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Abstract: Since Mars is far away from Earth, the propagation delay between Mars and Earth is very
large. To ensure the effective use of the link transmission bandwidth, China’s first Mars exploration
mission has put forward a demand for data compression for all scientific payloads. The on-board
mature algorithms for data compression are mainly focused on optical images and microwave
imaging radar applications. No articles have been published on data compression methods that are
applied to subsurface-penetrating radar. Based on the background of this application, this paper
proposes a logarithmic lossy compression algorithm which can meet the mission requirements for
high compression ratios of 4:1 and 2.5:1. Its compression error is less than that of the block adaptive
quantization (BAQ) algorithm. The algorithm is not only easy to implement on field-programmable
gate array (FPGA) platforms, but also offers simple ground decompression and fast imaging. The
experimental results show that high compression ratios of 4:1 and 2.5:1 can be realized, even if the
data in and between traces do not have a strong correlation. And its relative error is less than 2%,
which is a new type of high-efficiency data compression method that can be implemented on-board
to meet with the demand of subsurface penetrating radar.

Keywords: Mars rover; subsurface-penetrating radar; data compression; lossy compression; block
adaptive quantization (BAQ); logarithm compression; field-programmable gate array (FPGA)

1. Introduction

China’s first Mars exploration mission (Tianwen-1) was officially established in 2016.
Tianwen-1 was designed to carry out orbiting, landing, and roving in one mission [1].
Tianwen-1 was successfully launched on 23 July 2020 and approached Mars in February
2021. The lander carrying the rover touched down on the southern part of Utopia Planitia,
a vast plain in the northern hemisphere of Mars, on 15 May 2021 and successfully detached.
TheMars rover on the Tianwen 1 named ZhuRong carried six payloads. The Mars rover
subsurface-penetrating radar (RoSPR) is an important payload, which is used to detect
the thickness of the upper Martian soil and the structure of potentially buried water ice
or dry ice and to determine the depth distribution of the subsurface stratigraphy. Since
Mars is far from Earth, the propagation delay in the communication link is very large (more
than 20 min). In order to reduce the pressure on the transmission link and ensure the
effective use of the link transmission bandwidth, China’s first Mars exploration mission has
put forward a demand for data compression for all scientific payload data. Compression
algorithms are widely used to reduce data storage requirements in computers. A high-
speed CPU and memory can easily solve the resource problems of compression algorithms.
Therefore, various algorithms, such as text compression, image compression, and encoding
compression, have been proposed and successfully applied in different fields. On the
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contrary, the compression algorithms required for embedded systems, especially in FPGA
applications, cannot directly employ the algorithms mentioned above. With the increasing
application of satellites, optical equipment data compression algorithms are becoming
increasingly mature. After long-term development, good results have been achieved. The
spaceborne mature algorithms of data compression are mainly focused on optical images [2]
and microwave radar imaging [3,4]. No articles have been published on data compression
methods that are applied to subsurface-penetrating radar. The RoSPR data, taken from
underground soil, are far from optical image data, and their characteristics are very different,
so the compression algorithm for optical images cannot be used directly. At the same time,
microwave imaging radar detects data from the reflection of electromagnetic waves on
the surface of ground objects, and the data have normal distribution characteristics, so the
block adaptive quantization (BAQ) algorithm is suitable for data compression. The BAQ
algorithm has characteristics such as good real-time performance, low difficulty, and easy
implementation and is widely used in radar imaging satellites.

