN RGB-D dataset, it is evident that our
EDPNet performs exceptionally well in terms of generalization. Compared to other network
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methods, it yields depth results that are closer to the Ground Truth. Despite the fact that
AdaBins attempted to alleviate edge issues by embedding a mini-ViT behind the decoder,
depth artifacts still occurred. The core idea of the AdaBins algorithm is to adaptively
divide the depth range into multiple bins. By dynamically adjusting these depth bins,
AdaBins can adaptively improve the accuracy of depth estimation based on the content
of the image, which enhances the precision in the details of the generated depth maps.
Although AdaBins shows good performance in terms of detail and depth accuracy in many
scenarios, its generalization performance is still not strong enough. On the other hand, the
method in this paper produces clearer results, particularly for RGB images with edges that
lack depth, such as carpets. The edge guidance branch is effective in guiding the network
model to ensure that the predicted depth maps are not affected by carpet patterns.

4.5. Ablation Study

To validate the effectiveness of the modules proposed in this paper, we designed
the following ablation studies to analyze and compare the performance of each module:
(1) evaluating the dual encoder branches, to analyze the impact of image features extracted
by different encoders on performance; (2) assessing different feature fusion methods,
to examine the effect of the Cross-Attention Module on depth estimation; (3) evaluating
various loss functions, to analyze the rationale behind the designed edge-enhanced multi-
scale loss function.

4.5.1. Comparison of Different Backbones

To validate the generalization capability of the dual-stream framework, we further
explored the performance of different backbone architectures in the dual-stream branches to
ascertain whether various scales of ResNet and Swin Transformer versions are compatible
with our proposed framework. We conducted experiments using the widely used ResNet50
and Swin-S architectures, and compared them to four other network architectures. The ob-
jective was to gain a deeper understanding of how various backbone network architectures
specifically affect the performance of the dual-stream framework, with the experimental
results presented in Table 5:

Table 5. Comparison of Different Backbones on NYU Depth V2.

Backbone
Params

Error Accuracy

ResNet Swin AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

ResNet50 Swin-B 156M 0.097 0.362 0.904 0.987 0.997
ResNet101 Swin-S 133M 0.098 0.362 0.903 0.987 0.997
ResNet50 Swin-S 113M 0.099 0.363 0.903 0.986 0.997
ResNet50 Swin-T 92M 0.110 0.435 0.866 0.976 0.995

The bolded part is the best.

Analyzing the experimental data revealed that despite Swin-T and ResNet having
fewer structural parameters, their performance significantly decreased, falling behind
other architectures in all metrics. In contrast, while Swin-B had the highest number of
parameters, its performance was comparable to Swin-S, with no significant improvement.
The comparative study between ResNet101 and ResNet50 shows that although an increase
in parameters led to some performance enhancement, the improvement was not substantial.
In the practical application of monocular depth estimation, both efficiency and accuracy
are crucial factors. Hence, when seeking a balance between parameters and performance,
the combination of ResNet50 and Swin-S demonstrates superior efficacy.

4.5.2. Comparison of Feature Fusion Methods

To validate the efficacy of both encoding pathways on the network’s outcome and the
decoder’s ability to more effectively integrate the multi-scale features from the dual-stream
encoder, for this section we began by isolating the ResNet encoder and the Transformer
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encoder as bases. The decoder initially utilized standard convolutional layers and bilinear
upsampling layers, followed by the application of the Cross-Attention Module designed
in this work for feature fusion. Through comparing the errors and accuracies of the
various models, the objective was to deeply understand the influence of each component
on performance. The design of the ablation experiments is presented in Table 6, where
Method 1 employed only ResNet as a single encoder branch, and Method 2 utilized only
the SwinTransformer as a single encoder branch, with both Methods 1 and 2’s decoders
implementing convolution and bilinear upsampling. Method 3 engaged both encoding
branches, adding skip connections between the encoder and decoder and using a simple
Concat-Conv for feature fusion. Method 4 concurrently employed the encoding branches
and utilized the designed Cross-Attention Module to integrate shallow decoder features
with encoder features.

Table 6. Comparison of feature fusion methods on NYU Depth V2.

Method
Encoder

CAM
Error Accuracy

ResNet Swin AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

1 ✓ × × 0.145 0.588 0.815 0.958 0.990
2 × ✓ × 0.134 0.532 0.854 0.967 0.993
3 ✓ ✓ × 0.142 0.576 0.834 0.966 0.992
4 ✓ ✓ ✓ 0.110 0.385 0.887 0.979 0.995

The bolded part is the best.

