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Abstract: Falls can cause significant harm, and even death, to elderly individuals. Therefore, it
is crucial to have a highly accurate fall detection model that can promptly detect and respond
to changes in posture. The YOLOv8 model may not effectively address the challenges posed by
deformation, different scale targets, and occlusion in complex scenes during human falls. This paper
presented ESD-YOLO, a new high-precision fall detection model based on dynamic convolution that
improves upon the YOLOv8 model. The C2f module in the backbone network was replaced with
the C2Dv3 module to enhance the network’s ability to capture complex details and deformations.
The Neck section used the DyHead block to unify multiple attentional operations, enhancing the
detection accuracy of targets at different scales and improving performance in cases of occlusion.
Additionally, the algorithm proposed in this paper utilized the loss function EASlideloss to increase
the model’s focus on hard samples and solve the problem of sample imbalance. The experimental
results demonstrated a 1.9% increase in precision, a 4.1% increase in recall, a 4.3% increase in mAP0.5,
and a 2.8% increase in mAP0.5:0.95 compared to YOLOVS. Specifically, it has significantly improved
the precision of human fall detection in complex scenes.

Keywords: complex scenarios; YOLOvS; deformable convolution; fall detection

1. Introduction

Individuals are susceptible to falls due to instability in their lower extremities and
limited joint mobility during daily activities [1]. The likelihood and severity of falls are
particularly high in individuals over the age of 65, with 30-40% experiencing at least one
fall per year. These falls can result in fractures or other long-term health issues, which can
cause significant physical and psychological injury [2—4]. Injuries sustained by older adults
from falls depend not only on the injuries incurred but also on the time interval between
the onset of the fall and the receipt of help and treatment. Medical research has shown that
timely assistance or treatment after a fall can reduce the risk of sequelae from later falls as
well as accidental death [5]. Providing timely assistance and treatment services for elderly
individuals who live alone and have fallen at home is of significant social and practical
importance. This ensures the safety and security of the elderly.

Currently, there are several methods for detecting human posture [6] which can
also recognize and detect falls. Wearable technology development can integrate sensors,
wireless communication, and other technologies into wearable devices. These devices
support various interaction methods, such as gesture and eye movement, to capture human
body movement and posture information. They use multi-information data fusion to
achieve the detection of human falls, resulting in high detection accuracy and real-time
detection [7-10]. However, older people may forget to wear them after charging, which
hinders prolonged detection due to the need for frequent recharging. Placing sensor nodes
in a specific area to monitor changes in the human body’s center of gravity, movement
trajectory, and position can provide valuable information about the body’s posture and
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overall situation [11-14]. However, deployment costs are high, and external environmental
limitations and interference can be a challenge.

The utilization of cameras or other imaging devices for real-time acquisition of image
information in a monitoring area, coupled with the application of deep learning techniques
to analyze the acquired image data and determine human body movement postures,
represents a current research focus [15,16]. Deep learning methods for analysis can be
broadly categorized into two directions: two-stage and one-stage [17]. Prominent examples
of two-stage algorithms include R-CNN, Mask R-CNN [18], R-FCN [19], and Faster R-
CNN [20]. These approaches offer advantages such as high detection rates and low memory
usage [21,22]. On the other hand, one-stage algorithms like the YOLO series [23-25] and
the SSD series perform candidate frame generation and classification in a single step. By
dividing images into grids, these algorithms directly predict target categories and anchor
frames on the images before obtaining final results through filtering and post-processing.
Due to their lower computational requirements, one-stage algorithms are more suitable for
real-time detection projects. Furthermore, recent advancements in the YOLO series have
significantly improved target detection accuracy, establishing the one-stage algorithm as
the mainstream choice for practical applications. Therefore, this paper selects YOLOVS as
its foundation to enhance fall detection in complex scenes.