In 1987, Joo and Held proposed the block floating point quantization (BFPQ) algo-
rithm [5] for raw echo data compression in synthetic aperture radar (SAR). The SIR-C
system launched by the United States in 1993 successfully quantized the original SAR echo
data from 8 bits to 4 bits using this algorithm. Considering both resources and compression
performance, the BAQ algorithm proposed by Kwok and Johnson is relatively easy to
implement in hardware [6]. It has been applied in the SAR system for Magellan aircraft
and A-SAR for ENVISAT [7]. Up to now, only the BAQ and BFPQ algorithms have been
applied to spaceborne data compression in practical engineering. The BFPQ algorithm was
optimized by Israel and India in 2008 and 2009, respectively. The Israeli technical synthetic
aperture radar “TecSAR” and Indian imaging satellite “RISAT-2” both used modified block
floating point quantization (MBFPQ). In 2016, the European Sentinel series [6,7] adopted
two algorithms: the BAQ and flexible dynamic block adaptive quantization (FDBAQ)
algorithms [8], which can achieve the optimal quantization output results for different
types of target data. In addition to the scalar quantization algorithm, the vector quanti-
zation (VQ) algorithm has also appeared [9]. But the dynamic range of the data from the
RoSPR is very large (more than 90 dB), and the efficiency of using the VQ algorithm to
compress echo data is low [10]. Later, block adaptive vector quantization (BAVQ) [11]
and block gain adaptive vector quantization (BGAVQ) were developed. The Institute of
Electronics, Chinese Academy of Sciences, has carried out in-depth research on the data
compression algorithm and hardware implementation of spaceborne radar [12]. Based
on the research on existing algorithms, one-dimensional and two-dimensional nonlinear
quantization algorithms and amplitude–phase (AP) compression algorithms that compress
the amplitude and phase of the original data were proposed successively. Compared with
SAR data, RoSPR data are targeted toward the stratified detection results for the Martian
medium below the surface, its signal dynamic range is larger (more than 90 dB usually),
data correlation is weak and has low redundancy. After a comparative analysis, it is found
that the BAQ algorithm is not as applicable as the method proposed in this article.

In response to the above problem, a logarithmic lossy compression algorithm based
on an FPGA is proposed in this paper, and it is easy to implement and has good real-
time performance and a lower compression error than the BAQ algorithm. According to
mission requirements, RoSPR’s data compression ratios need to meet 2.5:1 and 4:1 [13].
The algorithm model is proposed according to the characteristics of the RoSPR data, and
the high compression ratio results of 2.5:1 and 4:1 are verified using actual loopback data.
We compare compression data and decompression data measured in glaciers and volcanic
vents, and the results show that the data compression error is acceptable and the FPGA
resources are less occupied with this method. The proposed algorithm can meet the
requirements of the RoSPR data compression, which is a high-efficiency data compression
method for subsurface-penetrating radar.

The remaining sections are arranged as follows: Section 2 provides an overview of the
RoSPR system. Section 3 introduces the data characteristics of the RoSPR, the algorithm
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model, and the processing flow. In Section 4, the BAQ and logarithmic compression
algorithms are compared in terms of the processing of measured data, and this further
shows that the logarithmic compression algorithm is more suitable for the RoSPR. Section 5
describes the implementation of the logarithmic compression algorithm in detail. Section 6
introduces the compression processing results of field test data from glaciers and volcanoes,
which demonstrates that the algorithm can meet the application requirements. Finally, a
summary and acknowledgements are provided for this article.

2. RoSPR Overview

The subsurface-penetrating radar of the ZhuRong rover is a frequency-domain radar
with an FM continuous wave signal, whose block diagram is shown in Figure 1. The
RoSPR is equipped with two channels. One is a low-frequency channel, and the other
is a high-frequency channel, both of which realize corresponding scientific objects. The
low-frequency channel is 15~95 MHz, and the other is 450~2150 MHz. The controller of the
radar is composed of a Xilinx Virtex 5 aerospace FPGA, XQR5VFX130T. The main functions
of the FPGA are as follows: (1) to generate the two channels’ baseband signals; (2) to fulfill
the low-frequency channel functions: echo sampling, digital down-conversion and pulse
compression, and data compression; (3) to control the RF frontend; (4) to achieve the high-
frequency channel functions: echo sampling and data compression; (5) to acquire telemetry
signals; and (6) to perform parameter injection, format and send scientific data [13], and
so on.
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Figure 1. The RoSPR block diagram.

