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Abstract: With the development of UAV automatic cruising along power transmission lines, intelligent
defect detection in aerial images has become increasingly important. In the process of target detection
for aerial photography of transmission lines, insulator defects often pose challenges due to complex
backgrounds, resulting in noisy images and issues such as slow detection speed, leakage, and the
misidentification of small-sized targets. To address these challenges, this paper proposes an insulator
defect detection algorithm called DFCG_YOLOv5, which focuses on improving both the accuracy
and speed by enhancing the network structure and optimizing the loss function. Firstly, the input
part is optimized, and a High-Speed Adaptive Median Filtering (HSMF) algorithm is introduced
to preprocess the images captured by the UAV system, effectively reducing the noise interference
in target detection. Secondly, the original Ghost backbone structure is further optimized, and the
DFC attention mechanism is incorporated to strike a balance between the target detection accuracy
and speed. Additionally, the original CIOU loss function is replaced with the Poly Loss, which
addresses the issue of imbalanced positive and negative samples for small targets. By adjusting
the parameters for different datasets, this modification effectively suppresses background positive
samples and enhances the detection accuracy. To align with real-world engineering applications,
the dataset utilized in this study consists of unmanned aircraft system machine patrol images
from the Yunnan Power Supply Bureau Company. The experimental results demonstrate a 9.2%
improvement in the algorithm accuracy and a 26.2% increase in the inference speed compared to
YOLOv5s. These findings hold significant implications for the practical implementation of target
detection in engineering scenarios.

Keywords: defect detection; YOLOv5; noise reduction network; DFCG_YOLOv5

1. Introduction

According to the 2023 National Supply and Demand Analysis Report, the electricity
consumption of society as a whole from 2023 will increase by 6% year-on-year compared to
the previous year, and the safe and reliable transportation of transmission lines will be of
great significance for the stable operation of the power grid. With the rapid development
of drone cruise technology [1], the power industry has achieved a high level of intelligence
of drone trajectory tracking in terms of transmission lines [2], but in terms of image
recognition and target detection, the degree of intelligence is still relatively low. Power
staff need to analyze and screen massive aerial images, which is slow and inefficient, so
research on image recognition and target detection is important for the development of the
power industry.

In recent years, research efforts for target detection and image recognition algorithms
have been increasing both domestically and internationally. The focus has mainly been on
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the use of convolutional neural networks (CNNs) to achieve target detection. With further
advancements in research, improved CNN algorithms are becoming more applicable to
the defect detection of transmission lines. Reference [3] proposes the utilization of the
R-CNN algorithm, which combines region partitioning and a high-capacity CNN algorithm.
This approach has been applied to the PASCAL VOC dataset and has shown significant
performance improvement. Building upon the R-CNN algorithm, Fast R-CNN [4] and
Faster R-CNN [5] have been proposed, offering better performance and faster speed. These
algorithms have gained wide acceptance in the industry, although they have not yet fully
met the requirements for accurate transmission line defect detection. In reference [6], a
joint training method combining Faster R-CNN and Mask R-CNN was used for road crack
detection. Although this approach greatly improved accuracy, the combination of the
two algorithms increased the complexity of network training and had an impact on edge
effectiveness. Consequently, this algorithm is not suitable for generalization. Reference [7]
proposes the combination of a Region Partitioning Network (RPN) and Faster R-CNN to
form an attention mechanism, further enhancing the detection accuracy. However, the
network complexity is relatively high, resulting in a GPU frame rate of only 5fps and a poor
inference speed. In reference [8], the improved network structure ResNet-v2 is utilized
for feature extraction and parameter optimization. The accuracy is significantly improved
for the insulator dataset captured by humans, but it lacks practical significance. From the
current development trend, the R-CNN algorithm is evolving towards lightweight solutions.
However, the dual-phase algorithm’s limitations, such as increased model complexity and
slower inference speed, make it unsuitable for real-time monitoring projects with a large
batch of pictures and limited hardware conditions.

Continuous updates to target recognition algorithms have led to the emergence of
both two-stage algorithms based mainly on R-CNN and single-stage algorithms based
mainly on YOLO. The relative simplicity of the model [9] and its fast inference speed [10]
make single-stage algorithms increasingly applicable in the industry. Reference [11] uses
the YOLOv3 feature pyramid and an improved loss function for transmission line detec-
tion, resulting in obvious accuracy improvements compared to YOLOv3 and YOLOv4.
However, due to increased model complexity, the reasoning speed is slow, and the quality
of the dataset and aerial images can vary significantly, making it unsuitable for widespread
use. In reference [12], the YOLOv5 algorithm is improved to address model complexity
issues by utilizing a MobileNetv5 lightweight backbone network and pruning the neck
part, which significantly improves the inference speed. When deployed on the Android
system, it has good applicability. However, it still struggles with detecting the direction of
small targets, and additional improvements are needed for transmission line promotion.
Reference [13] presents a subversive improvement to convolutional neural networks by
separating the training and inference processes into different architectures, decoupling
the two processes through a re-referentialization structure. This approach increases the
speed of the backbone by 83% relative to ResNet-50, reaching an industrial-grade standard
for inference speed and achieving a relative balance between accuracy and speed. How-
ever, subsequent deployment on transmission lines did not meet the expected accuracy
standards. Meanwhile, reference [14] addresses the challenge of detecting small targets
by adding a small target detection predictor head in the head part for defect detection in
photovoltaic panels. The introduction of BottleneckCSP templates improves the depth of
feature extraction, and the Ghost convolutional network simplifies the model. However,
the dataset used was physically manipulated and amplified, and its industry deployment
ability cannot be verified.

