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Abstract: In an era where artificial intelligence (AI) bridges crucial communication gaps, this study
extends AI’s utility to American and Taiwan Sign Language (ASL and TSL) communities through
advanced models like the hierarchical vision transformer with shifted windows (Swin). This research
evaluates Swin’s adaptability across sign languages, aiming for a universal platform for the unvoiced.
Utilizing deep learning and transformer technologies, it has developed prototypes for ASL-to-English
translation, supported by an educational framework to facilitate learning and comprehension, with
the intention to include more languages in the future. This study highlights the efficacy of the Swin
model, along with other models such as the vision transformer with deformable attention (DAT),
ResNet-50, and VGG-16, in ASL recognition. The Swin model’s accuracy across various datasets
underscore its potential. Additionally, this research explores the challenges of balancing accuracy
with the need for real-time, portable language recognition capabilities and introduces the use of
cutting-edge transformer models like Swin, DAT, and video Swin transformers for diverse datasets in
sign language recognition. This study explores the integration of multimodality and large language
models (LLMs) to promote global inclusivity. Future efforts will focus on enhancing these models and
expanding their linguistic reach, with an emphasis on real-time translation applications and educa-
tional frameworks. These achievements not only advance the technology of sign language recognition
but also provide more effective communication tools for the deaf and hard-of-hearing community.

Keywords: Swin transformer; ASL detection; Taiwan Sign Language; deep learning; the unvoiced;
multimodal large language models (MLLMs)

1. Introduction

In the contemporary digital era, characterized by the imperative for rapid and error-
free communication, a significant discrepancy persists between verbal communication
modalities and the communication necessities of individuals who rely on sign language,
particularly within the deaf and hard-of-hearing communities [1,2]. This research endeavor
seeks to address this communication divide by harnessing the capabilities of artificial
intelligence (AI) and deep learning (DL) technologies. By focusing on American Sign
Language (ASL) and Taiwan Sign Language (TSL) and conducting a comparative analysis of
these, this study employs advanced convolutional and transformer-based neural networks
for the recognition of images and videos from respective datasets. The technologies utilized
in this research are considered to be among the top-tier methodologies, if not the leading
approaches, for the accurate detection of sign language data.

This study predominantly emphasizes the hierarchical vision transformer using the
shifted windows (Swin) model [3,4], alongside other models such as the vision transformer
with deformable attention (DAT) [5], ResNet-50, and VGG-16 for comparative analysis.
These models have demonstrated exceptional capabilities in accurately recognizing ASL.
The primary dataset for image data training comprises Kaggle’s ASL dataset, which in-
cludes 87,000 images, augmented with a project-specific, lightweight, and highly diverse
dataset of approximately 300 images of the ASL alphabet. For video data, the model
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training utilized 1200 short videos, evenly divided between TSL and ASL content. This
study elucidates the differences between these datasets and the distinctions between the
deployed DL models.

A pivotal component of this research is the development of two responsive applica-
tions designed for real-time ASL-to-English translation and vice versa. These applications
are supported by an ASL educational framework that includes video lessons, a search func-
tion, and quizzes to evaluate learners’ comprehension of the material. These applications,
catering to diverse user groups, significantly contribute to fostering diversity, equity, and
inclusion by assisting the integration of unvoiced individuals into society.

This research underscores the essential balance between accuracy, which necessitates
considerable computational resources and time, and the requirement for real-time, portable
language recognition capabilities, highlighting the trade-offs between these aspects. The
employment of cutting-edge transformer models such as Swin, DAT, and video Swin
transformers for diverse datasets, in comparison to the relatively rare TSL dataset [6]
attached to this study, marks a novel approach in this field.

Furthermore, this research references recent studies that have utilized similar DL
models for image classification [7,8] and leverages the researchers’ experience to build upon
these foundations. The introduction of the latest large language models (LLMs), including
ChatGPT-4-Vision, Microsoft Copilot (preview, powered by DALL-E), and Google’s Gemini
1.5, represents a new frontier in ASL recognition. This study discusses the current state of
these models in recognizing and generating the ASL alphabet. Preliminary testing of the
models, which must be continuous due to the sky-rocketing pace with which LLMs are
being developed and released, demonstrates the superiority of ChatGPT-4-Vision, which is
currently the latest and most advanced OpenAI model released to the public [9,10].

In the discussion section, the necessity of constant performance testing, as well as
robust system testing, is debated, given the frequent upgrades to these technologies. This
aspect is critical to ensuring the continuous improvement and reliability of ASL recognition
systems [11].

Future work is projected to include fine-tuning LLMs like ChatGPT-4 and ChatGPT-4-
Vision, access to which was kindly provided to the researchers by the Microsoft Research
team on diverse sign language datasets, including those mentioned in this study.

In summary, the primary contributions of this study include the successful application
of the Swin transformer technology for ASL and TSL recognition, the development of a
real-time ASL-to-English translation prototype, and the exploration of the integration of
multimodal data and large language models. These achievements not only advance the
technology of sign language recognition but also provide more effective communication
tools for the deaf and hard-of-hearing community.