The YOLOvV8 model represents the latest advancement in the YOLO series, incorporat-
ing novel enhancements derived from YOLOVS5 to optimize performance and flexibility,
thereby rendering it more suitable for diverse target detection tasks. Comprising three key
components—the backbone, neck network, and detection head—this model leverages the
C2f module within its backbone network to effectively merge the C3 and ELAH structures,
facilitating superior feature transfer and enhancing information utilization efficiency. No-
tably, the YOLOvS detection head adopts a decoupled head approach by eliminating the
objectness branch while retaining only classification and regression branches. This sim-
plification significantly streamlines the model architecture. Additionally, an Anchor Free
strategy is employed which eliminates reliance on predefined anchors; instead enabling
adaptive learning of object size and position. Consequently, these advancements contribute
to improved accuracy and robustness in object detection.

Lijuan Zhang et al. proposed DCF-YOLOvVS, which leverages DenseBlock to enhance
the C2f module and mitigate the influence of environmental factors [26]. Haitong Lou et al.
introduced DC-YOLOVS, employing deeper networks for the precise detection of small
targets [27]. Gui Xiangquan et al. incorporated the DepthSepConv lightweight convolution
module into YOLOvVS-L, integrated the BiFormer attention mechanism, and expanded
the small target detection layer to achieve efficient detection of small targets [28]. Cao
Yiqi et al., in EFD-YOLO, substituted EfficientRep as a backbone network and introduced
the FocalNeXt focus module to address occlusion issues to some extent while enhancing
detection accuracy [29].

To address the issue of low detection accuracy of the YOLOvVS algorithm in com-
plex environments with target deformation, large changes in target scale, and occlusion,
this paper proposes the ESD-YOLO model based on the YOLO algorithm. The model
incorporates dynamic convolution, a dynamic detection head, and an exponential moving
average to enhance the accuracy and robustness of fall detection in complex scenarios.
This paper presents research on improving the YOLOvV8 backbone network’s ability to
capture target details and cope with target deformations. The proposed C2Dv3 module
was incorporated into the network for this purpose. Additionally, the feature extraction
ability of the detection model was improved by replacing the original detection head in the
Neck section with the DyHead module. The proposed EASlideloss loss function aims to
improve the model’s ability to handle hard sample problems. ESD-YOLO performed better
in dim and blurred environments, with informative pictures, large-scale transformations,
and occlusions, improving the accuracy and robustness of the fall detection model.
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2. Materials and Methods
2.1. Overall Structure of ESD-YOLO Network

This paper proposed ESD-YOLO, a high-precision fall detection model for complex
scenarios. It effectively addressed the problem of low detection accuracy caused by fall
target deformation, occlusion, and high environmental overlap. Figure 1 shows the overall
structural model of ESD-YOLO.
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Figure 1. Structure of ESD-YOLO model.

The ESD-YOLO model combined the C2f module in the YOLOvVS8 backbone with the
DCNv3 module. The dynamic convolutional layer replaced the convolutional layer in the
Bottleneck in C2f, enhancing the backbone network’s ability to extract pose information of
a falling character in a complex scene. The DyHead module was incorporated into the Neck
section to consolidate multiple attention operations, resulting in improved performance
of ESD-YOLO in complex fall detection scenarios. Additionally, EASlideloss, a slide loss
function based on exponential moving average, was proposed to replace the original loss
function of YOLOVS. This function dynamically balances the model’s attention to hard
samples, thereby enhancing the model’s accuracy and stability.

2.2. C2Dv3 Module Design

Detecting falls in complex environments and a wide variety of poses presents a
significant challenge. The C2f module in YOLOVS, which integrates low-level feature
maps with high-level feature maps, encounters difficulties in recognizing falls under
these circumstances. The C2f module may not effectively capture the intricate details of
falling targets due to variations in human body postures, resulting in substantial changes
in target size and shape. Moreover, the module is limited to sensing features within a
fixed range and lacks the adaptability to adjust the sampling position of the convolution
kernel dynamically, making it arduous to capture crucial information about falling targets
comprehensively. Consequently, this led to decreased accuracy for target localization in
complex environments and increased the likelihood of false detections.