The current trend in improving the YOLOv5 algorithm is gradually moving towards
industrialization and lightweight design. In reference [15], a lightweight backbone is used,
and an attention module is added to enhance the feature extraction of small target insulators.
When applied to artificially processed datasets, it shows promising results. However, there
is a significant quality gap when compared to aerial datasets, and the existence of a serious
imbalance between the positive and negative samples in the small target detection process
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is not taken into account. Deployment in real-world engineering still needs to be verified
using actual datasets. In reference [16], the Ghost module is introduced into both the
Backbone and Neck parts of YOLOv5 to reduce the model complexity. The CABM Attention
Mechanism module is also introduced, resulting in an accuracy rate of 91.6%. However, the
dataset used is artificially enlarged and may not directly reflect its applicability to aerial
images. Furthermore, relying solely on the accuracy rate and neglecting the inference speed
is insufficient to verify the effectiveness of the algorithm. The problem of false detection
caused by numerous small targets is also overlooked, indicating that further verification
is required. In reference [17], improvements are made to the residuals of the Backbone to
segment its attention network, and multi-scale fusion is used to enhance feature extraction,
leading to significant improvements in the results. However, it fails to consider the impact
of small targets on the loss function, and timely defect segmentation in the detection process
is not addressed. Thus, further improvements are necessary for the algorithm.

The balance between accuracy and speed in the YOLO algorithm is mainly determined
by the feature extraction performance of the backbone network and the degree of lightness.
Reference [18] combines the YOLOv5 target network with features, adds an attention
module and a small target detection layer, achieving an accuracy of 92.69% on persimmon
detection. However, the resulting model is too complex for widespread industrial use.
Reference [19] replaces the backbone of the SSD algorithm with MobileNet, which is
currently a more advanced lightweight network. However, it fails to reflect the speed
increase in characterizing the results and does not compare it with the YOLO family of
algorithms, leaving its engineering applicability yet to be demonstrated. In reference [20],
an improved RetinaNet network is combined with a graph convolutional network to
solve geometric problems, achieving a detection accuracy of 83.83%. However, it is only
compared with the SSD algorithm, which is insufficiently illustrative. Reference [21]
uses the Dilated Feature Enhancement Model (DFEM) to expand the sensory field of
CenterNet and applies the CIOU loss function to converge on the anchor frames. It is
then applied to defect detection in steel with a significant effect, proving the importance of
the feature extraction network performance for engineering. However, it is not compared
with the latest algorithms and hence further verification is necessary. On the other hand,
reference [22] improves the ShuffleNet base network by adding the SA attention module
to the ShuffleNetV2 backbone network, significantly improving the accuracy in insulator
detection. However, it ignores the fact that adding the attention mechanism complicates
the network. In reference [23], the Ghost feature extraction network replaces the Backbone
part of YOLOv5 and a bidirectional pyramid feature network (BiFPN) is added, achieving
76.31% accuracy in tea branch bud detection. Although it provides theoretical possibilities
for this paper, the accuracy is still insufficient to meet engineering needs.

According to the transmission branch line defect report, the number of defects involved
in insulators in transmission lines accounts for more than half of the total defects. Therefore,
the use of YOLOv5 for insulator defect detection in massive machine patrol images has
strong engineering practicality. (1) Addressing the issue of current algorithmic models
overly pursuing accuracy and neglecting the complexity of the model, this paper designs a
new type of minimalist network structure that avoids deep networks and complex models.
This makes it easier to directly deploy the model in engineering reality. (2) Focusing on
the problem in which current aerial image detection places too much emphasis on feature
extraction while neglecting external environmental factors, internal current fluctuations,
and incidental noise, this paper proposes a combination of adaptive filtering noise reduction
network and YOLOv5 image detection algorithms to achieve the intelligent preprocessing of
aerial images. (3) Considering the challenge of the small target size for defective insulators
on transmission conductors and the severe imbalance between positive and negative
samples, this paper improves the original loss function of YOLOv5 and proposes a method
that suppresses positive samples to enhance convergence. (4) Addressing the limitation
that many algorithms’ datasets for aerial image detection in transmission lines are limited
to publicly available basic datasets or artificially synthesized datasets due to the high
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confidentiality of aerial images, this paper derives its dataset from aerial images captured
by the unmanned aircraft system of the transmission company. This facilitates the validation
of the algorithm’s effectiveness.