2. Related Work

This endeavor to bridge the communication divide for the deaf and hard-of-hearing
through artificial intelligence (AI) and deep learning (DL) methodologies spans continents
and is rooted in a rich tapestry of global research efforts. These efforts have explored
various aspects of sign language recognition, from hand gesture identification to the
nuanced translation between sign languages and spoken languages. This expanded related
work section provides a deeper analysis of each contribution within the context of the
current study’s objectives, highlighting the synergy between these foundational works and
the innovative approaches being proposed.

Vashisth et al. [12] embarked on a significant endeavor to recognize Indian Sign
Language using deep learning techniques, demonstrating the potential of neural networks
in deciphering complex hand gestures. This study’s importance lies in its focus on a less
commonly researched sign language, offering valuable insights into the diversity and
complexity of sign language recognition tasks. The study’s methodology and findings
contribute to a broader understanding of the challenges and opportunities in applying AI
to sign language recognition across different linguistic and cultural contexts.
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Alharthi and Alzahrani [13] further the discourse by investigating the efficacy of vision
transformers coupled with transfer learning for Arabic Sign Language recognition. Their
work underscores the adaptability and robustness of transformer models in handling the
intricacies of sign language, providing a compelling case for the use of such advanced
AI models in sign language recognition tasks. The cross-linguistic applicability of these
models, as demonstrated in their study, enriches the technological toolkit available for
bridging communication gaps across diverse sign languages.

Avina et al. [14] propose an AI-based framework specifically designed for translating
American Sign Language (ASL) to English and vice versa. This framework is pivotal as
it aligns closely with the current research’s aim to develop responsive applications for
real-time sign language translation. The methodologies and technologies employed in their
study offer a blueprint for creating effective and inclusive communication tools that cater
to the needs of the deaf and hard-of-hearing communities.

In a similar vein, De Coster and Dambre [15] explore the innovative use of pre-trained
written language models for neural sign language translation. Their approach leverages
the vast knowledge encapsulated in existing language models, applying it to the domain of
sign language translation. This strategy not only exemplifies the potential for cross-domain
application of AI technologies but also provides a methodological foundation upon which the
current study can build, especially in terms of enhancing translation accuracy and efficiency.

Marzouk et al. [16] introduce an optimization technique—atom search optimization—
combined with deep learning for Arabic Sign Language recognition. Their innovative
approach to improving recognition accuracy by integrating evolutionary algorithms with
neural networks offers a novel methodology that could enhance the effectiveness of the
Swin model proposed in the current research for ASL and TSL recognition.

The practical applications of AI in sign language translation, as evidenced by the
Brazilian Hand Talk mobile app and other English-to-ASL converters [17–23], showcase
the tangible impacts of these technologies in enhancing communication accessibility.

The recent advancements in Swin transformers have led to significant developments
across various fields. For instance, in the paper by Liang et al. [24], the focus is on image
restoration, demonstrating the Swin transformer’s effectiveness in enhancing image quality.
Cao et al. [25] highlight its application in medical imaging, specifically in segmenting
complex structures in medical images. In the realm of self-supervised learning, Xie et al.’s
work [26] emphasizes the utility of Swin transformers in learning without labeled data,
a major step forward in machine learning. He et al. [27] further apply this technology
to remote-sensing images, improving semantic segmentation capabilities in geospatial
analysis. Zu et al. [28] explore the use of Swin transformers for classifying pollen images,
showcasing their potential in environmental and botanical studies. Nguyen et al.’s re-
search [29] in dynamic semantic communication demonstrates the model’s efficiency in
handling diverse computational requirements in communication systems. The versatility of
Swin transformers is further evidenced in MohanRajan et al.’s [30] study for land use and
cover change detection and Ekanayake et al.’s work in MRI reconstruction [31], showing its
effectiveness in both environmental monitoring and medical imaging.

In the field of video analysis, Lu et al. [32] apply Swin transformers to classify earth-
work activities, enhancing the accuracy of such tasks. Lin et al.’s CSwinDoubleU-Net
model [33] combines convolution and Swin transformer layers for improved medical image
segmentation, particularly in detecting colorectal polyps. Moreover, Pan et al.’s study
on renal incidentaloma detection [34] using a YOLOv4 + ASFF framework with Swin
transformers marks a significant advancement in the detection and classification of medical
conditions through imaging.

3. Methodology

This research utilizes the Swin transformer model, introduced by Liu et al. from
Microsoft Research [4,35,36], for sign language recognition, focusing on American Sign
Language (ASL) and Taiwanese Sign Language (TSL). The methodology is structured
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into five main phases: diverse datasets used for this study, understanding of the Swin
transformer, model training, results evaluation, and application development. Each phase
is crucial for developing a robust system for sign language recognition and translation.