To address the limitations of the C2f module in detecting falls with significant varia-
tions in scale and high environmental similarity, we introduced DCNv3 during the feature
extraction stage. DCNv3 effectively captures comprehensive information surrounding the
fall target within the sensory field and adapts to diverse sizes and shapes by dynamically
adjusting convolution kernel shapes and positions [30]. The deformable convolution opera-
tion in DCNv3 employs a learnable offset to govern the shape of each convolution kernel,
thereby facilitating adaptive adjustment of the convolution operation based on diverse
image regions and enhancing its perceptual capability. This enhancement enables a more
precise capture of fall target details and features, thereby improving both the accuracy
and robustness of our fall detection model. Consequently, it led to enhanced precision in
detecting fall targets and increased reliability of the model even in complex scenarios.
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The DCNv3 model enables adaptive modification of the convolution kernel shape
based on the target content in the image. This flexible mapping enhances the coverage of
the detected target appearance and captures a more comprehensive range of useful feature
information [30]. Equation (1) represents the expression for DCNv3.

G K
y(po) = Y ) wemgxg (Po + e+ Apgk) (1)
g=1k=1

Equation (1) defines G as the number of groups, w, as the projection weights shared
within each group, and mg as the normalized modulation factor of the Kth sampling
point of the Gth group. DCNv3 exhibits superior adaptability to large-scale visual models
compared to its counterparts in the same series, while also possessing stronger feature
representation and a more stable training process.

DCNv3 has negligible impact on the number of parameters or computational com-
plexity of the model. However, excessive utilization of deformable convolutional layers can
significantly increase computation time in practical applications. To ensure optimal perfor-
mance without compromising functionality, only the standard convolutional layers within
the Bottleneck of the C2f module in the backbone network were substituted with DCNv3
deformable convolutional layers, forming a compliant bottleneck module (Dv3_Bottleneck),
as depicted in Figure 2.

Figure 2. DCNv3 replaces Standard Conv.

As illustrated in Figure 3, the C2f module has been reconstructed using Dv3_Bottleneck,
which comprises of convolution layer, separation layer, and Dv3_Bottleneck. The incorpo-
ration of C2Dv3 into the backbone network enhances its ability to capture crucial target
features, thereby elevating target detection performance.

Dv3-Bottleneck

Dv3-Bottleneck

C2Dv3 [ CBS I1x1 —> Split — Dv3-Bottleneck CBS 1x1 ——»

—

Figure 3. C2Dv3 model based on Dv3-Bottleneck.

2.3. DyHead Module

To better integrate the diversity of feature scales resulting from variations in falling
target scale and capture the inherent spatial relationships across different scales and shapes,
this study replaced the original detection head of YOLOv8 with a dynamic detection head
called DyHead (Dynamic Head). DyHead incorporates scale-aware attention, spatial-aware
attention, and task-aware attention simultaneously [31]. It employs a dynamic receptive
field design that adaptively adjusts the convolution kernel size based on the size of the
falling target. The DyHead model possesses the capability to integrate multiple attention
mechanisms, thereby enabling the fusion of diverse information and mitigating the adverse
effects caused by occlusion. This ensures effective detection of targets with varying scales
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and shapes while enhancing overall detection capability and optimizing computational
efficiency. The calculation formula is presented in Equation (2).

W(F) = nic(ms(mp(F)-F)-F)-F (2)

The attention function is represented by the symbol W, and the feature tensor Fis a
three-dimensional tensor with dimensions of L x S x C. Here, L represents the level of
the feature map, S represents the width-height product of the feature map, and C represents
the number of channels in the feature map. The scale-aware attention module 777 (-), space-
aware attention module 77g(+), and task-aware attention module 77¢(-) are, respectively,
applied to each dimension of L, S, and C. Figure 4 illustrates the structure of a single
DyHead block.
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Figure 4. Structure of DyHead model.

