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Abstract: Electrocardiography (ECG) is generally used in clinical practice for cardiovascular diagnosis
and for monitoring cardiovascular status. It is considered to be the gold standard for diagnosing
cardiovascular diseases and assessing cardiovascular status. However, it is not always easy to obtain.
Unlike ECG devices, photoplethysmography (PPG) devices can be placed on body parts such as
the earlobes, fingertips, and wrists, making them more comfortable and easier to obtain. Several
methods for reconstructing ECG signals using PPG signals have been proposed, but some of these
methods are subject-specific models. These models cannot be applied to multiple subjects and have
limitations. This study proposes a neural network model based on UNet and bidirectional long
short-term memory (BiLSTM) networks as a group model for reconstructing ECG from PPG. The
model was verified using 125 records from the MIMIC III matched subset. The experimental results
demonstrated that the proposed model was, on average, able to achieve a Pearson‘s correlation
coefficient, root mean square error, percentage root mean square difference, and Fréchet distance of
0.861, 0.077, 5.302, and 0.278, respectively. This research can use the correlation between PPG and ECG
to reconstruct a better ECG signal from PPG, which is crucial for diagnosing cardiovascular diseases.

Keywords: ECG reconstruction; electrocardiography (ECG); photoplethysmography (PPG); bidirectional
long short-term memory network (BiLSTM); UNet

1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs)
are the leading cause of death worldwide [1]. They have become an important problem that
seriously threatens global public health. The report states that an estimated 17.9 million
people died from cardiovascular diseases in 2019, accounting for 32% of deaths globally.
Electrocardiography (ECG) is considered to be the gold standard for diagnosing cardio-
vascular diseases [2]. An ECG is typically conducted by placing electrodes on the skin
to measure the electrical activity of the heart. However, an ECG device is inconvenient
because it requires placing multiple electrodes at different locations on the body. This
may cause skin irritation and discomfort during recording. Electrodes also may fall off the
patient during recording, resulting in incomplete data acquisition. Photoplethysmography
(PPG) is a noninvasive method for detecting variations in blood volume to reflect the
amount of blood pulsation in tissues [3]. This method can be used to evaluate some cardiac
information, such as oxygen saturation [4], blood pressure [5], and cardiac output [6]. Com-
pared with ECG, PPG is easier to set up, more convenient, and more economical. Recently,
PPG has been widely used in wearable devices because of its continuous, long-term moni-
toring capabilities. Although PPG has been widely used for health monitoring [7], ECG
remains the standard fundamental measurement for medical diagnosis, with extensive
supporting documents and research. PPG and ECG are intrinsically related because the
heart’s electrical activity influences changes in blood volume. The peak-to-peak interval of
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PPG is known to be highly correlated with the RR interval, suggesting the possibility of
deriving other ECG parameters from PPG [8]. Therefore, the correlation between ECG and
PPG can be used to improve the effectiveness of a method for reconstructing ECG from
PPG waveforms. This would enable cost-effective and user-friendly ECG screening for con-
tinuous and long-term monitoring, provided that it is possible to successfully reconstruct
ECG from PPG obtained from modern wearable devices.