3.1. Diverse Datasets

The unvoiced community across the United States and Canada exhibits remarkable
diversity, incorporating a wide array of dialects. This diversity includes the prevalent Black
American Sign Language (BASL) and extends to dialects originating in Bolivia, Burundi,
Costa Rica, Ghana, Nigeria, various Francophone regions, and Québec. Similarly, the
United Kingdom and Australia each offer their unique versions of sign language, namely,
British Sign Language (BSL) and Australian Sign Language (Auslan), respectively. These
variations mirror the regional differences observed in spoken American English, where
accents and colloquialisms can introduce communication barriers, even among speakers of
the same language. In the context of ASL, although acoustic accents do not exist, variation
manifests through distinct signs and gestures.

Figure 1 showcases the training dataset utilized in this study, drawing from Kaggle’s
extensive collection (displayed at the top of Figure 1a and bottom of Figure 1b) and a
specially curated dataset for this research (shown at the bottom of Figure 1a and top of
Figure 1b). This approach ensures a comprehensive understanding and representation of
the diverse sign language dialects under consideration at a glance.
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Figure 1. (a) Snapshots of Kaggle ASL dataset used for training (top) vs. lightweight custom dataset
(bottom). (b) Projects test cases (top) vs. Kaggle data used for testing (bottom).

Figure 1 reveals that the initial training dataset predominantly features white male
hands. To counter this limited representation, a supplementary dataset, curated by a female
researcher proficient in ASL and non-binary person, introduces greater diversity. This
step addresses a critical aspect of AI research in sign language recognition: the potential
for algorithms to perpetuate biases. A diverse and representative dataset is imperative to
ensure equitable recognition across different groups of signers, each with unique cultural
backgrounds and signing styles.

In sign language, communication transcends mere hand movements to include facial
expressions and body language. The nuances of these signs, shaped by varied expressions
and postures, are pivotal for precise interpretation and must be accurately represented in
the training data to prevent biases. Figure 2 illustrates the Taiwanese dataset employed in
this study, featuring three phrases mirrored with the same phrases in ASL.

As was just mentioned, sign language communication comprises gestural changes and
non-manual signals. Gestural changes denote different words through variations in hand
shape, movement, location, and palm orientation, while non-manual signals encompass
accompanying body movements and facial expressions [37,38]. Taiwanese Sign Language
(TSL) traces its origins to Japanese Sign Language, reflecting influences from the Japanese
colonial education system, and has evolved by integrating a significant portion of Chinese
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Sign Language vocabulary [39]. In contrast, American Sign Language (ASL) emerged
from French Sign Language and was further developed in the United States with the
establishment of the first school for the deaf [40,41]. Despite sharing similar strategies, ASL
and TSL differ in their components, leading to distinct representations. For example, ASL
often uses the handshape of the first English letter to represent words. In TSL, “Family”
is depicted by mimicking a roof and circling inside, whereas ASL represents it with a
two-handed “F” handshape, with thumb-forefinger circles diverging and converging with
the pinkies. Both ASL and TSL, like other sign languages, exhibit regional variations, with
different locales developing unique vocabularies and dialects shaped by their linguistic
environments. For instance, the sign for “know” in northern Taiwan involves a downward
palm movement from the chest, whereas in southern Taiwan, it is indicated by tapping the
chest with a clenched fist, highlighting the cultural evolution of local sign languages.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 20 
 

 

 
 

(a) (b)  

Figure 2. (a) Snapshot of the training dataset. (b) Live recognition of three phrases—“thanks”, 
“hello”, and “I love you”—in TSL vs. ASL. Colors indicate the probability of each sign. 

As was just mentioned, sign language communication comprises gestural changes 
and non-manual signals. Gestural changes denote different words through variations in 
hand shape, movement, location, and palm orientation, while non-manual signals encom-
pass accompanying body movements and facial expressions [37,38]. Taiwanese Sign Lan-
guage (TSL) traces its origins to Japanese Sign Language, reflecting influences from the 
Japanese colonial education system, and has evolved by integrating a significant portion 
of Chinese Sign Language vocabulary [39]. In contrast, American Sign Language (ASL) 
emerged from French Sign Language and was further developed in the United States with 
the establishment of the first school for the deaf [40,41]. Despite sharing similar strategies, 
ASL and TSL differ in their components, leading to distinct representations. For example, 
ASL often uses the handshape of the first English letter to represent words. In TSL, “Fam-
ily” is depicted by mimicking a roof and circling inside, whereas ASL represents it with a 
two-handed “F” handshape, with thumb-forefinger circles diverging and converging with 
the pinkies. Both ASL and TSL, like other sign languages, exhibit regional variations, with 
different locales developing unique vocabularies and dialects shaped by their linguistic 
environments. For instance, the sign for “know” in northern Taiwan involves a downward 
palm movement from the chest, whereas in southern Taiwan, it is indicated by tapping 
the chest with a clenched fist, highlighting the cultural evolution of local sign languages. 

The distinction between ASL and TSL is reflective of the broader diversity in sign 
languages globally. Effectively differentiating between various regional and national sign 
languages can enhance deaf education quality and foster integration and mutual under-
standing between the deaf and hearing communities. The dataset collection phase was 
crucial, involving the compilation of a diverse array of images and videos for training and 
evaluation. The primary ASL dataset consisted of 87,000 images from Kaggle [42], aug-
mented by a curated collection of 300 images to increase demographic diversity and min-
imize algorithmic bias. A custom dataset featuring three phrases in TSL paralleled with 
ASL laid the groundwork for preliminary video recognition trials. Future efforts will ex-
tend to incorporating additional open-source datasets to enrich the training and testing 
corpus, accommodating the unique dialects within ASL and TSL. 