The computational processes for each of the three attention modules are represented

as follows:
nL(F)~F—a<f<51CSZCF>>~F 3)

L K

nS(F)-F:%Z Zwl,j-F(l;pj+Apj,‘c)-Amj (4)
I=1j=1

mc(F) - F = max (a!(F) - Fe + B (F), a(F) - Fe + B(F) ) 5)

In Equation (3), the linear function f(-) is approximated using a 1 x 1 convolution
operation. Herein, o(x) = max(0, min(1, (x + 1)/2)) serves as an activation function
for this approximation process. Before introducing K as representing the number of sparse
sampling positions in Equation (4), we explain that these positions enable focusing on
discriminant locations through determining movable position p; + Ap; based on self-
learning spatial displacement Ap;. Moreover, we introduce Am;, denoting a self-learning
importance scalar at position p; which can be learned from input features at middle
level F. Subsequently defined in Equation (5), F¢ refers to the feature slice of channel C

while [«!, B!, a2, B?] T= 6(-) represents a superfunction employed for learning control
activation threshold values. Sequentially applying these three attention mechanisms allows
them to be stacked multiple times to form DyHead blocks, as depicted in Figure 5.
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Figure 5. Connection scheme of DyHead blocks.

2.4. Loss Function EASlideloss Design

The elderly population is more susceptible to falls in complex environments, and
the fall detection model encounters challenges such as obscured fall objects, low ambient
lighting, high environmental overlap, and diverse fall postures. These data present hard
samples with a lower number of fall instances compared to non-fall instances, resulting in
an imbalanced dataset. Without an appropriate loss function, the performance of the fall
detection model in the target category is compromised, thereby affecting its accuracy and
reliability in practical applications. YOLOv8's original BCEwithloss (BCE) loss function
solely focuses on accurate label prediction without addressing sample balancing when
tackling the sample imbalance issue. Consequently, the model prioritizes non-fall instances
over effectively identifying falling actions. To address this limitation, Slideloss incorporates
a sliding window mechanism that adaptively learns threshold parameter p for positive
and negative samples. By assigning higher weights near y, it amplifies relative loss for
hard-classified samples while emphasizing misclassified ones [32]. The implementation
principle is illustrated by Equation (6).

1 x<u—01
fx)=3el1 yu—_01<x<upu (6)
e(lfx) x> i

The proposed EASlideloss in this paper is based on Slideloss, which integrates the
exponential moving average (EMA) with the original Slideloss. By applying the exponential
moving average method to weigh the value of the time series, we aim to mitigate the
impact of sudden changes in adaptive threshold on loss and enhance both the accuracy and
reliability of our model. Additionally, we gradually reduce the weight assigned to difficult
samples, thereby diminishing the model’s attention towards them and preventing excessive
interference caused by these challenging instances throughout the training process. The
implementation principle is illustrated in Equations (7)-(9).

di=p(1-e7¥) 7)
p=di-pi1+(1—d;)-6 (8)
1 x<u—-01
fx)=Rel1 y—_01<x<upu )
e(l—x) x> i

In Equation (7), the attenuation factor 0 < d; < 1 represents the weight distribution
control for historical and latest data when calculating the average value, where 8 denotes
the attenuation coefficient. The variable i represents the current training round, while 7 is a
hyperparameter. In Equation (8), y;_1 signifies the previous time’s average index value,
and 0; represents the current time’s data.
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2.5. Model Evaluation Metrics

The evaluation metrics employed in this study to assess the performance of the fall
detection model include Precision (P), Recall (R), and Average Precision (AP). AP quantifies
the detector’s performance within each category, while the mean average precision (mAP)
is obtained by averaging these AP values. mAP serves as a pivotal metric for evaluating the
overall accuracy of object detection models and a reliable indicator of their performance.