A block diagram of the RoSPR FPGA is given in Figure 2. The low-frequency chan-
nel functions are achieved in the digital domain, which is colored in orange in the block
diagram. Meanwhile, a superheterodyne receiver is employed in the hardware for the
high-frequency channel, and its function is shown in blue in the block diagram. As for
the high-frequency channel, the FPGA only needs to complete its echo sampling and data
compression. Moreover, the two channels’ data compression is the same. We use the
low-frequency channel as an example to introduce the algorithm in detail in the follow-
ing sections.



Electronics 2024, 13, 1008 4 of 12
Electronics 2024, 13, x FOR PEER REVIEW 4 of 13 
 

 

ADC Data 

Receiving

14b

400MHz
DDC

Pulse 

Compression

Data 

Compression

 Scientic 

Data 

Sending

Low-Frequency Channel

ADC Data 

Receiving

16b

200KHz
FFT

Data 

Compression

LVDS BUS

Baseband Signal 

Generating(DDS)
Clock 

Managment
Telemetry Signal 

Acquisition

RF Frontend 

Controlling
RS-422 BUS

High-Frequency Channel FPGA

Parameter 

Injection and 

Telemetry 

Parameter Return

 

Figure 2. The RoSPR FPGA block diagram. 

3. BAQ and Logarithmic Compression Algorithms 

Compression algorithms are generally divided into three categories: (1) scalar quan-

tization compression algorithms; (2) vector compression algorithms; and (3) transform-

domain compression algorithms. Transform-domain methods have a high degree of com-

plexity and have not been practically applied in spaceborne SAR systems. Vector com-

pression algorithms, as mentioned above, are not suitable for subsurface-penetrating ra-

dar. Therefore, the RoSPR uses a scalar quantization method to achieve lossy compression. 

Scalar quantization methods include uniform quantization, adaptive quantization, and 

non-uniform quantization. After pulse compression in the FPGA, the radar data roughly 

obey the Gaussian distribution. Subsequently, the quantization method needs to employ 

adaptive quantization or non-uniform quantization instead of uniform quantization. The 

BAQ algorithm is selected as the adaptive quantization method, while the logarithmic 

quantization method is chosen as the non-uniform quantization method. A comparison of 

the two compression algorithms is made in Section 4. 

3.1. Logarithmic Compression Algorithm and Model 

The logarithmic compression algorithm (LCA) is a lossy compression method em-

ploying non-uniform quantization. It uses amplitude non-uniform quantization to com-

press the original data; this is similar to the block adaptive quantization algorithm. In 

comparison to the BAQ algorithm, it has no block, no average mean, and no quantization 

code table [14]. The LCA can be implemented on a single FPGA, uses few resources, and 

has good real-time performance. 

The maximum echo signal of the RoSPR low-frequency channel is about 2 dBm, and 

its noise floor is −85 dB. Therefore, the dynamic range of the low-frequency channel is 

about 87 dB. Considering the margin, 90 dB is taken. RoSPR pulse compression is achieved 

in the FPGA, which is carried out by FFT multiplication in the frequency domain. The FFT 

operation result should be at least about 15 bits (90 dB/6 dB/bit). Considering the design 

margin and accumulation requirements, the FFT result is represented by a 20-bit signed 

number that covers the 90 dB dynamic range. 

A 20-bit signed data becomes a 5-bit signed data after 4:1 compression. The data max-

imum before compression is (2^20 = 1,048,576), and the data maximum after compression 

is (2^5 = 32). The base of the logarithmic is 10, and the compression formula is given as 

follows: 

10_ 1 5.3 log ( _ )compress data ini data=     (1) 

Figure 2. The RoSPR FPGA block diagram.