2. Algorithm Principle
2.1. YOLOv5 Algorithm

YOLOv5 is a target detection algorithm further optimized and improved on the basis
of YOLOv4. The YOLOv5 algorithm designs five different models for the depth and
width of the module and the complexity of the model: YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, respectively, and the accuracy of the target detection of the five
models is increased as the order of model complexity is sequentially increased. Among
them, the complexity and accuracy of the YOLOv5s model is more balanced, so this paper
chooses to use YOLOv5s as the basis for insulator defect detection.

The YOLOv5 target detection process has four parts, including the Input part, Back-
bone part, Neck part, and Head part, and the structure is shown in Figure 1.
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Figure 1. YOLOv5 target detection network architecture.

When an input image with a pixel size of 640 × 640 is fed into the model, the Input part
is enhanced with Mosaic data. The four insulator defect images are randomly cropped and
stitched together to form a single image. The image is then preprocessed using adaptive
anchor frame computation and adaptive image scaling operations.

The backbone network of YOLOv5 is CSPDarknet53, which contains the Focus module,
CBL module, CSP1-x module, and SPP module [24]. This network primarily extracts
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target features by gradually reducing the size of the insulator defect map from 640 to 20.
Additionally, the Focus and other modules slice the feature map, increasing the network
depth and improving the effect of target feature extraction.

The Neck part primarily serves the purpose of feature extraction. The process of
up-sampling and down-sampling is achieved through the use of an FPN (Feature Pyramid
Net) and PAN (Path Aggregation Network) [25]. As shown in Figure 1, three sizes of
feature maps, namely 2020, 4040, and 80 × 80, are obtained to facilitate the fusion of
multiscale features.

The Head part receives the feature maps of different scales passed by the Neck part.
It utilizes non-maximal value suppression to filter the target boxes and achieve the better
recognition of multiple target checkboxes, thereby improving the prediction accuracy of
the model.

2.2. Lightweight Backbone GhostNet

Although Backbone, the basis of YOLOv5, can efficiently extract target feature infor-
mation, the network structure is too complex to be directly deployed on the Windows side,
so the lightweight backbone network is the main direction for improvement at present.
The GhostNet network model generates more feature maps using a smaller number of
parameters, which is a clear advantage for the defect detection of targets [26]. The feature
extraction process is shown in Figure 2.
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The three parts of feature extraction can be analyzed based on the structure diagram:
The internal feature map is first obtained by regular convolution Yw′∗h′∗m.

Y′ = X ∗ f ′ (1)

in which ∗ represents the convolution operation, Y′ ∈ Rh′×w′×m is the output feature map
with m channels, X denotes the input feature image, f ′ ∈ Rc×k×k×m is the convolution ker-
nel used. h′ and w′ represent the height and width of the output feature map, respectively,
k × k represents the number of kernels of the convolutional kernel, and f ′ represents the
number of kernels.
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Each individual channel of the Y′ output is then represented by y′i, and the Φi,j opera-
tion is employed to generate the Ghost feature map yij; this process is as in Equation (2).

yij = Φi,j
(
y′i
)
, ∀i = 1, . . . , m, j = 1, . . . , s (2)

where y′i is the Y′th original feature map in i, and Φi,j in the above function is the jth
linear operation for generating the jth Ghost feature map yij, y′i may have one or more
Ghost feature maps

{
yij
}s

j=1, and by Φi,s preserving a constant mapping of the original
feature maps.

Finally, the final feature stitching result is obtained by stitching (identity join) the
ontology feature map with the Ghost feature map obtained in the second step.

Meanwhile, the principle of the Ghost module is utilized to design the Ghost Bottle
neck layer, which is connected to the layer using the BN layer and nonlinearly activated
using the ReLu activation function. For both Stride = 1 (left) and Stride = 2 (right) steps, the
corresponding structures are represented in Figure 3.
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3. DFCG_YOLOv5

When YOLOv5 is used for transmission line defect detection, there are issues such
as slow algorithmic reasoning, a high misdetection rate for high-resolution images, and
low accuracy when dealing with a large number of images and relatively small targets.
To address these problems, this paper builds upon YOLOv5 and utilizes Ghost as the
prototype for the backbone network. The backbone network is then improved. A network
model called DFCG_YOLOv5, which combines joint denoising and lightweight target
detection, is proposed. The overall detection process is illustrated in Figure 4.

3.1. High-Speed Adaptive Median Filtering Algorithm HSMF

Based on the image quality transmitted by the UAV, it can be concluded that the quality
of the image captured by the UAV will be affected by internal factors such as mechanical
jitter and current instability, as well as external factors such as lighting conditions and
weather. These factors can introduce incidental noise into the captured image. Therefore, it
is necessary to add a noise reduction network to the Input part of YOLOv5 [27] to improve
the preprocessing quality of the image. The most widely used filtering method for this
purpose is the adaptive median filtering algorithm. The main process is as follows: firstly,
according to the initial gray value, it can be divided into two processes: A and B; the pixel
window corresponding to the pixel coordinate point (i, j) of the image is set as X(i, j),
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and the maximum size corresponding to the pixel window is set as Mmax; Zmax , Zmin,
and Imed are set as the maximum, minimum, and median values of the corresponding
window grayscale, respectively, and Z(i, j) as the actual corresponding grayscale value of
the coordinates. The A and B processes satisfy the following equation:

ZA1 = Imed − Zmin (3)

ZA2 = Zmax − Imed (4)

ZB1 = Z(i,j) − Zmin (5)

ZB2 = Zmax − Z(i,j) (6)
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When the noisy image is transmitted to the filtering network, whether the image gray
value is in the median range is analyzed, as in Equations (3) and (4). When the conditions
are met, ZA1 > 0 and ZA2 > 0, the gray value is analyzed again and whether the gray value
is in the threshold range of the set window gray value, if the gray value satisfies ZB1 > 0
and ZB2 > 0, then the pixel is judged as a pixel point. If it is not a non-noisy pixel point it
will output the actual gray value Z(i, j), or else it will output the median gray value Imed.