3. Experiment and Results
3.1. Datasets

Fall events are relatively uncommon in daily life. Although existing public fall detec-
tion datasets attempt to simulate the complex and authentic nature of falls, they still suffer
from limitations such as simplistic experimental environments and an inability to accurately
replicate real-life falls. In this study, we comprehensively utilized the UR Fall Detection
Dataset, the Fall Detection Dataset, and images of human falls collected from real-world
scenes on the Internet to gather data encompassing different illuminations, angles, object
similarities, and occlusion scenarios. A total of 4976 datasets were obtained through this
process. Subsequently, we employed the open-source tool Labellmg to uniformly label
these data images in Yolo format and generate corresponding labels for a total of 5655
samples depicting various poses. The dataset was then divided into a training set (70%), a
test set (20%), and a validation set (10%) following a 7:2:1 ratio format. Figure 6 illustrates
some representative scenes from our dataset that can serve as references for evaluating the
performance of ESDv3-YOLO under realistic conditions.

Figure 6. Typical dataset presentation.

3.2. Experimental Process

The test platform is configured with a 6-core E5-2680 v4 processor and an NVIDIA
GeForce RTX 3060 GPU. The operating system used is Windows 11, along with PyTorch
version 2.0.1 in the development environment of PyCharm 2022.2.3 and Python version
3.10.12. The model takes input images of size 640 x 640 pixels for training purposes, while
the training parameters consist of a batch size of 32, a total of 200 iterations, momentum set
to 0.937, initial learning rate at 0.001, and an attenuation coefficient value of 0.9.

The YOLOvVS8s and ESD-YOLO models share the same dataset and training param-
eters, as depicted in Figure 7. Following 20 iterations, both models exhibit a gradual
decline in loss value, with the error reaching stability after 75 iterations. Experimental
findings demonstrate that compared to the original model, ESD-YOLO showcases ac-
celerated convergence speed, reduced loss value, and significantly enhanced network
convergence capability.



Electronics 2024, 13, 1141

8 of 13

—— yolov8s
54 —— ESD-yolo
—— YOLOV9s

0 25 50 75 100 125 150 175 200
epoch

Figure 7. Loss curves are trained by three models.

3.3. Experimental Results and Analysis

To validate the performance of the ESD-YOLO model, we conducted two sets of
comparative experiments. The first set aimed to compare the accuracy and performance of
the improved fall detection model with YOLOvS8s. The second set further compared the
differences between the improved model and both YOLO series models and mainstream
object detection algorithms. Through these comprehensive comparisons, we can thoroughly
evaluate the accuracy and performance of our improved fall detection model in comparison
to other relevant algorithms.

3.3.1. Ablation Experiment

The ablation experiment aims to validate the optimization effect of each enhanced
module. In this study, we conducted an ablation analysis on ESD-YOLO, where specific
enhancements were incorporated into the YOLOv8s model, namely C2Dv3, DyHead, and
EASlideloss denoted as YOLOv8s_1, YOLOvS8s_2, and YOLOv8s_3. As depicted in Table 1,
each module exhibited varying degrees of improvement in the accuracy of ESD-YOLO.

Table 1. Ablation experiments with different design strategies.

Modules C2Dv3 DyHead EASlideloss P (%) R (%) mAP0.5 (%)  mATP0.5:0.95 (%)

YOLOvV8s 82.3 784 84.4 59.7
YOLOvS8s_1 Vv 84.7 80.2 86.4 62.5
YOLOVS8s_2 Vv 85.9 78.2 86.1 61.8
YOLOV8s_3 Vv 76.8 83.7 84 60
ESD-YOLO V4 Vv 4 84.2 82.5 88.7 62.5

After incorporating the C2Dv3 module to enhance the backbone network, there is a
noticeable improvement in precision (2.4%), recall (1.8%), mAPO0.5 (2%), and mAP0.5:0.95
(2.8%). These findings demonstrate that the C2Dv3 module effectively enhances the feature
extraction capability of the backbone network, enabling it to accurately capture intricate
details of falling human bodies and effectively handle target deformations. Moreover, this
module exhibits superior accuracy in recognizing positive samples and enhances its ability
to identify genuine positive instances, thereby enhancing overall detection performance.