3. BAQ and Logarithmic Compression Algorithms

Compression algorithms are generally divided into three categories: (1) scalar quantiza-
tion compression algorithms; (2) vector compression algorithms; and (3) transform-domain
compression algorithms. Transform-domain methods have a high degree of complexity
and have not been practically applied in spaceborne SAR systems. Vector compression al-
gorithms, as mentioned above, are not suitable for subsurface-penetrating radar. Therefore,
the RoSPR uses a scalar quantization method to achieve lossy compression. Scalar quan-
tization methods include uniform quantization, adaptive quantization, and non-uniform
quantization. After pulse compression in the FPGA, the radar data roughly obey the
Gaussian distribution. Subsequently, the quantization method needs to employ adaptive
quantization or non-uniform quantization instead of uniform quantization. The BAQ algo-
rithm is selected as the adaptive quantization method, while the logarithmic quantization
method is chosen as the non-uniform quantization method. A comparison of the two
compression algorithms is made in Section 4.

3.1. Logarithmic Compression Algorithm and Model

The logarithmic compression algorithm (LCA) is a lossy compression method employ-
ing non-uniform quantization. It uses amplitude non-uniform quantization to compress
the original data; this is similar to the block adaptive quantization algorithm. In compar-
ison to the BAQ algorithm, it has no block, no average mean, and no quantization code
table [14]. The LCA can be implemented on a single FPGA, uses few resources, and has
good real-time performance.

The maximum echo signal of the RoSPR low-frequency channel is about 2 dBm, and
its noise floor is −85 dB. Therefore, the dynamic range of the low-frequency channel is
about 87 dB. Considering the margin, 90 dB is taken. RoSPR pulse compression is achieved
in the FPGA, which is carried out by FFT multiplication in the frequency domain. The FFT
operation result should be at least about 15 bits (90 dB/6 dB/bit). Considering the design
margin and accumulation requirements, the FFT result is represented by a 20-bit signed
number that covers the 90 dB dynamic range.

A 20-bit signed data becomes a 5-bit signed data after 4:1 compression. The data
maximum before compression is (2ˆ20 = 1,048,576), and the data maximum after compres-
sion is (2ˆ5 = 32). The base of the logarithmic is 10, and the compression formula is given
as follows:

compress_data1 =
⌊
5.3 × log10(ini_data)

⌋
(1)

The symbol ⌊⌋ indicates that the data are rounded down. ini_data represents the
20-bit signed data after radar pulse compression, and compress_data1 represents the com-
pressed data.
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Similarly, the data become 8-bit signed data after 2.5:1 compression. The maximum
number of data before compression is (2ˆ20 = 1,048,576), and the maximum number of data
after compression is (2ˆ7 = 128). The compression formula is as follows:

compress_data2 =
⌊
42.5 × log10(ini_data)

⌋
(2)

compress_data2 represents the compressed data after 2.5:1 compression.

3.2. Algorithm Flow

The LOG quantizer is used to encode the input data. The establishment of the LOG
quantizer depends on the width of the input data and the compression ratio. Its block
diagram is shown in Figure 3.
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The specific LCA process is as follows:

(1) According to the width of the input data and the compression ratio, the operation
coefficient of logarithmic compression is determined.

(2) According to the width of the input data and the operation coefficient of compression,
the LOG quantizer is established.

(3) The input data are passed through the LOG quantizer, and the compressed coded
value is output.

(4) The compressed value is transmitted to the ground.
(5) The compressed operating coefficient is reused on the ground to decompress the

coded value.

4. BAQ and Logarithmic Compression Algorithm Test Comparison
4.1. BAQ Algorithm

The BAQ quantizers with different bit rates are used to improve the overall compres-
sion performance of the TerraSAR-X system [15–17]. In view of the approximate Gaussian
distribution statistical characteristics for microwave imaging radar data [16], the dynamic
range of the signal in a short time interval is much smaller than that of the entire echo data
set. After the data are divided into blocks, the dynamic range of most compressed data
blocks is reduced [18]. The BAQ algorithm block diagram is shown in Figure 4.
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The specific BAQ algorithm process is as follows:

(1) The data are divided into blocks, the average amplitude of the samples in the blocks
is calculated, and the standard deviation is obtained from a look-up table with the
obtained mean value.