Several studies have used PPG signals to reconstruct ECG signals using various tech-
niques. Several studies have utilized the discrete cosine transform (DCT) method [9], cross-
domain joint dictionary learning (XDJDL) method [10], lightweight neural networks [11],
bidirectional long short-term memory (BiLSTM) models [12], and the PPG2ECGps model [13]
to reconstruct ECG signals for subject-specific models. The first two studies proposed re-
constructing ECG from PPG using a mathematical model. The signal preprocessing process
required peak detection, data alignment, and beat segmentation. However, it could contain
errors due to the extensive preprocessing of the original data. After the signal was divided
into beats, the signal lengths could vary. For optimal model training, it was necessary to
linearly interpolate different signal lengths to ensure that all signal lengths were the same.
At the same time, data alignment was performed after peak detection. During this process,
the accuracy of the peak detection algorithm was crucial. However, there could still be some
errors in peak detection. The last three studies proposed models that aimed to reconstruct
ECG from PPG using deep learning models. The former study proposed using a lightweight
neural network to reconstruct ECG signals. This study used the same preprocessing as that
in the previous two studies, except that the models proposed in the first two studies were
mathematically based models, and this study was based on deep learning models. The last
two studies proposed using a BiLSTM model and an end-to-end deep learning neural net-
work model with a W-Net architecture to reconstruct ECG signals, respectively. In the signal
preprocessing phase of the former two studies, the signal was not divided based on beats but
rather into segments. This avoided the errors associated with beat segmentation. However,
these models were all proposed for specific subjects and were unsuitable for multi-subject
situations; they have certain limitations.

Several studies utilized the discrete cosine transform (DCT) method [9], P2E-WGAN
model [14], CardioGAN model [15], scattering wavelet transform (SWT) method [16], and
PPG2ECG model [17] to reconstruct ECG signals for group models. The DCT [9] and
SWT [16] model used a beat-to-beat method to reconstruct ECG signals. These methods
required that the starting point in the PPG be aligned with the R peak in the ECG signal.
Then, the aligned ECG and PPG signals were segmented into beats. The model performed
data alignment and beat segmentation on the signal during signal preprocessing. However,
this algorithm’s accuracy depended on the extraction algorithms’ accuracy for the R-wave
in the ECG signal and the peak (or onset) of contraction in the PPG signal. If the accuracy
of the extraction algorithm was not high, the accuracy of the ECG reconstruction would
also decrease. The P2E-WGAN [14] and CardioGAN [15] model proposed using deep
neural networks to reconstruct ECG from PPG. They did not require signal alignment
during preprocessing. They focused on the destination heart rate without emphasizing the
quality of the ECG waveform. The last study reconstructed ECG from PPG in a population
model, but the dataset segmentation method differed from the above studies, and beat
segmentation was used. The datasets used in these studies were divided as follows: 80%
for the training set and 20% for the test set. Their performance on smaller training datasets
has not been validated.

This study proposes a new deep neural network model for reconstructing ECG signals
from PPG signals. This model is based on bidirectional long short-term memory (BiLSTM)
and UNet networks. The method has the advantage of targeting a group model rather
than subject-specific models. It also does not require beat segmentation during signal
preprocessing. This study divided the dataset into 60% as a training set, 20% as a validation
set, and 20% as a test set. In comparison with previous work, this study used a smaller
training set to reconstruct an ECG signal that was highly similar to an actual ECG signal.
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2. Materials and Methods

This section introduces datasets, data preprocessing, UNet-BiLSTM model structure,
and the model performance evaluation. Figure 1 shows a flowchart of the method. Figure 1a
shows the training and validation process. Figure 1b shows the testing process.

(a)

(b)

Figure 1. Flowchart of the reconstruction of ECG signals from PPG signals. (a) Training and validation
process. (b) Testing process.

All codes in the experiment were implemented in Python 3.9.16, and the UNet-BiLSTM
network was implemented using Pytorch 2.0.0, an end-to-end open-source machine learn-
ing platform. The UNet–BiLSTM model was trained on a server with the following config-
uration: CPU 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz and GPU NVIDIA GeForce
RTX 3060 Ti.

2.1. Dataset

The data used to test the model in this study came from the MIMIC III matched
subset [18]. The MIMIC III database contains multiple physiological signals from patients
in an intensive care unit, and there are numerous records in this subset. This study utilized
125 recordings from different subjects, which included lead II ECG and PPG signals. The
sampling rate of both signals was 125 Hz. The length of each record was 5 min.

2.2. Preprocessing

The data preprocessing included filtering, alignment I, normalization, segmentation,
and dataset splitting.