Currently, the research focuses on experimenting with video recognition for ASL and 
TSL. Future work aims to explore other open-source datasets, including the ASL Lexicon 
Video Dataset, featuring over 3300 ASL signs [43]; the World Level American Sign Lan-
guage Video Dataset on Kaggle, containing 12,000 processed videos [44]; ASL Citizen by 
Microsoft Research, a crowdsourced dataset with approximately 84,000 video recordings 
[45]; the MS-ASL Dataset, a large-scale collection of over 25,000 annotated videos [46]; the 
OpenASL Dataset, a comprehensive ASL–English dataset [47]; the How2Sign Dataset, a 
multimodal and Multiview continuous ASL dataset [48]; the YouTube-ASL Dataset, a 

Figure 2. (a) Snapshot of the training dataset. (b) Live recognition of three phrases—“thanks”, “hello”,
and “I love you”—in TSL vs. ASL. Colors indicate the probability of each sign.

The distinction between ASL and TSL is reflective of the broader diversity in sign
languages globally. Effectively differentiating between various regional and national
sign languages can enhance deaf education quality and foster integration and mutual
understanding between the deaf and hearing communities. The dataset collection phase
was crucial, involving the compilation of a diverse array of images and videos for training
and evaluation. The primary ASL dataset consisted of 87,000 images from Kaggle [42],
augmented by a curated collection of 300 images to increase demographic diversity and
minimize algorithmic bias. A custom dataset featuring three phrases in TSL paralleled
with ASL laid the groundwork for preliminary video recognition trials. Future efforts will
extend to incorporating additional open-source datasets to enrich the training and testing
corpus, accommodating the unique dialects within ASL and TSL.

Currently, the research focuses on experimenting with video recognition for ASL and
TSL. Future work aims to explore other open-source datasets, including the ASL Lexicon
Video Dataset, featuring over 3300 ASL signs [43]; the World Level American Sign Language
Video Dataset on Kaggle, containing 12,000 processed videos [44]; ASL Citizen by Microsoft
Research, a crowdsourced dataset with approximately 84,000 video recordings [45]; the
MS-ASL Dataset, a large-scale collection of over 25,000 annotated videos [46]; the OpenASL
Dataset, a comprehensive ASL–English dataset [47]; the How2Sign Dataset, a multimodal
and Multiview continuous ASL dataset [48]; the YouTube-ASL Dataset, a large-scale cor-
pus of ASL videos [49]; and the ASL video dataset—Boston University, featuring video
sequences of distinct ASL signs [50].

Identifying reliable datasets for Taiwanese Sign Language presents challenges, yet
resources like the Taiwanese Across Taiwan (TAT) Corpus and “a survey of sign language
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in Taiwan” by SIL International offer insights into the language’s dialects and regional
variations [51].

3.2. Understanding Swin Transformer

The Swin transformer has become the subject of various projects [4], and its follow-
ing iterations, including Swin transformer V2 and the video Swin transformer [35,36],
signify significant progress in deep learning, especially in both image and video pro-
cessing [32,52,53]. It has gained significant popularity due to its unique approach and
effectiveness in various vision tasks. However, the approach of applying it to Ameri-
can Sign Language (ASL) and Taiwanese Sign Language (TSL), showcasing the model’s
versatility, is novel.

Introduced as a hierarchical transformer [4], the Swin transformer computes repre-
sentations through shifted windows, facilitating efficient image processing across various
scales. This versatile and robust architecture enables cross-window connections with mini-
mal computational costs, allows for adjustment to different scales of visual data, and deliv-
ers superior performance across diverse benchmarks. Swin transformer V2 [35] built upon
its predecessor, integrating refinements and optimizations to enhance both performance
and efficiency. Preserving the foundational principles of the original Swin transformer,
V2 focuses on augmenting the model’s scalability, training stability, and efficiency. The
video Swin transformer [36] extends the mentioned architecture to video content, aiming
to capture both temporal dynamics and spatial hierarchies. It is particularly effective for
videocentric applications, such as action recognition, video classification, and temporal
segmentation. The video Swin transformer [36] introduced mechanisms to manage the
temporal dimension of videos, potentially through 3D convolutions or specialized temporal
windowing techniques. This capability enables the model to assimilate spatial and tempo-
ral features from video data effectively, offering a potent solution for analyzing complex
video materials. The progression from the Swin transformer to Swin transformer V2, and
subsequently to the video Swin transformer, illustrates an evolutionary path toward more
sophisticated, efficient, and adaptable transformer models for visual data processing. Each
iteration introduces enhancements or modifications that improve the model’s suitability
and performance for a wide array of tasks in image and video understanding.

The Table 1 below represents a summary of the Swin model, introduced by their creators.

Table 1. Summary of Swin transformers.