However, in actual model detection, the traditional median filtering algorithm can-
not meet the speed and effect demands of processing massive aerial images due to the
high resolution and large number of pixels involved. To address this problem, this paper
proposes a high-speed adaptive median filtering algorithm called HSMF. This algorithm
classifies pixels into two categories: normal pixels and suspected noise pixels, based on
the extreme value characteristics of noise. The algorithm retains normal pixel points while
applying the high-speed adaptive median filtering algorithm to the suspected noise pixel
points. It judges whether they are noise points according to the set median value, dy-
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namically changes the window size of the median filter, and finally obtains the processed
grayscale value.

The noise detection stage is first carried out by first setting the pixel gray value
extremes of the image to represent the noise, using Maxgray and Mingray to represent the
maximum and minimum gray values corresponding to the noise, where Maxgray = 255
is set and Mingray = 0 to indicate the gray value corresponding to the suspected noise
pixel point.

Noise(i, j) =
{

0, x(i, j) = [δ, 255 − δ]
1, otherwise

(7)

In Equation (7), Noise(i, j) = 1 indicates that the point is a suspected noise pixel point,
while Noise(i, j) = 0 indicates that the point is a normal pixel point; δ represents the gray
scale deviation, which is generally 1. In addition to the pixel points containing noise in the
suspected noise pixel points, there are still some remaining normal pixel points with a gray
value of 255 or 0, so it is still necessary to process the suspected noise points. The main
process is as follows:

Use the initial 3 × 3 filtering window to perform median filtering on the suspected
noise pixel points, and determine whether there are any remaining suspected noise pixel
points; if not, the noise filtering is over; if so, proceed to the next step.

Continue the filtering process by applying median filtering to the remaining pixel
points from the previous step using the 5 × 5 filter window.

The suspected noise pixel points remaining after filtering in the previous step 5× 5 are
median filtered using the filtering window of 7 × 7. It is judged whether the filtered noise
still exists as suspected noise pixel points; if not, the noise filtering ends; if existing, it is
classified and processed according to whether the image has a black and white background.
If the image has a black and white background, the suspected noise points are considered
to be the background part of the image, and the filtering process ends. If there is no black
and white background, the remaining suspected noise pixel points are subjected to noise
filtering in the 7 × 7 filtering window. The overall process is shown in Figure 5.

3.2. Decoupling the Fully Connected Attention Mechanism

Although the Ghost backbone network has met the requirements of the engineering
deployment process in terms of a lightweight model, half of the spatial feature information
is captured by the 3 × 3 depth-wise convolution module and the remaining by the 1 × 1
convolution module due to the oversimplification of its convolution structure. It cannot
fulfill the practical application needs when dealing with high-resolution images like aerial
images. Aiming at the current problem, this paper designs a decoupled fully connected
attention mechanism (DFC Attention).

Assuming that the total number of features for a given image input is number
Z ∈ RH×W×C (H, W, and C denote the image size as well as the number of channels,
respectively), it can be viewed as HW zi ∈ RC,Z ∈ {z11, z12, . . . , zHW}. So, the fully con-
nected layer (FC layer) with weights can be used to generate the attention feature map with
global sensory field in the manner shown in Equation (8).

ahw = ∑
h′ ,w′

Fhw,h′ ,w′ ⊙ zh′ ,w′ (8)

where ⊙ represents the multiplication of features and weights, F is the FC layer learning
weights, and A = {a11, a12, . . . , aHW} is the generated attention feature map, but the
computational complexity is quadratic with the image resolution O

(
H2W2), which is not

suitable for aerial high-definition images. Therefore, this paper proposes to extract features
from horizontal and vertical directions, respectively, as shown in Equations (9) and (10).

a′hw =
H

∑
h′=1

FH
h,h′w ⊙ zh′w, h = 1, 2, · · · , H, w = 1, 2, · · · , W (9)



Electronics 2024, 13, 305 9 of 23

ahw =
W

∑
w′=1

FW
w,hw′ ⊙ a′hw′ , h = 1, 2, · · · , H, w = 1, 2, · · · , W (10)

In Equations (9) and (10), FH and FW are the weights, and the input original features
are Z. When the feature extraction part is carried out, Equations (9) and (10) are applied to
the feature map in order to obtain the correlation from two directions, respectively, as in
Figure 6.
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This attention mechanism aggregates pixels at different locations according to hori-
zontal and vertical directions, respectively, sharing a portion of the weights, which saves
most of the inference time, and in order to be applicable to a variety of resolution images,
the filter is decoupled from the size of the feature map, i.e., two deep convolutions of
kernel sizes 1 × KH and KW × 1 are performed sequentially on the input features, which
theoretically turns the complexity into O(KH HW + KW HW).