• Filtering: The ECG signal and PPG signal were filtered. We applied a fourth-order
Chebyshev bandpass filter to the ECG signal with a passband frequency of 0.5–20 Hz.
Similarly, a fourth-order Chebyshev bandpass filter was applied to the PPG signal
with a passband frequency of 0.5–10 Hz.

• Alignment I: The Pan–Tompkins method [19] was used to detect the R-wave peak in
the ECG signal. A block-based method [20] was used to detect the systolic peak in
the PPG signal. Then, the third systolic peak in the PPG signal was aligned with the
corresponding R peak in the ECG signal. Figure 2 shows the signals before and after
alignment I. Figure 2a shows the ECG and PPG before Alignment I. Figure 2b shows
the ECG and PPG after alignment I. This step produced a pair of aligned ECG and
PPG signals.
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(a) (b)

Figure 2. Signals before and after Alignment I. (a) ECG and PPG before Alignment I. (b) ECG and
PPG after Alignment I.

• Normalization: Since the ECG signal needed to be compared with the reconstructed
ECG signal, the PPG signal only needed to be scaled to the range of [0, 1] after aligning
the data.

• Segmentation: The ECG and PPG signals obtained in the previous step were divided
into segments of 3 s. Since the signal alignment would result in a signal length of less
than 300 s, it was necessary to ensure that the length of each record was consistent.
To maintain consistency in the length of the training data, we only considered the
first 294 s of data and disregarded any data beyond that. Specifically, each record was
divided into 3 s.

• Dataset splitting: In particular, the first 60% of each recording was used for training,
the next 20% of each recording was used for validation, and the remaining 20% of
each recording was used for testing.

2.3. Model Architecture

The model structure of the proposed combination of UNet and BiLSTM is shown
in Figure 3. In Figure 3, the terms ‘Conv’, ‘ConvTrans’, and ‘Upsample’ represent a one-
dimensional convolution layer, a one-dimensional transposed convolution layer, and an
upsampling layer, respectively. ‘ReLU’ and ‘Tanh’ refer to the activation functions of the
corresponding convolution layers. ‘BN’ represents a one-dimensional batch normalization
layer. ‘Dropout’ represents a dropout layer. ‘BiLSTM’ represents a bidirectional long
short-term memory layer. The slope of the ‘Dropout’ activation was set to 0.5.

As shown in Figure 3, the proposed Unet-BiLSTM model consisted of a one-dimensional
convolution-based “UNet” encoder–decoder architecture [21] and a BiLSTM network. We
chose the BiLSTM model because it has been proven to effectively solve sequential and
time-series problems [22,23]. A study on generating ECG signals also demonstrated that
the BiLSTM model is robust when generating ECG signals [24]. Long short-term memory
(LSTM) and BiLSTM are suitable for handling time-series problems. BiLSTM models take
longer to reach equilibrium than LSTM models but provide better performance [25]. The
U-block was inspired by the wave UNet [26]. The motivation for employing UNet in this
study was its simple structure, which allows feature extraction and reconstruction from
multiple dimensions through a symmetric cross-layer connection, even with a limited
dataset. In general, UNet has a contracting path (the left side) and an expansive path (the
right side), which are symmetric. There were four downsampling blocks and BiLSTM
layers on the left side and four upsampling blocks on the right side. In this downsampling
block, a convolutional layer was used instead of a pooling layer. The kernel size and stride
of the convolutional layer were 4 and 2, respectively. In this upsampling block, a transposed
convolutional layer was used. The kernel size and stride of the transposed convolutional
layer were 4 and 2, respectively. A BiLSTM layer was added to the downsampling pro-
cess to process the sequence data effectively. Dropout layers were added to improve the
generalization ability of UNet–BiLSTM and to reduce overfitting.
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Figure 3. The architecture of the proposed Unet-BiLSTM model. ‘Conv’, ‘ConvTrans’, and ‘Upsample’
represent a one-dimensional convolution layer, a one-dimensional transposed convolution layer,
and an upsampling layer, respectively. ‘ReLU’ and ‘Tanh’ refer to the activation functions used in
the corresponding convolution layers. ‘BN’ represents a one-dimensional batch normalization layer.
‘Dropout’ represents a dropout layer. ‘BiLSTM’ represents bidirectional long short-term memory.