Feature Swin Transformer Swin Transformer V2 Video Swin Transformer

Domain Image Image Video
Key Novelty Shifted Windows Scaling, Refinements Spatiotemporal Attention

Compared to Swin Base Model Improved Video Extension

The uniqueness of this transformer is in its hybrid design that combines convolutional
neural networks (CNNs) and transformers with features like shifted windows and hier-
archical structure. These help it to handle the nuances of sign language across cultures.
The most outstanding characteristics of the Swin transformer and its main competitors are
presented in Figure 3.

Figure 3 illustrates the numerous advantages of the Swin transformer, a model
renowned for its efficiency, scalability, and superior performance across various vision tasks.
This study focuses on a comparison of the Swin transformer’s performance against other
models such as VGG-16, Resnet-50, and DAT [54]. The Swin transformer distinguishes
itself by providing an optimal balance between efficiency and accuracy, particularly in
scenarios requiring a comprehensive understanding of both local and global image features.
It demonstrates exceptional ability in identifying and delineating multiple objects within
images. Its application scope extends to semantic and instance segmentation, pose and
depth estimation, transfer learning, and panoptic segmentation—a fusion of semantic and
instance segmentation.
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The Swin transformer’s unique shifted window scheme, which processes images in
non-overlapping windows with self-attention, followed by layer-wise window shifting for
cross-window connections, enables it to efficiently encompass broader contexts and capture
precise details crucial for sign language recognition. Unlike traditional transformers, Swin
transformers create feature maps at various resolutions, enhancing their applicability in
diverse vision tasks, including the nuances of hand gestures and facial expressions in sign
language. Its versatility in processing images of different sizes and its hierarchical structure
make it an advantageous tool for varied real-world applications, achieving state-of-the-art
results in benchmarks like ImageNet and showing potential in sign language recognition
by successfully telling apart similar signs with small differences. We include examples to
show the effectiveness of the Swin transformer model. Later in the paper we demonstrate
the Swin transformer model’s effectiveness by presenting its classification accuracy, which
reached 100% on the test dataset. Additionally, we illustrate the class activation maps of the
Swin transformer, highlighting comprehensive image coverage in comparison to traditional
convolutional networks and the DAT model. The pipeline of our methodology, from data
collection to results evaluation, is illustrated in Figure 4.
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3.3. Model Training

The researchers started their study with the original model but soon moved to its
enhanced version, V2. To verify that Swin transformer V2 is particularly suited for sign
language recognition, simulations were set up on Ubuntu 20.04.5 Linux system (Canonical
Ltd., London, UK) with the following characteristics: AMD EPYC 7513 32-Core Processor
2.60 GHz (Advanced Micro Devices, Inc., Santa Clara, CA, USA) and 8 NVIDIA GeForce
3090 graphics cards (NVIDIA Corporation, Santa Clara, CA, USA), and each one has
24 Gigabyte memory. Details can be seen in Table 2.

The training took over 300 epochs and produced the following results (see Table 3).
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Table 2. Simulation parameters.

Trial Parameter Comments

Initial Dataset 87,000 images
Trial Dataset 80% for training, 20% for testing at random
Classification 29 classes (A to Z, Space, Del, and Nothing)

Batch Size 16
Trial Dataset 256 × 256 (resized)

Optimizer used SGD, learning rate 0.001
Number of Epochs 100

Pytorch version 1.12.1.

Table 3. The model’s characteristics and simulation results.

Trial Parameter Number of Parameters Accuracy

DAT Transformer 86,886,357 99.99%
VGG-16 165,845,085 100%

ResNet-50 23,567,453 100%
Swin transformer 65,960,349 100%

Table 3 presents a comparative analysis of deep learning models in terms of their
parameters and accuracy in ASL recognition. The table highlights ResNet-50 as the most
parameter-efficient model, making it potentially more suitable for mobile applications.
In contrast, VGG-16, with the highest parameter count due to its three fully connected
layers, may be less optimal for such applications. Despite this, all models, including the
DAT and Swin transformers, achieved high accuracy, illustrating a balance between model
complexity and performance in ASL translation tasks. Further insights into these models’
performance are provided through training and testing loss curves in subsequent visual-
izations. It was found that the DAT transformer did not outperform the Swin transformer
in this project, which does not match the original paper of on the DAT transformer [54]
that claimed that it should. The confusion matrix for VGG-16, ResNet-50, and the Swin
transformer, of which achieved a 100% accuracy rate, is depicted in Figure 5a.
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Figure 6 represents the training and testing loss curves for all models.
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As can be seen from Figure 6, all four models demonstrated huge a reduction in losses
right away, happening around less than 10–15 epochs. To further understand the model,
the researchers then proceeded with bias analyses. The analysis was built upon previously
developed strategies and applied to Meta’s DETR transformer families [55,56].

The visualization of the biases discovered in the models can be seen in Figure 7.
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Figure 7. Bias Visualizations, each colored line represents the bias value changes of a single neuron
during training: (a) The first convolutional layer of VGG-16. (b) The multilayer perceptron of the
first transformer stage of the Swin transformer. (c) The multilayer perceptron of the first transformer
stage of the DAT Transformer.