The Ghost module is augmented with the DFC attention mechanism to obtain the
dependency of pixels in different spaces. When the image with feature X ∈ RH×W×C is
input, it is divided into two partial branches, one part of the feature branch passes through
the Ghost module and produces the output feature Y, and the other branch passes through
the DFC attention module and produces the attention matrix A. The input X is converted
into the input of the DFC attention module through the 1 × 1 convolution Z, and the final
output of the product of the two branches is shown in Equation (11). The fusion process of
the branch feature information is shown in Figure 7. The product is converted to the input
of the DFC attention module, and the final output of the product of the two branches is
shown in Equation (11). The fusion process of the two-branch feature information is shown
in Figure 7.

O = Sigmoid(A)⊙ V(X) (11)
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The Backbone structure uses DFC Attention branching in parallel with the Ghost
branching module to enhance the extended features, which are then input to the second
Ghost module to produce the output features. This is because the captured feature infor-
mation is in different spatial locations and has dependency on each other, so the model’s
expressive ability is greatly enhanced, and the structure is shown in Figure 7.

3.3. Loss Function Improvement

YOLOv5 mainly uses bounding box regression for target localization, which utilizes
a rectangular bounding box to predict the position of the target object in the image, and
refines the position of the bounding box in the process of continuous training. The bounding
box regression uses the overlapping region between the predicted bounding box and the
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true bounding box as the loss function, which is called the IOU (Intersection over Union)
loss function [28], as in Equation (12).

IOU =
A ∩ B
A ∪ B

(12)

In Equation (12), A represents the area of the predicted bounding box and B represents
the area of the real bounding box, IOU can measure the degree of overlap, but the rest
of the target information cannot be judged, and there is no convergence effect in the case
where the predicted box does not intersect with the real box with an area of zero. Later,
GIOU Loss was introduced to solve this problem [29], but the computational volume is
relatively large and the convergence speed is slow. DIOU Loss utilizes the distance between
the real bounding box and the predicted bounding box as the convergence index of the
loss function, which improves the detection effect [30]. CIOU Loss introduces the aspect
ratio of the real bounding box to the predicted bounding box and achieves relatively good
convergence results [31], but it is not applicable to target detection for datasets such as UAV
aerial images, and there is no targeted strategy for the serious imbalance of positive and
negative samples present in small targets. There is no targeted strategy.

In this paper, we propose a loss function, Poly Loss, which can be adjusted to the
positive and negative sample coefficients for different datasets. Firstly, the commonly used
two types of loss functions (Cross Entropy Loss Function and Focal Loss) are expanded by
Taylor Decomposition, as shown in Equation (13).

Σ+∞
j=1αj(1 − Pt)

j (13)

In Equation (13), αj ∈ R+ represents the weight coefficients of the polynomial and Pt
the probability of target label prediction. Its engineering applicability is mainly reflected
in the application to different scenarios and the fact that different datasets can make the
loss function more suitable for the target recognition task by adjusting the polynomial
coefficients, αj.

And it can be concluded from the calculation that the effect of adjusting the first
polynomial coefficient of the Taylor expansion polynomial term, Poly_L1, has been superior
to that of the cross-entropy loss function with the Focal Loss, which is expressed as in
Equation (14).

LPoly_L1 = (1 + ϵ1)(1 − Pt) + 1/2(1 − Pt)
2 + . . . = − log(Pt) + ϵ1(1 − Pt) (14)

To address the problem of positive and negative sample imbalance in small target
datasets, one approach is to adjust the polynomial coefficients of the positive samples
suppression. This tuning parameter is simple to adjust and can be flexibly modified for
different datasets, thereby improving the model’s effectiveness.

The overall network structure diagram of the improved DFCG_YOLOv5 algorithm
is presented in Figure 8. By optimizing the C3 module in the YOLOv5 Backbone using
the enhanced DFC_Ghost network structure, the feature map utilization is increased while
interference from irrelevant information is reduced, leading to the improved accuracy and
robustness of the network. To provide a more detailed illustration of the network architec-
ture, this paper includes simplified code for the target detection process in Appendix A. In
the first step, the insulator defect image is uniformly cropped to a size of 640 × 640 × 3
through preprocessing. Different sizes of anchor frames are then generated, and the image
is input into the improved DFC_Ghost backbone network to produce three feature maps
with varying scales. These feature maps are used to predict whether each grid cell contains
a target, the class of the target, as well as the target’s location and size. The cross-entropy
loss is then computed using the Poly Loss function to obtain the accurate probability of
insulator defect small target predictions. Additionally, the Poly term is introduced to
amplify the penalty for incorrect probabilities and enhance the contribution of correct
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probabilities. Subsequently, bounding boxes with confidence below a certain threshold are
eliminated, and the non-maximum suppression algorithm is utilized to remove overlapping
bounding boxes. The final results are then generated. In references [32–34], the improved
Ghost network is also combined with the YOLO algorithm and applied to industrial defect
detection, resulting in enhanced accuracy. This further validates the effectiveness of the
algorithm proposed in this paper.
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4. Experimental Results and Analysis
4.1. Experimental Environment and Evaluation Indicators
4.1.1. Experimental Environment