2.4. Training Options

The UNet–BiLSTM model proposed in this study used the Adam optimizer for training.
Setting appropriate stopping criteria during the training of a neural network is of utmost
importance to achieve optimal performance while avoiding overfitting. The neural network
trained for 500 epochs while utilizing a batch size of 256 pairs of ECG and PPG segments
for all recordings. The learning rate was set to 0.001 and decayed by a factor of 0.1 every
200 steps. The loss function used in this study is defined as follows:

Loss =
1
l

l

∑
i=1

(E(i)− Er(i))2 (1)

The loss function used the mean square error. E(i) and Er(i) represent the ith sample
points of the reference and reconstructed ECG signals, respectively. The variable l represents
the sample size of the reference ECG.

Regularization was implemented to address or prevent overfitting of ill-posed prob-
lems [27]. In this study, UNet–BiLSTM used Tikhonov regularization L2. The kernel
regularizer parameter in UNet–BiLSTM was L2 = 1 × 10−6.

2.5. Stitching the Reconstructed ECG Segments and Alignment II

• Stitching the reconstructed ECG segments: The neural network’s output consisted of
375 samples of reconstructed ECG segments, each of which was 3 s long. Therefore,
they needed to be spliced together to form a continuous reconstructed ECG signal.
The second ECG segment was placed after the first ECG segment when combining two
ECG segments. The spliced signal was used as the first segment, and the subsequent
segment was used as the second segment for further merging. This step was repeated
until all test segments in the record were joined together.

• Alignment II: The result of splicing was an ECG signal that had already been recon-
structed, and it was aligned using cross-correlation. After visualizing the reconstructed
and reference ECGs, it was discovered that there was some offset between some of
the recorded ECGs (some distance between the R-wave crests of the reference and
reconstructed ECGs). Cross-correlation alignment is used to minimize the distance
between the R-wave peaks of the reference and reconstructed ECGs. This alignment
was primarily performed to improve the evaluation of the similarity between the
reconstructed and reference signal.
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2.6. Performance Evaluation

To evaluate the performance of the proposed model on both the reference and recon-
structed ECG, we used several metrics for evaluation in the test set. These metrics included
Pearson’s correlation coefficient (r) [28], the root mean squared error (RMSE), the Fréchet
distance (FD) [29], and the percentage root mean squared difference (PRD).

• Pearson’s correlation coefficient (r): The r is a statistical measure that can be used
to assess the strength and direction of the linear correlation between two variables.
The absolute value of r is in the range of [0, 1]. A correlation coefficient approaching
1 indicates a strong correlation, whereas a coefficient approaching 0 indicates a weak
correlation. r is given by the following equation:

r = ∑l
i=1(E(i)− Ē)∑l

i=1(Er(i)− Ēr)

∑l
i=1(E(i)− Ē)2 ∑l

i=1(Er(i)− Ēr)2
(2)

In the given formula, E(i) and Er(i) represent the individual sample points of the
reference ECG signal and the reconstructed ECG signal, respectively, with both being
indexed by i. The variable l represents the number of samples of the reference ECG.
The symbols Ē and Ēr denote the mean values of the ECG signal and the reconstructed
ECG signal, respectively.