(2) The optimal quantization level threshold is determined from the standard deviation,
and the code is obtained by comparing the data samples in the blocks with the
threshold, which contains 1 sign bit.

(3) The code and the corresponding block amplitude mean are transmitted down to
the ground.

(4) On the ground, the codes and the mean amplitudes of the corresponding data blocks
are used to decompress the data according to the decoding value table.

4.2. Test Comparison of the Two Methods

The two compression algorithms were compared with the measured data in the
laboratory. A loopback test was carried out to obtain data after pulse compression based
on a flight model. The chirp signal transmitted by the transmitter was attenuated by
20 dB by a fixed attenuator, and loopback to the receiver was carried out through a Radio
Frequency (RF) cable. The data were directly output after pulse compression was carried
out in the FPGA.

We used the logarithmic compression algorithm and the BAQ compression algorithm
to complete 4:1 data compression, respectively, and we compared the data compression
and decompression results, as shown in Figure 5, where INI represents the initial data.

When the input data have no targets (148 µs~153 µs), the noise follows a Gaussian dis-
tribution, and BAQ compression performs better than logarithmic compression. However,
for targeted data (144 µs~148 µs), due to their high dynamics, the sidelobe compression ef-
fect of logarithmic compression is significantly better than that of BAQ. In the later analysis
of the RoSPR data, the loss of the echo signal needs to be concerned. The sidelobe loss of
BAQ compression has a significant impact on the later data analysis, while the noise loss
before and after compression has little impact.

To analyze the errors of the data compression algorithms, it is necessary to separately
calculate the average error and peak error of the data before and after compression.
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(1) Average error

The peak signal-to-noise ratio (PSNR) parameter is adopted to evaluate the average
error before and after compression. The peak signal-to-noise ratio (PSNR) is expressed
as follows:

PSNR = 10 × log10(
(max(x))2

MSE
) (3)

x represents the signal before compression, and MSE is the mean square error of the
data before and after compression:

MSE =
1
N

N

∑
i=1

(x − y)2 (4)

y represents the recovery signal after decompression.
According to the PSNR requirements for image and sound compression, it should be

between 30 dB and 50 dB, so the radar data compression algorithm specifies that the PSNR
should be no less than 30 dB.

(2) Peak error

The peak error before and after compression is evaluated using the peak-signal-to-
peak-noise ratio (PSPNR) parameter:

PSPNR =
max(x)

max(abs(r))
(5)

r represents the compression error:

r = abs(x − y) (6)

The PSPNR should be greater than 50; that is, the maximum compression error should
be less than 2% of the signal peak.

The performance of the two compression algorithms is evaluated by comparing the
decompressed data The PSNR and PSPNR are employed for evaluation [19]. The results
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show that the compression error of the logarithmic compression algorithm is smaller
than that of the BAQ algorithm. And the BAQ algorithm does not meet the strict index
requirements, but the logarithmic compression does, as shown in Table 1.

Table 1. Comparison of the root mean square errors of the compression algorithms.

Serial Number Compression Error Logarithmic Compression BAQ Index Requirements

1 PSNR 35.0596 27.8045 >30
2 PSPNR 56.6215 2.3230 >50

Through a comprehensive comparison, it is found that the compression error of the
logarithmic compression algorithm is smaller than that of the BAQ algorithm and meets
the index requirements. Therefore, the logarithmic lossy compression algorithm is more
effective in RoSPR data compression.

5. Realization of Logarithmic Data Compression in FPGA

The principle of FPGA implementation for this algorithm is to complete logarithmic
operations. The conventional method used to implement the logarithm operation in the
FPGA is the look-up table method [20]. However, when conventional method is used to
perform the logarithmic operation for a large volume of data and large-width data, a very
large proportion of storage resources is required.