In order to ensure the engineering applicability of the algorithm, the datasets used
in this paper were all downloaded from the unmanned aircraft system of Yunnan Power
Supply Company, Jinghong, China. The images were all taken by the UAV at a height
of 3–4 metres from the transmission line, with a maximum resolution of 8688 × 5792,
and 1864 insulator defect images were selected after screening, including four types of
defects: insulator breakage, insulator self-detonation, insulator fouling, and insulator tie
line loosening, and the defect labels are set as “jyzps, jyzzb, jyzwh, and jyzzxst”, respectively.
For each class of defects, 75 images are selected as the validation set and the remaining
are used as the training set. According to previous manual screening experience, the ratio
of normal insulator images to defective insulator images is about 10:1, so in this paper, in
order to be more in line with the actual application scenarios, the remaining 3124 normal
insulator images are also added to the validation set, and the number of defects in each
class and the distribution of the training and validation sets are shown in Figure 9.
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The YOLOv5s architecture was employed to train the model via basic training, with
a batch size of 32 and 300 training batches. The initial learning rate was set to 0.01, the
momentum factor was set to 0.937, and the weight decay coefficient was set to 0.0005. The
stochastic gradient descent (SGD) method was utilized for optimization. The experimental
platform environment is illustrated in Table 1.

Table 1. Experimental platform environment configuration.

Environmental Configuration Parameter

operating system Window10
GPU NVIDIA Quadro P4000(8 G)
CPU Intel(R) Core (TM)i9-9900K

deep learning model framework Pytorch 1.7.1
GPU acceleration environment CUDA 11.0.2

programming language Python3.8

4.1.2. Evaluation Index

In order to quantitatively judge the image denoising effect from an objective point of
view, this paper selects the mean square error (MSE) and the Peak Signal to Noise Ratio
(PSNR) as the quantitative evaluation indexes. PSNR is an objective evaluation method
in the field of an image, which is usually defined by the mean square error (MSE) of the
image, as shown in Equation (15).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

∥I(i, j)− K(i, j)∥2 (15)

where m, n represent the height and width of the image, respectively, I(i, j) and K(i, j)
represent the pixel values with coordinates (i, j) before and after the image is filtered,
respectively. The signal to noise ratio is defined as in Equation (16).

PSNR = 10 · log10

(
MAX2

I
MSE

)
(16)

In the formula, MAX represents the maximum pixel value of the image and MSE is
the mean square error value.



Electronics 2024, 13, 305 14 of 23

And Precision, Recall, and mAP are used as the relevant indexes to evaluate the
performance of the target detection model. Precision is used to measure the accuracy of
the classification detection of the model and is denoted as P. Recall measures whether
the model detects comprehensively or not and is denoted as R. The area under the curve
plotted by Precision and Recall is the value of AP. MAP represents the average value of AP
for each category. The mAP value is generally calculated at IOU = 0.5, i.e., mAP@0.5, as in
Equations (17)–(20).

Precise =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

AP =
∫ 1

0
P(r)dr (19)

mAP =

C
∑

i=1
APi

C
(20)

where TP denotes correctly predicted positive samples as positive, FN denotes incorrectly
predicted positive samples as negative, and FP denotes incorrectly predicted negative
samples as positive; and C represents the type of target detection.

4.2. Comparison of Ablation Experiments
4.2.1. Input Section to Add HSMF Noise Reduction Network Effect

In order to verify the effect of the UAV aerial images on target detection, this exper-
iment adds pretzel noise with noise densities of 0.1, 0.3, 0.5, and 0.7 to all the datasets,
respectively, and verifies the effect of noise on the detection results, as shown in Table 2.

Table 2. Effect of different levels of noise on YOLOv5 detection.

Noise Density (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

0 0.856 0.743 0.805 0.596
0.1 0.821 0.740 0.759 0.571
0.3 0.814 0.732 0.747 0.570
0.5 0.803 0.721 0.736 0.567
0.7 0.801 0.703 0.729 0.561

According to Table 2, it can be concluded that the unprocessed incidental noise images
have a significant impact on image detection. When the image is subjected to a pretzel
noise density of 0.1, the overall accuracy of all the types of defects decreases by an average
of 3.5%, and the overall performance decreases by 0.46. Additionally, with every increase of
0.2 in the noise density, the overall accuracy decreases by an average of about 1%, and the
overall performance decreases by approximately 0.01. The results of when the noisy image
is processed using HSMF (High-Speed Median Filtering) are depicted in Figures 10 and 11.

After processing the aerial images with a pretzel noise density of 0.1, 0.2, 0.3, and 0.4,
respectively, using HSMF algorithm, the target detection experiments are re-conducted and
the results are shown in Table 3.