• Root mean square error (RMSE): The RMSE is a metric used to quantify the
discrepancy—commonly referred to as the error—between the measured value of an
ECG signal and its corresponding reconstructed value. The RMSE is a quantitative
measure used to assess the level of deviation between predicted and actual values. The
value in question is a non-negative value that ranges from zero to positive infinity. The
closer the value of the RMSE is to zero, the more optimal the reconstruction outcomes
become. The RMSE was calculated with the following equation:

RMSE =

√√√√1
l

l

∑
i=1

(E(i)− Er(i))2 (3)

• Percentage root mean squared difference (PRD): The PRD was calculated to quantify
the distortion between the reference signal E and the reconstructed signal Er. The value
of the PRD was defined within the interval [0, +∞]. The quality of the reconstruction
results was enhanced, with a decrease in the PRD value. The following equation was
used to calculate the PRD:

PRD =

√
∑l

i=1(E(i)− Er(i))2

∑N
i=1 E(i)2

× 100 (4)

• Fréchet distance (FD): The FD is a metric that was utilized to assess the similarity of
signals by analyzing the position and order of points on the ECG signal waveform
and synthesizing them into a curve. The Fréchet distance quantified the minimum
Euclidean distance between corresponding points in the reference and reconstructed
ECG signal curve. When calculating the distance between two curves, the distance
metric considered the spatial arrangement and sequence of the data points, allowing
for a more accurate evaluation of the similarity between the two time-series signals.
The value of the FD was defined within the interval [0, +∞]. The closer the FD was to 0,
the higher the degree of similarity observed between the reference and reconstructed
ECG. The following equation was used to determine the value of the FD:

FD = min (max
i∈Q

(d(E(i), Er(i)))), Q = [1, m] (5)
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The function d(∗) represents the Euclidean distance between two corresponding
points on the reference ECG signal curve and the reconstructed ECG signal curve. The
variable m represents the number of sampling points. The maximum distance under
this sampling is denoted as max

i∈Q
(d(E(i), Er(i))). The Fréchet distance is the value in

the sampling method that minimizes the maximum distance.

3. Results

We tested the accuracy of the model when dividing the data into 3 s segments. After
checking the fitting effects for various records, it was found that some records had time
delays. Mutual correlation can be used to quantify the displacement between two similar
time series. After calculating the cross-correlation between two time series, the maximum
value of the cross-correlation function represents the point at which the signals are optimally
aligned. The presence of a time delay has the potential to decrease the r-value. To better
evaluate the model’s performance, we used cross-correlation to align the reconstructed
ECG signals with the reference ECG signals.

Two records were selected in this study—one without a time delay and the other with
a time delay. Figures 4 and 5 show the experimental results for two selected recordings in
3 s segments. Figure 4 shows the results of the experiment conducted without any time
delay. Figure 4a,b show the PPG when using data alignment and when not using data
alignment in the preprocessing stage, respectively. Figure 4c,d show the reference and
reconstructed ECG when using data alignment and when not using data alignment during
preprocessing, respectively. The results of the reference and reconstructed ECG obtained
after using cross-correlation in Figure 4c,d are shown in Figure 4e,f, respectively. As shown
in Figure 4d,f, r between the reconstructed and reference ECG signal was found to be
0.875. It is important to note that this correlation was obtained when the data were not
aligned during preprocessing. r between the reconstructed and reference ECG increased to
0.913 following the implementation of data alignment. r remained unchanged following
the application of cross-correlation, indicating an absence of any time delays in the data.

Figure 5 presents the results obtained when a time delay was present. Figure 5c,d
show the time delay in the data. The results obtained using cross-correlation are shown
in Figure 5e,f. As can be seen in Figure 5, r between the reference and reconstructed ECG
signal was 0.819 when using data alignment during data preprocessing. r between the
reconstructed and reference ECG signal increased to 0.901 after using the cross-correlation
alignment. r between the reference and reconstructed ECG signal was 0.912 when data
alignment was not used during data preprocessing. r between the reconstructed ECG signal
and the reference ECG signal increased to 0.924 after using the cross-correlation alignment.