According to Figure 7, the VGG-16 model demonstrates stable bias values after
15–20 epochs, within a range from −2.75 to 1.75 (1 × 10−6). For the Swin and DAT
transformers, the focus is on the first transformer stage’s multilayer perceptron (MLP)
biases [57]. The Swin transformer shows a unique dome-like bias shape, suggesting a
need for deeper analysis in terms of distribution, density, and outliers. Conversely, the
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DAT transformer’s biases converge around epochs 45–50 then stabilize, indicating less
fluctuation post-convergence. This analysis aids in understanding the learning behaviors
of these models.

The ResNet-50 CNN model demonstrated no biases in its first convolutional layer.
SParameters of the model can be seen from (1):

self.conv1 = nn.Conv2d(self.inplanes, 64, kernel_size = 7, stride = 2, padding = 3, bias = False) (1)

The ResNet-50 model’s first convolutional layer is designed without bias parameters
to streamline the number of variables and potentially improve computational efficiency.
This decision was made since in deep learning models, especially in convolutional neural
networks, bias terms are sometimes omitted. This is because batch normalization, often
applied after convolutional layers, negates the effect of the bias by standardizing the
output. Therefore, removing the bias parameter can reduce the model’s complexity without
significantly affecting its performance. AI biases and explainable AI are at the forefront
of Artificial Intelligence research due to their importance in ensuring AI models are used
responsibly.

Further in this section, class activation maps (CAMs) are employed to visually interpret
the focus areas of deep learning models used in image classification, which is vital for
understanding the decision-making process of AI [58].

As can be seen from Figure 8, CAMs produced heatmaps that identify critical regions,
influencing the classification decision and offering a comprehensive view when combined
with the bias data. This is particularly useful in explicating the opaque decision-making
process in deep learning, enhancing user trust by demystifying AI classifications. The
figure highlights the model’s attention to various features that affect accuracy.
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3.4. ASL vs. TSL Video Recognition

Currently, only preliminary results of ASL vs. TSL video classification are available.
The training started with training the recurrent neural network (RNN) and six classes of
video classification mentioned above and demonstrated in Figure 9b.
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Figure 9. (a) Training and testing losses of ASL vs. TSL video classification with RNN. (b) Training
and testing accuracy of ASL vs. TSL video classification with RNN.

As can be seen from Figure 9b, the training accuracy achieves nearly 100% at 300 epochs,
which is well performed considering a lightweight dataset of study. However, the poorly
performing validation accuracy and associated loss (the orange curves) demonstrated the
model overfit, forcing researchers to reduce the learning rate and try various optimizers
other than Adam. It was also decided to enrich the training dataset by adding to original
phrases words “family”, “friends”, and “learn” in both ASL and TSL. An extra folder with
“ping pong” in TSL was also used. Updated training and testing datasets can be found in
Figure 10.
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Figure 10. (a) Training vs. (b) Testing. ASL and TSL datasets.

The Adam optimizer, an extension of the Adam optimization algorithm, was used
for this training. This optimizer features weight decay for regularization, a technique that
helps prevent overfitting by penalizing large weights. The learning rate was set to 0.001.
This crucial hyperparameter controls the step size at each iteration while moving toward a
minimum of the loss function. A well-chosen learning rate will help the model to converge
to a good solution efficiently. The weight decay was set to 0.0001. Weight decay is a form of
regularization that adds a small penalty to the loss function for larger weights, encouraging
the model to learn simpler patterns and potentially reducing overfitting. To understand the
structure of the transformer, researchers visualized the architecture of the first two layers of
the video Swin transformer model dynamically. The results can be seen in Figure 11.
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Figure 11. Architecture of the video Swin transformer.

As can be seen in Figure 11, the schematic representation of a Swin architecture
consists of the input layer, namely, a 4-dimensional tensor with the shape of 32 frames
in each video input, 224 × 224 spatial dimensions of each frame, and RGB number of
color channels in each frame. A pre-trained video Swin transformer model with specific
configuration and weights TFVideoSwinB_SSV2_K400_P244_W1677_32x224 is designed to
handle video input and perform 3D convolutions or other spatiotemporal feature extraction
operations. Its input and output shapes indicate that the model maintains 32 frames and
224 × 224 spatial dimensions but reduces the channel dimension from 3 (RGB) to 174. This
reduction suggests that the model extracts 174 features from each frame. The dense, fully
connected layer takes the output from the previous Swin transformer layer and produces
an output shape, see Table 4 for layer details. The model from Figure 11 performs a
classification task with seven classes. The dense layer is responsible for mapping the
extracted features to the probabilities of the classes.

Table 4. Video Swin model characteristics.