After incorporating DyHead into the Neck component, the accuracy, mAP0.5, and
mAP0.5:0.95 witnessed a respective increase of 3.6%, 1.7%, and 2.1%. This observation
substantiates that replacing the original detection head of YOLOvS8 with DyHead effectively
enhances adaptability towards scale transformations and shape variations in detected
objects, thereby augmenting model perception ability and accuracy.
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By replacing the original BCEwithloss function in YOLOv8 with EASlideloss, a signifi-
cant improvement of 5.3% in recall rate and 0.3% in mAP0.5:0.95 was observed, indicating
that the utilization of EASlideloss enhances fall detection accuracy and reliability, thereby
augmenting the model’s ability to accurately detect falls.

The results of the ablation experiment demonstrate that all three enhanced modules
contribute to improved accuracy of the overall model, indicating a strong coupling between
these refined methods. Consequently, ESDv3-YOLO exhibits a significant performance
enhancement in comparison with the original YOLOvSs.

3.3.2. Contrast Experiment

In order to assess the accuracy of various high-performance models for fall detection,
we selected 11 representative network models, namely YOLOv4-tiny, YOLOv5s, YOLOV5-
timm, YOLOv5-efficientViT, YOLOv5-vanillanet, YOLOv7, YOLOv7-tiny, YOLOVSs,
YOLOV9s, SSD, and Faster R-CNN for comparative testing with ESD-YOLO. All mod-
els were trained and tested using the same dataset.

The fall detection results of different models are presented in Table 2. It is observed
that the ESD-YOLO model achieves the highest accuracy, mAP0.5, and mAP0.5:0.95 values
among the aforementioned 11 models, with respective scores of 84.2%, 88.7, and 62.5%.
In comparison to these 11 network models, the ESD-YOLO model demonstrates improve-
ments in mAPO0.5 by 10.2%, 3.2%, 6.7%, 4.4%, 5.5%, 10.8%, 3.2%, 6.8%, 4.3%, 2%, 12.6%, and
7.9%. In addition, Map0.5:0.95 improves by 6.9%, 2.6%, 3%, 3.9%, 5.6%, 2.9%, 2.1%, 4.2%,
2.8%, 1.1%, 8.6%, and 5.8%, respectively. The ESD-YOLO algorithm exhibits significant
performance advantages when compared to mainstream algorithms due to its comprehen-
sive consideration of spatial transformation and shape information, enabling it to perform
well even under conditions involving large-scale transformations and occlusions of falling
targets. Therefore, in contrast to other algorithms, ESD-YOLO demonstrates superior
adaptability for fall detection tasks.

Table 2. Comparative experiments on fall detection results of high-precision models.

Modules P (%) R (%) Map0.5 (%) Map0.5:0.95 (%)
YOLOv4-tiny 759 774 78.5 55.6
YOLOvb5s 82.3 79.9 85.5 59.9
YOLO5-timm 81.2 78.9 82 59.5
YOLOvV5-efficientViT 83.1 78.5 84.3 58.6
YOLOv5-vanillanet 78.3 77.5 83.2 56.9
YOLOv5-ShuffleNetv2 78.1 83.1 779 59.6
YOLOv7 80.2 80.6 85.5 60.4
YOLOV7-tiny 78.2 82.2 81.9 58.3
YOLOvV8s 82.3 78.4 84.4 59.7
YOLOV9s 84.3 79.2 86.7 61.4
SSD 76.2 71.8 76.1 53.9
Faster R-CNN 80.7 77.8 80.8 56.7
ESDv3-YOLO 84.2 82.5 88.7 62.5

3.4. Scene Test

A comprehensive visual comparison between YOLOv8s and ESD-YOLO algorithms
was conducted in various scenarios, encompassing scenes with significant scale changes
of falling targets, dense crowds, high environmental similarity, and target occlusion. The
detailed comparison is presented in Figure 8.



Electronics 2024, 13, 1141

10 of 13

Original images YOLOV8s detection results ESD-YOLO detection results

[Rall 084

Mfo‘h 0.84
e

fol 082
k081

Al

Figure 8. Cont.