The experimental results in Table 3 verify that there is a significant improvement in
the image detection after processing by the HSMF filter module, with an average increase
in accuracy of about 2.5% and a 0.03 growth in the overall performance mAP, which verifies
the necessity of the improvement of the image preprocessing part.

4.2.2. Improvement of the Loss Function

Before verifying the effect of the Ploy Loss function, the hyperparameter ϵ1 needs to
be adjusted to make it more compatible with the number set constructed in this paper, so as
to improve the convergence of the model. The ablation experiments are shown in Table 4.
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Table 3. Noise reduction effect of different densities.

Noise Reduction Rating (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

0.1 0.849 0.742 0.789 0.589
0.3 0.840 0.730 0.778 0.584
0.5 0.836 0.732 0.769 0.583
0.7 0.825 0.726 0.760 0.581

Table 4. Detection performance for different parameter values.

ϵ1 Parameter Value (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

1 0.862 0.772 0.749 0.605
3 0.874 0.765 0.754 0.609
5 0.883 0.756 0.769 0.612
7 0.877 0.739 0.762 0.607
9 0.869 0.755 0.754 0.604

Based on the ablation experiments, it can be concluded that the loss function is more
compatible with the dataset when the hyperparameter ϵ1 = 5. At this time, the probability
penalty for prediction error is moderate, the positive and negative sample balance is
optimal, and the loss function converges best.

In order to verify the applicability of Poly Loss engineering, the experiment conducted
with YOLOv5 comes with better performance loss functions: CIOU Loss and EIOU Loss [35]
as well as Focal Loss [36] and CE Loss (Cross Entropy Loss) [37] for adapting small targets
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for ablation experiments, respectively. The experimental results are shown in Table 5,
Figures 12 and 13.

Table 5. Graph of detection effect of different loss functions.

Type of Loss Function (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

CIOU Loss 0.856 0.743 0.751 0.596
EIOU Loss 0.851 0.731 0.742 0.592

CE Loss 0.862 0.736 0.759 0.599
Focal Loss 0.859 0.742 0.752 0.592
Ploy Loss 0.883 0.756 0.769 0.612
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By examining the chart, it can be observed that YOLOv5’s own loss functions, namely
CIOU Loss and EIOU Loss, have a relatively low accuracy for small target detection and a
poor overall performance. On the other hand, Ploy Loss performs better in addressing the
imbalance between the positive and negative samples in an image, and achieves higher
accuracy and better overall performance compared to Focal Loss and CE Loss. Additionally,
Ploy Loss has a more prominent convergence speed and effect, making it more applicable
to engineering.

4.2.3. DFCG_YOLOv5 Overall Detection Effect

In order to verify the effectiveness of the improved overall algorithm as the back-
bone network of DFC Ghost, the improved algorithm is compared with the more widely
used target detection algorithms such as the basic networks YOLOv5s and YOLOv5m,
YOLOv5-Ghost, YOLOv3 [38], SSD-VGG [39], YOLOv6m [40], and the newest algorithms
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YOLOv7 [41] and YOLOv8 [42], etc., and the results are shown in Table 6. The comprehen-
sive performance comparison of each type of algorithm is shown in Figure 14, the accuracy
of each type of algorithm as well as the convergence effect is shown in Figures 15 and 16,
and finally, Figure 17 is used to indicate the degree of balance between the accuracy and
speed of each type of algorithm (the gap between YOLOv5m and YOLOv6m is relatively
small, and is not shown in the figure).

Table 6. Comparison of target detection performance.

Method (all) P (all) R (all) mAp@0.5 FPS (Hz)

YOLOv3 0.734 0.628 0.666 109
SSD-VGG 0.728 0.636 0.651 159
YOLOv5s 0.856 0.743 0.751 139
YOLOv5m 0.863 0.721 0.779 102

YOLOv5-Ghost 0.803 0.692 0.727 218
YOLOv6m 0.871 0.716 0.791 112
YOLOv7 0.879 0.738 0.792 155
YOLOv8 0.885 0.741 0.801 183

DFCG_YOLOv5 0.899 0.748 0.822 207

Figure 14. Comprehensive performance of different algorithms.
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Figure 14 clearly demonstrates the superior overall performance of the DFCG_YOLOv5
algorithm compared to other algorithms (mAP). In addition, Figures 15 and 16 show that
DFCG_YOLOv5 achieves the highest accuracy and most robust convergence under complex
conditions. Finally, Figure 17 visually demonstrates the superiority of DFCG_YOLOv5 in
terms of speed and accuracy compared to other algorithms.
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Furthermore, in terms of effectiveness, the algorithm proposed in this paper exhibits
fewer false and missed detections in the detection of 300 insulator defect maps compared
to other algorithms. This feature makes it more suitable for engineering applications.
Examples of various types of defect detection are shown in Figure 18.