In this design, we adopted the principle of successive approximation to realize loga-
rithmic operations. The implementation process is described in detail below. Assuming
that the input data are N and that y = log10(N) is what we want to compute, the successive
approximation implementation of the logarithm operation includes the following:

Variable x and coefficient sequence k are introduced. The value of sequence k is given,
assuming k = {k1, k2, k3, . . ., kn}, and the approximate value of y_close = log10(N/(ki ∗ x)) =
log10(N/x) − log10(ki).

The initial value of x is N divided by the maximum k value kmax in the sequence and
then by x = N/kmax at the beginning.

Compensate the value of x for k; that is, let x = ki ∗ x. ki is the maximum of k such
that x is not greater than 1. Update the approximation value of y_close synchronously; i.e.,
subtract the compensated log10(ki) [21].

Repeat step (3) until the minimum k value of x compensation is still greater than 1;
then, the compensation is abandoned, and the approximate value of y_close is output.

Taking the 4:1 logarithmic compression algorithm as an example, the logarithmic
computation is completed by successive approximation. The logarithmic compression
coefficient of 4:1 successive approximation based on the FPGA is shown in Table 2.

In the initialization process of data compression, the initial value is input_data/2ˆ20,
where input_data is the input data before compression. The approximation operation
requires 25 steps in total, that is, the serial numbers 2~26 in Table 2. The convergence
condition of the approximation operation is to judge whether the products of the approxi-
mation parameter k and x are greater than 2ˆ20 before each step of operation: if the result is
not greater than 2ˆ20, the approximation operation of the k value is completed; otherwise,
this approximation operation is abandoned, the result of the last operation is assigned
to this result, and then the next attempt to perform the approximation operation of the k
value is made. If x is still greater than 2ˆ20 after the minimum k value is compensated, the
compensation is abandoned, and the compressed data are output. When the data is zero,
it is not compressed and is stored directly after its width is converted. A flowchart of the
FPGA implementation for the data compression algorithm is shown in Figure 6.

When the algorithm is implemented on the FPGA in ISE13.2, the proportion of re-
sources is evaluated as shown in Figure 7. The registers are only 1% utilized, and the LUTs
are only 2% utilized. The proportion of resources used by logarithmic compression in
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the FPGA is very small, almost negligible [22]. Therefore, it is feasible to implement the
logarithmic operation in the FPGA using the method of successive approximation.

Table 2. The 4:1 successive approximation parameter value.

Index k ⌊220 × 5.3 × log10(k)⌋

1 220 33,459,199
2 216 26,767,359
3 28 13,383,679
4 24 6,691,839
5 23 5,018,879
6 22 3,345,919
7 21 1,672,959
8 (1 + 21)/21 978,618
9 (1 + 22)/22 538,572

10 (1 + 23)/23 284,277
11 (1 + 24)/24 146,321
12 (1 + 25)/25 74,269
13 (1 + 26)/26 37,420
14 (1 + 27)/27 18,782
15 (1 + 28)/28 9409
16 (1 + 29)/29 4709
17 (1 + 210)/210 2355
18 (1 + 211)/211 1178
19 (1 + 212)/212 589
20 (1 + 213)/213 294
21 (1 + 214)/214 147
22 (1 + 215)/215 73
23 (1 + 216)/216 36
24 (1 + 217)/217 18
25 (1 + 218)/218 9
26 (1 + 219)/219 4
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6. Experimental Verification

In September 2020, a field validation test was carried out at No. 29 Laohugou Glacier
in Qilian Mountain, Gansu Province. Subsequently, in October 2020, an outfield validation
test was carried out in Ulanhada Volcanic Geological Park, Chahar Right Rear Banner,
Ulanqab City, Inner Mongolia Province, as shown in Figure 8a,b.
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Figure 8. Site map of the RoSPR detection test. (a) Field exploration of glaciers; (b) Field exploration
of craters.