Electronics 2024, 13, 1141

11 0f 13

(d)

Figure 8. Test in real scenarios. (a) Detection targets with large-scale variations; (b) intensive fall

detection targets; (c) identify difficult scenes; (d) target occlusion.

In Figure 8a, the person’s size in the image is either too large or too small, resulting in
missed detections and incorrect box selections. In comparison to YOLOv8s, ESD-YOLO
demonstrates improved capability in identifying more detection targets and accurately
selecting boxes with higher confidence. This improvement can be attributed to the integra-
tion of the C2Dv3 module, which enhances network receptive field and feature extraction
abilities. Consequently, ESD-YOLO effectively focuses on detecting targets, significantly
enhancing prediction box positioning accuracy while minimizing missed detections. As a
result, it achieves superior prediction accuracy for fall detection tasks.

The people in Figure 8b are densely packed with complex spatial positions, resulting
in missed detection by YOLOvSs. By replacing DyHead as the detection head, ESD-YOLO
can better capture spatial information and identify more monitoring targets than YOLOvSs,
while also exhibiting higher confidence in detecting falling figures.

In Figure 8c, there exist objects resembling the falling target, and due to a significant
overlap between the falling target and its surroundings, fall detection becomes considerably
more challenging. By incorporating EASlideloss and C2Dv3 into ESD-YOLO, our approach
effectively focuses on difficult samples and captures crucial information regarding the
relationship between the falling target and its environment. This leads to a reduced
probability of false detection and improved accuracy in detecting falls.

The falling target in Figure 8d is evidently obstructed, leading to a failure of YOLOv8s
in identifying the target and resulting in false detection. In contrast, ESD-YOLO places
greater emphasis on challenging samples and effectively addresses the issue of difficult
identification caused by blockage by leveraging spatial position information encompassing
the detection target’s surroundings.

Based on the aforementioned experimental analysis, it is evident that ESD-YOLO
exhibits superior performance in intricate environments.

4. Conclusions

The present study introduces ESD-YOLO, a high-precision algorithm for human fall
detection in complex scenes. In comparison to the YOLOv8s model, it exhibits enhanced
capabilities in addressing challenges encountered during fall tasks, including large target
scale transformations, crowded environments with multiple individuals, and high levels
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of environmental fusion and occlusion. The main contributions of this paper can be
summarized as follows:

The C2Dv3 module is proposed to redesign the backbone network of YOLOvSs,
enhancing its feature extraction ability and enabling it to better capture details of falling
human bodies and process complex features of falling targets.

DyHead replaces the original detection head of YOLOvSs, allowing the model to focus
on potential position relationship features of falling targets in different scales and shapes in
spatial positions.

EASlideloss loss function replaces the original BCE loss function of YOLOvS8s, improv-
ing accuracy while ensuring stability by focusing on difficult fall samples and gradually
reducing attention to them.

The experimental results on the self-constructed dataset demonstrate that ESD-YOLO
achieves an accuracy of 84.2%, a recall of 82.5%, a mAP0.5 of 88.7%, and a mAP0.5:0.95 of
62.5%. In comparison with the original YOLOv8s model, ESD-YOLO exhibits improve-
ments in accuracy, recall, mAP0.5, and mAP0.5:0.95 by 1.9%, 4.1%, 4.3%, and 2.8%, respec-
tively. The comprehensive fall detection experiments validate that ESD-YOLO possesses an
efficient architecture and superior detection accuracy, thereby meeting the real-time fall
detection requirements effectively. Furthermore, when compared to existing fall detection
models, ESD-YOLO offers enhanced detection accuracy for various complex fall scenarios.
In summary, ESD-YOLO enhances the accuracy of human fall detection and enables real-
time identification and alerting of falls. It facilitates timely detection of elderly individuals
experiencing falls and transmits alarm information to their caregivers through various
communication channels, thereby enabling prompt intervention. Future research directions
should focus on reducing model parameters to facilitate its deployment on mobile devices,
making it applicable in real-world scenarios.
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