Figure 16. Convergence effect of different algorithms.
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5. Discussion

Based on the analysis of the experimental results in Figure 13, the algorithm
DFCG_YOLOv5 (0.822) proposed in this manuscript shows superior overall performance
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(mAP) compared to the benchmark network YOLOv5-Ghost (0.727) and the base algo-
rithms YOLOv5s (0.751) and YOLOv5m (0.779). Not only is it superior to the traditional
algorithms YOLOv3 (0.666) and SSD (0.651), but in addition, compared to the latest algo-
rithms, the algorithm’s performance is improved by 3.9% compared to YOLOv6m (0.791),
3.7% compared to YOLOv7 (0.792), and 2.6% compared to YOLOv8 (0.801), validating
the DFCG_YOLOv5 algorithm’s advantages. In terms of accuracy, the algorithm in this
paper not only far outperforms YOLOv3 (0.734) and SSD (0.728), but also outperforms the
benchmark algorithms YOLOv5s (0.856) and YOLOv5m (0.863), as well as the benchmark
network, YOLOv5-Ghost (0.803), which demonstrates a clear advantage. Its accuracy is
3.1%, 2.2%, and 1.6% higher than the latest algorithms YOLOv6m, YOLOv7, and YOLOv8,
respectively. In terms of speed, based on Figure 16, it can be concluded that the algorithm
proposed in this paper has a significant advantage with an improvement of 84% compared
to YOLOv6m, 33.5% compared to YOLOv7, and 13.1% compared to YOLOv8. This is
visually depicted in Figure 17, which clearly illustrates that the algorithm proposed in this
paper achieves an excellent balance between accuracy and speed.

According to the actual verification set results, 300 insulator defect images and 279 de-
fects were detected, with a leakage rate of 7%, and 101 out of 3124 normal insulator images
were misdetected as images containing defective insulators, with a misdetection rate of
3.2%, which is fully in line with the application requirements of actual industrial scenarios.

6. Conclusions

Building upon the YOLOv5 algorithm with the lightweight Ghost network as its
foundation, this study introduces the DFCG_YOLOv5 algorithm, which combines adap-
tive median filtering for noise reduction and lightweight target detection. To enhance
the filtering capability for aerial images of varying quality, an optimized version of the
traditional median filtering algorithm called HSMF (High-Speed Median Filtering) is pro-
posed. Furthermore, in order to balance accuracy and speed, structural improvements are
made to the lightweight Ghost backbone network, ensuring improved accuracy without
compromising inference speed, thus better addressing the complexities of practical applica-
tion scenarios. To enhance the detection of small targets, the Poly Loss classification loss
function is employed to tackle the issue of imbalanced positive and negative samples by
adjusting the parameters and suppressing positive samples. Finally, the dataset utilized in
this research consists of machine patrol images obtained from the power supply company’s
UAV system, thus providing a more robust validation of the algorithm’s applicability to
real-world projects.

In the future, the focus will be on two main areas. Firstly, the limited availability of
the transmission line defects dataset due to confidentiality concerns hinders further model
optimization. To address this, a plan is in place to design an interface using pyqt5 and
package it as an application for deployment in the power supply bureau. This will enable
the iterative optimization of the model. In addition, there will be further optimization of
the network structure to incorporate targeted strategies for detecting small targets. This
optimization aims to improve detection performance, achieving the real-time and efficient
identification of transmission line defects.
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Appendix A

Algorithm A1: DFCG_YOLOv5

Input: input_size = (640, 640) num_classes = 80
# Define the size and number of anchor boxes
anchors = [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)]
num_anchors = len(anchors)
# Defining the network structure
def yolov5(input): // Backbone x = Conv(input, 32, 3, stride = 2)
1: x = DFC_GhostBottleneck (x, 64, 3, n = 1)
2: x = DFC_GhostBottleneck (x, 128, 3, n = 3)
3: x = DFC_GhostBottleneck (x, 256, 3, n = 15)
4: out1 = x x = DFC_GhostBottleneck (x, 512, 3, n = 15)
5: out2 = x x = DFC_GhostBottleneck (x, 1024, 3, n = 7)
6: out3 = x // Head x = Conv(x, 512, 1) x = SPP(x) x = Conv(x, 1024, 1) out4 = x
7: # Output multi-scale feature map after DFC_Ghost network processing
8: output1 = Conv(out1, num_anchors * (num_classes + 5), 1)
9: output2 = Conv(out2, num_anchors * (num_classes + 5), 1) output3 = Conv(out3, num_anchors
* (num_classes + 5), 1)
10: output4 = Conv(out4, num_anchors * (num_classes + 5), 1) return output1, output2, output3,
output4
def poly1_cross_entropy_torch(logits, labels, class_number = 3, epsilon = 1.0):
11: # The predicted probability is calculated using softmax and multiplied with the one-hot coded
true labels and summed to obtain the predicted probability of the correct category for each sample.
12: poly1 = torch.sum(F.one_hot(labels, class_number).float() * F.softmax(logits), dim = −1)
13: # Calculate the cross-entropy loss for each sample
14: ce_loss = F.cross_entropy(logits, labels, reduction = ‘none’)
15: # Adding a Poly1 term to the cross-entropy loss to increase the penalty for incorrect predictions
16: poly1_ce_loss = ce_loss + epsilon * (1-poly1)
17: return poly1_ce_loss
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