(a) (b)

Figure 4. Cont.
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(c) (d)

(e) (f)

Figure 4. ECG signal reconstruction results without a time delay. The abbreviations r, RMSE, PRD,
and FD refer to Pearson’s correlation coefficient, the root mean square error, the percentage root mean
squared difference, and the Fréchet distance, respectively. The black line represents the reference ECG.
The red line represents the reconstructed ECG. The blue represents the PPG. (a) PPG signal using
alignment I. (b) PPG signal without alignment I. (c) Comparison of the reconstructed and reference
ECG signal with alignment I. (d) Comparison of the reconstructed and reference ECG signal without
alignment I. (e) Comparison of the reconstructed and reference ECG signal with alignment I and
alignment II. (f) Comparison of the reconstructed and reference ECG signal without alignment I and
using alignment II.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. ECG signal reconstruction results with a time delay. The abbreviations r, RMSE, PRD, and
FD refer to Pearson’s correlation coefficient, the root mean square error, the percentage root mean
squared difference, and the Fréchet distance, respectively. The black line represents the reference ECG.
The red line represents the reconstructed ECG. The blue represents the PPG. (a) PPG signal using
alignment I. (b) PPG signal without alignment I. (c) Comparison of the reconstructed and reference
ECG signal with alignment I. (d) Comparison of the reconstructed and reference ECG signal without
alignment I. (e) Comparison of the reconstructed and reference ECG signal with alignment I and
alignment II. (f) Comparison of the reconstructed and reference ECG signal without alignment I and
using alignment II.

This study introduced four experiments aimed at examining the impacts of data
alignment on the model performance during the data preprocessing stage, as well as the
impacts of cross-correlation alignment on model performance. In Experiments I and II, the
data were aligned during preprocessing, but the reconstructed and the reference ECG were
not and were aligned using cross-correlation, respectively. In Experiments III and IV, the
data were not aligned during preprocessing, but the reconstructed and the reference ECG
were and were not aligned using cross-correlation, respectively. Here, the data were not
aligned during the preprocessing process, and the length of the divided data was consistent.
Therefore, the data length was selected to be 300 s. When data alignment was used, the
data length was 294 s.

Figure 6 presents a box plot comparison of the values of r, the RMSE, the PRD, and
the FD for the ECG reconstruction in the four experiments. This visualization allows for
a comprehensive understanding of the overall distribution of results across these four
metrics. We observed that the median and mean values of r, the RMSE, the PRD, and the
FD in the four experiments had some discrepancies in the proposed model. In Experiment
II, the variable P exhibited the highest median and mean values, whereas the RMSE, FD,
and PRD demonstrated the lowest median and mean values. The model’s performance
was evaluated based on these four experiments, and the corresponding results are shown
in Table 1. It can be seen in Table 1 that the model using cross-correlation alignment for the
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reconstructed and reference ECG signal performed better. However, the performance of
models with and without data alignment in the data preprocessing stage was similar.

(a) (b)

(c) (d)

Figure 6. Comparison of the ECG signal reconstruction performance across Experiments I, II, III, and
IV. The statistics of (a) the Pearson’s correlation coefficient r, (b) root mean squared error (RMSE),
(c) percentage root mean squared difference (PRD), and (d) Fréchet distance (FD) are summarized
using box plots.

Table 1. Comparison of the performance of the UNet–BiLSTM model with and without alignment
of the reconstructed ECG signal with the reference ECG signal and with and without the alignment
of the ECG signal with the PPG signal. Note: NR stands for “not reported”. r, RMSE, FD, and PRD
represent Pearson’s correlation coefficient, the root mean square error, the Fréchet distance, and the
percentage root mean squared difference, respectively. E, P, and Er represent the ECG signal, PPG
signal, and reconstructed ECG signal, respectively.