The results from the four methods depicted in the figures suggest that when the
ResNet encoding branch was used independently, the depth maps generated by the net-
work exhibited relatively high errors, indicating that the model’s effectiveness was not
particularly ideal. In contrast, when switching to the independent SwinTransformer branch,
the network showed significant improvements across various metrics. This suggests that
for complex indoor scenes, modeling long-distance relationships by incorporating global
information yields better encoding performance than using ResNet, resulting in superior
depth information restoration. However, simply concatenating and convolving features
from the dual-path encoders led to deteriorated network performance. This degradation
was attributable to the independent operation of the two encoder branches, each extract-
ing image features with distinct semantics. Merely concatenating these features resulted
in insufficient feature fusion and mismatches, where corresponding features were inap-
propriately merged. After incorporating a feature fusion encoder with cross-attention,
the network performance improved compared to using individual branches. This indicates
that the designed feature fusion module effectively bridges the semantic gap between
encoding and decoding features, efficiently aggregates multi-scale features, and provides
critical information for the decoder to restore depth maps. Furthermore, the two branches
of the encoder are indeed complementary, enhancing global information modeling and
local detail retention.

4.5.3. Comparison of the Loss Function

To validate the effectiveness of the edge depth prediction error penalization loss
proposed in this paper, we compared the results using the basic full-resolution multi-scale
loss function (named as Method M) with those using the proposed edge-enhanced loss
function (named as Method E) in ablation experiments, as shown in Table 7:
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Table 7. Comparison of the loss function on NYU Depth V2.

Methods Loss
Error Accuracy

AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

1 M 0.110 0.385 0.887 0.979 0.995
2 E 0.099 0.363 0.903 0.986 0.997

The bolded part is the best.

Analyzing the ablation experiment results, we arrived at the following conclusions:
Method E exhibited a lower AbsRel error, indicating that the edge information loss function
provides depth predictions closer to the actual depth values, reflecting higher prediction
accuracy. Furthermore, a lower RMSE value for Method E suggests an overall improvement
in the precision of depth prediction. Additionally, Method E outperformed Method M
across the three accuracy metrics δ1, δ2, δ3, demonstrating the edge-information-enhanced
loss function’s significant advantage in maintaining consistency between predicted and
actual depths, especially within more lenient proportional ranges. In summary, the edge-
enhanced loss function (Method E) significantly improves the precision and accuracy of
depth prediction by incorporating edge information into the loss function. These improve-
ments are evident across the key metrics of AbsRel error, RMSE, and accuracy indicators,
enhancing the model’s sensitivity and predictive capability regarding depth edges. This
leads to depth estimations that are more closely aligned with real-world scenarios. This
method is particularly valuable for depth prediction tasks, as it substantially enhances the
quality and reliability of depth estimations.

To intuitively demonstrate the effectiveness of the edge enhancement loss function
proposed, for this section we selected a set of indoor scenes rich in object edges for an
ablation study of the effects. The “M method” displays the results using a full-resolution
multi-scale loss function, while the “E method” shows the results of employing an edge
enhancement loss function to strengthen the depth information. The experimental results
are illustrated in Figure 10.

(a) input (b) M method (c) E method

Figure 10. Visual result of the loss function on NYU Depth V2.

From the details in the figures, it is evident that the loss function proposed effectively
enhances the depth restoration of object edges in scenes. The depth at the edges of objects
within the red and green frames is noticeably enhanced. For the box in the blue frame,
which is easily overlooked due to being obscured, the depth was ignored by the original
method. However, with the introduction of the edge loss enhancement by the E method,
even easily overlooked objects are well-represented. In the green frame, the depth of
areas with patterns and depth on the bottom is clearly identified, while the upper area
with patterns but no depth did not generate artifacts. This proves that the network has
indeed enhanced the recognition of true object edges, demonstrating the efficacy of our
proposed method.

5. Conclusions

For this paper, we designed an encoding–decoding network framework that combines
Swin Transformer and ResNet, leveraging the complementary characteristics of Vision
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Transformer and CNN to extract multi-scale contextual information. A multi-head cross-
attention mechanism is employed to fuse features, alleviating the semantic gap between
encoding and decoding features. Additionally, an edge-enhanced multi-scale loss function
is utilized to strengthen loss at image edges, improving the model’s ability to recognize ob-
ject contours. Extensive experiments on the NYU Depth V2 dataset, KITTI dataset, and SUN
RGB-D dataset, along with lateral comparisons with other state-of-the-art methods and
ablation studies of the model itself, demonstrate that EDPNet surpasses most monocular
image depth estimation algorithms. It achieves accurate pixel-level depth estimation and
possesses excellent generalization performance.

In the future, a consideration may be to reduce the number of network parameters
and to decrease computational complexity through model compression methods, while
maintaining high depth estimation accuracy to enhance practical application capabilities in
tasks such as autonomous driving. Additionally, regarding the current issue of insufficient
depth image datasets, semi-supervised or unsupervised methods can be used to overcome
the dependency on datasets. Moreover, utilizing high-precision depth sensing equipment
to construct larger-scale, higher-quality, and more diverse types of scene depth datasets
holds profound significance.
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