This paper selects the test data of the above two scenarios for a data compression
analysis. In order to more intuitively compare the errors of the data before and after
compression, one trace data is intercepted and compared before and after compression. A
comparison of the two compression ratios of 2.5:1 and 4:1 is shown in Figure 9a,b.
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Figure 9. Comparison of the errors between the original glacier data and the decompressed data.
(a) Original data and 2.5:1 decompressed data; (b) Original data and 4:1 decompressed data.

The decompressed data with a compression ratio of 2.5:1 have a high degree of curve
coincidence with the original data, and the error curve is close to the horizontal axis after
normalization. The maximum relative error of the single-channel data before and after
compression is 0.37%, which can be ignored. The decompressed data with a compression
ratio of 4:1 are slightly different from the original data, with a maximum relative error of
less than 0.6%. Compared with the huge storage space occupied by the uncompressed data,
the error is acceptable.

When the crater high-frequency channel data are input, the processing result is similar
to that of the of the glacier data, as shown in Figure 10a,b. Compared with the 2.5:1
compression ratio, a higher 4:1 compression ratio will also result in higher compression
errors. The maximum relative error before and after single-channel data compression is
1.38%; the compression error is still acceptable compared to the size of the original data.



Electronics 2024, 13, 1008 11 of 12

Electronics 2024, 13, x FOR PEER REVIEW 11 of 13 
 

 

  
(a) (b) 

Figure 9. Comparison of the errors between the original glacier data and the decompressed data. 

(a) Original data and 2.5:1 decompressed data; (b) Original data and 4:1 decompressed data. 

The decompressed data with a compression ratio of 2.5:1 have a high degree of curve 

coincidence with the original data, and the error curve is close to the horizontal axis after 

normalization. The maximum relative error of the single-channel data before and after 

compression is 0.37%, which can be ignored. The decompressed data with a compression 

ratio of 4:1 are slightly different from the original data, with a maximum relative error of 

less than 0.6%. Compared with the huge storage space occupied by the uncompressed 

data, the error is acceptable. 

When the crater high-frequency channel data are input, the processing result is sim-

ilar to that of the of the glacier data, as shown in Figure 10a,b. Compared with the 2.5:1 

compression ratio, a higher 4:1 compression ratio will also result in higher compression 

errors. The maximum relative error before and after single-channel data compression is 

1.38%; the compression error is still acceptable compared to the size of the original data. 

 
 

(a) (b) 

Figure 10. Comparison of the errors between the original crater data and the decompressed data. 

(a) Original data and 2.5:1 decompressed data; (b) Original data and 4:1 decompressed data. 

7. Conclusions 

This paper proposes a logarithmic lossy compression algorithm for the Tianwen-1 

Mars rover subsurface-penetrating radar. The algorithm is implemented based on the 

FPGA platform, a suitable logarithmic compression model is given according to the com-

pression ratios of 4:1 and 2.5:1, and data compression with a high compression ratio is 

realized. The logarithm operation of the FPGA is realized by the successive approximation 

Figure 10. Comparison of the errors between the original crater data and the decompressed data.
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7. Conclusions

This paper proposes a logarithmic lossy compression algorithm for the Tianwen-1
Mars rover subsurface-penetrating radar. The algorithm is implemented based on the FPGA
platform, a suitable logarithmic compression model is given according to the compression
ratios of 4:1 and 2.5:1, and data compression with a high compression ratio is realized. The
logarithm operation of the FPGA is realized by the successive approximation method. The
register utilization rate of this method is only 1%, and the look-up table utilization rate
is only 2%, so it uses a small proportion of resources. The FPGA only elapses 300 ns to
compress a 20-bit signed data. The LCA is a very efficient compression algorithm. The
relative error of a single trace data point before and after the compression of glacier and
crater data is less than 2%. This can provide a reference for subsurface-penetrating radar
data compression.
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