Alignment I Alignment II r RMSE PRD FD

Experiment I Yes No 0.842 ± 0.061 0.083 ± 0.035 5.672 ± 1.167 0.280 ± 0.149

Experiment II Yes Yes 0.861 ± 0.058 0.077 ± 0.030 5.302 ± 1.169 0.278 ± 0.149

Experiment III No No 0.812 ± 0.076 0.089 ± 0.036 6.287 ± 1.408 0.332 ± 0.157

Experiment IV No Yes 0.830 ± 0.076 0.084 ± 0.034 5.978 ± 1.447 0.335 ± 0.165

4. Discussion

This study proposed a novel model that combined the UNet architecture with a
BiLSTM network to reconstruct ECG from PPG. Table 2 shows the results of this study
and other studies regarding such group models. As seen in Table 2, the proposed model
had some advantages over others. Unlike the DCT model [9] and SWT model [16], the
model in this study did not use beat segmentation, but rather divided the signal into 3 s
segments. When using the MIMIC III dataset, the DCT model [9] selected 103 records,
while this study selected 125 records. The value of r for the DCT model was only 0.79. In
contrast, the value of r in this study reached 0.842, and after using cross-correlation to align
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the reconstructed ECG signal with the reference ECG signal, the correlation reached 0.861.
The SWT model’s [16] experimental results section only gives the RMSE and MAE (mean
absolute error) values of the reference and reconstructed ECG. Its RMSE value is 0.1006,
while the RMSE of this study is 0.077. This study did not calculate the value of MAE, but
the RMSE of this study is smaller than the value of the SWT model [16]. Both the model in
this study and the P2E-WGAN model [14] performed 3 s segmentation of the signal, and
this study’s model was better than the P2E-WGAN model in terms of r, the RMSE, and
the Fréchet distance. In [14], the proposed model reached 6000 epochs. In [16], based on
the loss function diagram in the experimental results section, we know that the number of
iterations of the proposed model exceeded 3500. Unlike the P2E-WGAN model [14] and
the SWT model [16], the number of epochs in this study was only 500.

Four datasets are utilized in the CardioGAN model [15] to validate the model’s
accuracy. However, due to the varying sampling frequencies, it was necessary to resample
the data. The reconstructed signals were also required to undergo resampling to align with
the sampling frequency of the original signal for analysis. Furthermore, the evaluation of
the model’s performance did not involve using r. The model in this study outperformed the
CardioGAN model in terms of the root mean square error, Fréchet distance, and percentage
root mean squared difference. Additionally, it did not necessitate resampling the dataset
to mitigate errors that could arise during the data resampling process. The DCT model,
P2E-WGAN model, and CardioGAN model employed similar approaches by partitioning
the dataset into a training set comprising the first 80% of the data and a test set containing
the remaining 20%. In this study, the training set consisted of the first 60% of each record,
the test set comprised the next 20% of each record, and the validation set comprised the
remaining 20% of each record. The division of the dataset in this manner offered the
advantage of utilizing a smaller portion of the data to assess the model’s accuracy.

Table 2. Evaluation of the UNet–BiLSTM algorithm against population models versus other existing
algorithms in the literature for reconstructing ECG signals from PPG signals. Note: NR stands for
“not reported”. r, RMSE, FD, and PRD represent Pearson’s correlation coefficient, the root mean
square error, the Fréchet distance, and the percentage root mean squared difference, respectively.
Epoch represents the number of times that the model was run.

Method Data Segment Length r RMSE PRD FD Epoch

DCT [9]
TBME-RR [30]: 42 Records 0.906
MIMIC III [18]: 103 Records Beat 0.790 NR NR NR NR
Self-collected: 2 Records 0.895

P2E-WGAN [14] MIMIC II [31]: 276 Records 3 s 0.835 0.162 NR 0.375 6000

CardioGAN [15]

BIDMC [32]: 53 Records
CAPNO [30]: 42 Records 4 s NR 0.364 9.315 0.784 15
DALIA [33]: 15 Records
WESAD [34]: 15 Records

SWT [16] MIMIC II [31] NR 0.1006 NR NR 3500+

This study
(UNet–BiLSTM) MIMIC III [18]: 125 Records 3 s 0.861 0.077 5.302 0.278 500