Layer (Type) Number of Parameters Output Shape

TFVideoSwinB_SSV2_K400_P244_W1677_32x224
(TFSwinTransformer3D) 88,834,038 (None, 174)

dense (Dense) 1225 (None, 7)

Training the model on Google Collab was extremely challenging as the GPU capacity
for personal use is very limited. Figure 12 represents the bottlenecks.
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Preliminary results of applying the Swin video transformer on ASL vs. TSL datasets
can be seen in Figure 13.
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3.5. Application Development

This research tackles the communication problem between those who know and use
ASL every day and those who do not. In simple words, the researchers aim to create a swift
means of understanding by providing smooth communication for those involved. Case
studies and associated applications consist of two types and associated cases:

(1) Develop a user-friendly interface for ASL translation, ensuring it is suitable for the
intended users and use cases.

(2) Create interactive and engaging learning tools for ASL education.

To address the first case, two different applications, the Smooth Talk app and the
STApp app, were created. Both feature a very simple and user-friendly interface. The
goal was originally to develop only one application, and STApp stands for Smooth Talk
app as well, but eventually, two different apps were developed by the team of researchers.
Both apps capture the ASL language live and translate it into English using a Python
backend. The first yellowish version of the app was inspired by the low-code AI Teachable
Machines web tool [59], which was used to practice ASL language. Figure 14b (bottom)
demonstrates an accuracy of 94% for the letter “B”, which was the top accuracy that could
be achieved with the app as it was built to use a custom light ASL dataset collected for
the project. As can be seen in Figure 14a, another prototype demonstrates an accuracy of
70.14%. Figure 14c demonstrates the live demo of the Smooth Talk app.

The mobile-first GUI of both apps relies on the Bootstrap framework, CSS flex, and
other front-end technologies targeting responsive web design to further accommodate
the users and potentially allow them to use the app from any place. They can both be
considered hybrid apps currently working equally well both on a smartphone and in the
web browser. The use of JavaScript and its APIs, for example, to convert text to speech
and deliver it to the hearing side of the conversation further enhances the prototype. The
speech is converted to text using the same API. The text is translated into ASL letters using
Map, aka dictionary data structure, and the result is displayed to the unvoiced person. The
look and feel of the Small Talk app resemble the website of NAD Youth [2]—a project of
the National Association of the Deaf [1]. It also inspired the STApp app GUI.
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vs. the Smooth Talk homepage (middle) vs. ASL recognition page of the app (bottom). (c) Live demo
of the app.

As can be seen from Figure 14a, the STApp app uses emojis as icons on its buttons,
which adds uniqueness to this web design. The STApp app also provides the functionality of
taking a selfie and prerecording a video; then, it sends it to the other side of the conversation,
accommodating asynchronous communication and making it aware of the translation accuracy.

To address the second educational case, another app was developed (see Figure 15).
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At this point, the app user can log in to the educational system, watch video recordings
of the ASL language lesson, and take the quiz to test their knowledge. The researchers are
considering converting this quiz into an app game to add interactivity to it and attract a
broader population. Obviously, the Swin transformer and other AI models and tools can
be used in ASL educational platforms for improved learning experiences and interactive
applications, or games can further assist with that. Eventually, the researchers plan on
integrating it into the platform for both ASL and TSL. Once the research project was launched,
the researchers themselves had to learn the basics of the ASL language to some degree.

4. LLM Integration

Integrating large language models (LLMs) into this research can enhance interpretabil-
ity and user interaction with the system. Approaches such as automated annotation with
LLMs are becoming mainstream. LLMs can generate descriptions or labels for video clips
or images based on predefined criteria, which can then be verified or refined by experts.
As LLMs are constantly improving, they will eventually be able to assist in identifying
potential gaps or biases, as it is critical to avoid biases in ASL recognition.

Sign language recognition and translation is a complex task that involves understand-
ing subtle hand movements, facial expressions, and body language. It is also hard to find
researchers or enthusiasts fluent in sign language and willing to devote their time and
efforts to such a project. Sign language is both spatial (involving the positioning and move-
ment of hands, fingers, facial expressions, etc.) and temporal (the meaning can depend on
the sequence of movements). The researchers conclude that the Swin transformer’s capa-
bilities could potentially be very relevant to this dataset as the shifted window approach
could efficiently handle the spatial aspect of sign language. Its ability to handle video data
(spatial–temporal) makes it suitable for interpreting sign language in a dynamic, continuous
context. Integrating large language models (LLMs) like GPT-4+ or similar technologies can
further enhance the capabilities of the proposed apps. LLMs are expected to be particularly
useful in ASL education and to facilitate interactive language learning experiences. In data
classification, they can assist in interpreting and summarizing classification results. LLMs
can provide contextual translations of signs or offer cultural insights into sign language
usage, help practicing sign language, or explain concepts.

The latest LLMs, such as ChatGPT-4-Vision and Gemini, were tested on the ASL
dataset. Special AI assistant, aka custom GPT Sign Speak Guide, was created with the help
of OpenAI API. It can be seen below in Figure 16:
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The assistant that utilizes the ChatGPT-4-Vision model can work with both ASL and
TSL, but the accuracy of ASL is slightly better. Figure 16 demonstrates an image of the letter
“A” fed to the bot. As can be seen from Figure 16, the AI assistant correctly recognizes the
letter “A” provided.