This study validated the model’s performance by verifying whether the data were
aligned during preprocessing and whether cross-correlation alignment was used between
the reconstructed and the reference ECG signal. When the preprocessing involved data
alignment, on average, r between the reconstructed and reference ECG signal with cross-
correlation alignment increased from 0.842 to 0.861, the RMSE decreased from 0.083 to
0.077, the Fréchet distance decreased from 0.280 to 0.278, and the percentage root mean
squared difference decreased from 5.672 to 5.302. When data alignment was not used
during preprocessing, on average, r between the reconstructed and reference ECG signal
with cross-correlation alignment increased from 0.812 to 0.830, the RMSE decreased from
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0.089 to 0.084, the Fréchet distance increased from 0.332 to 0.335, and the percentage root
mean squared difference decreased from 6.287 to 5.978. It can be seen from the comparisons
between Experiment I and II and between Experiment III and IV in Table 1 that the average
value of r of the reconstructed and the reference ECG signal when using cross-correlation
alignment only increased by 0.2. In contrast, the average RMSE, the average Fréchet
distance, and the average percentage root mean squared difference slightly decreased. It
can be seen from the comparisons between Experiment I and Experiment III and between
Experiment II and Experiment IV in Table 1 that the average value of r of the reconstructed
ECG and the reference ECG when using data alignment during the preprocessing only
increased by 0.2. In contrast, the average RMSE and the average PRD slightly decreased;
the average Fréchet distance remained relatively constant.

In this study, we proposed a UNet–BiLSTM model for reconstructing ECG. Although
the UNet–BiLSTM model exhibited notable advantages over models used in previous
studies, it has limitations.

• In the present study, the ECG signals were filtered using a frequency range below
20 Hz, while frequencies above 20 Hz were not considered. This approach has certain
limitations. In subsequent research, we intend to evaluate the efficacy of this model
across various frequency ranges.

• The dataset utilized for this research was obtained from the MIMIC III matched
subset, which consisted of 125 records. Although the model proposed in this study
was designed for group models, the dataset did not provide distinctions based on
gender, age, disease, etc. In subsequent research, the dataset will be partitioned
based on gender, age, disease, and other relevant factors to evaluate the efficacy of
group models.

• This study exclusively focused on the attributes of a complete ECG waveform and did
not examine additional features, such as QRS waves and ST segments. In subsequent
research, it is imperative to conduct a more comprehensive evaluation of the disparities
between reconstructed ECG features and reference ECG features.

5. Conclusions

This study presented a novel structural model that combined the UNet architecture
with a BiLSTM network. The model was utilized to reconstruct ECG from PPG. Our
proposed methodology involved using 3 s PPG segments to generate ECG segments
of equal length. The proposed model verified the impact of the preprocessing process
using Alignment I, reconstructed ECG, and referenced ECG using Alignment II on the
model performance on the MIMIC III dataset. The experimental results show that using
Alignment I and Alignment II improves the model’s performance to a certain extent. The
experimental results demonstrated this model’s effiectiveness in reconstructing ECG from
PPG. The proposed model demonstrated a distinct impact on the group model. However, it
is worth noting that the current average coefficient stands at 0.861, indicating the need for
further enhancement. The dataset we selected has 125 records, and we need to verify the
model performance on more datasets. Different deep learning techniques can be employed
to enhance the performance of group models to obtain improved ECG reconstruction
models in future research.
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Abbreviations
The following abbreviations are used in this manuscript:

BiLSTM Bidirectional long short-term memory.
CVD Cardiovascular disease.
DCT Discrete cosine transform.
ECG Electrocardiography.
FD Fréchet distance
MIMIC Multiparameter Intelligent Monitoring in Intensive Care.
r Pearson’s correlation coefficient.
PPG Photoplethysmography.
PRD Percentage root mean squared difference.
RMSE Root mean square error.
WHO World Health Organization.
XDJDL Cross-domain joint dictionary learning.
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