As can be seen from Figure 17, neither of the leading models successfully generated
it. The models were able to comprehend the meaning of ASL generation but could not
correctly address the request.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20 

summarizing classification results. LLMs can provide contextual translations of signs or
offer cultural insights into sign language usage, help practicing sign language, or explain 
concepts. 

The latest LLMs, such as ChatGPT-4-Vision and Gemini, were tested on the ASL da-
taset. Special AI assistant, aka custom GPT Sign Speak Guide, was created with the help 
of OpenAI API. It can be seen below in Figure 16: 

(a) (b) (c)

Figure 16. (a) The snapshot of the AI assistant Sign Speak Guide in the process of ASL recognition. 
(b,c) The configuration snapshot of the AI assistant Sign Speak Guide. 

The assistant that utilizes the ChatGPT-4-Vision model can work with both ASL and 
TSL, but the accuracy of ASL is slightly better. Figure 16 demonstrates an image of the 
letter “A” fed to the bot. As can be seen from Figure 16, the AI assistant correctly recognizes 
the letter “A” provided. 

As can be seen from Figure 17, neither of the leading models successfully generated 
it. The models were able to comprehend the meaning of ASL generation but could not 
correctly address the request.

(a) (b) (c)

Figure 17. (a–c) The snapshot of ASL recognition by major LLMs.

Integrating multimodality into the research on ASL dataset classification, especially
when combined with large language models (LLMs), can create a more comprehensive
and effective system. Integrating not only images and text but also audio and video will
improve understanding and interaction. The top standard would be creating an interface
that adapts to the user’s preferences and accessibility needs.

5. Conclusions and Future Work

The research and developed app prototypes will facilitate communication between
those who primarily communicate through sign language and those who do not. Our
trials resulted in the following accurate outcomes: the Swin transformer achieved 100%,
and CNN models achieved 100% as well. However, we acknowledge that the dataset
utilized is relatively simple, with most of the models achieving near-perfect accuracy on the
test dataset. We plan to use more diverse datasets (mentioned in Section 3.1) for training
and evaluation in the future works. Future research will include exhaustive testing of the
prototypes and LLMs in the field of ASL recognition. It is expected that validation will
make a reliable ASL tool for all possible. The ethical scope of the problem we tackle is very
sensitive, and the handling of personal data must be discussed.

The emergence of comprehensive datasets has been instrumental in the development
and testing of advanced sign language recognition models. The video Swin transformer [3],
with its potential in video-based sign language recognition, represents a new era in under-
standing and interpreting sign language through visual data.

Despite these advancements, challenges remain. One of the primary challenges is the
creation of large, diverse, and high-quality datasets that accurately represent the complexity
of ASL and TSL. Additionally, real-time processing capabilities are crucial for practical
applications of these technologies. While our models achieved high levels of accuracy,
the diversity and representativeness of the datasets used may limit their generalizability.
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Balancing accuracy with the need for real-time, portable language recognition capabilities
remains a challenge for practical applications. Future research should focus on tailoring
transformer and LLM-based models to accommodate the specific requirements of sign
language recognition more effectively. Bridging the gap between academic research and
practical, real-world applications of ASL and TSL detection technologies is essential.

In conclusion, the integration of transformers and LLMs in ASL and TSL detection
represents a significant advancement in the field. These technologies offer enhanced
capabilities for interpreting sign language, leading to more accurate and efficient ASL
and TSL detection systems. However, continuous efforts in data enhancement and model
optimization are crucial to address existing challenges and further advance the field. The
datasets and models discussed herein offer a glimpse into the current state of the field
and its potential trajectory. Continuous advancements in this domain hold the promise
of bridging communication gaps for the deaf and hard-of-hearing communities globally,
enhancing inclusivity and accessibility. With future improvements in Swin transformers
and LLMs, the systems must be refined and updated to remain cutting-edge apps.

Soon, research will fine-tune LLMs like ChatGPT-4-Vision on both their public and
diverse custom ASL datasets. It is also projected that the usage of high-performance
computing will improve the parameters of the Swin transformer. This research contributes
significantly to the field by bridging the communication gap for the deaf and hard-of-
hearing communities through innovative AI and DL applications. It opens new pathways
for the integration and inclusion of unvoiced individuals in society, marking a step forward
in the quest for universal communication accessibility.

In the realm of future work, our focus will be placed on further integrating LLMs into
sign language recognition systems. We plan to explore the use of advanced LLMs such
as GPT-4 to enhance semantic analysis within these systems. Specifically, future research
will investigate how LLMs can be utilized to improve the interpretation of complex sign
language constructs and to generate more accurate natural language translations of sign
language expressions. This integration is expected to challenge traditional methods and
establish new benchmarks by enhancing semantic analysis and improving recognition
accuracy. Additionally, we aim to examine the potential of LLMs in facilitating more
interactive and engaging sign language learning experiences, as well as in providing
insights into the cultural nuances of sign language usage across different regions. The
integration of LLMs holds the promise of significantly advancing the capabilities of sign
language recognition technology, thereby contributing to the creation of more inclusive
and accessible communication tools for the deaf and hard-of-hearing communities.
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