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Abstract: Deep convolutional neural networks (CNN) with hierarchical architectures have obtained
good results for image denoising. However, in some cases where the noise level is unknown and
the image background is complex, it is challenging to obtain robust information through CNN.
In this paper, we present a multi-level information fusion CNN (MLIFCNN) in image denoising
containing a fine information extraction block (FIEB), a multi-level information interaction block
(MIIB), a coarse information refinement block (CIRB), and a reconstruction block (RB). In order
to adapt to more complex image backgrounds, FIEB uses parallel group convolution to extract
wide-channel information. To enhance the robustness of the obtained information, a MIIB uses
residual operations to act in two sub-networks for implementing the interaction of wide and deep
information to adapt to the distribution of different noise levels. To enhance the stability of the
training denoiser, CIRB stacks common and group convolutions to refine the obtained information.
Finally, RB uses a residual operation to act in a single convolution in order to obtain the resultant
clean image. Experimental results show that our method is better than many other excellent methods,
both in terms of quantitative and qualitative aspects.

Keywords: group convolution; CNN; multi-level information fusion; image denoising

1. Introduction

Images are often damaged by some factors, i.e., light, shaking, and digital devices
when they are collected by digital devices, which may cause captured images to be noisy [1].
To restore these images, image denoising techniques were developed [2]. Most of these
denoising methods implement a denoising function by using a degradation model of
d = c + n, where d expresses a damaged image, c is a clean image, and n stands for the
predicted noise [3].

In general, image denoising methods include two categories. The first is model
methods and the second is deep learning methods. For the first type of methods, many
excellent models have been developed in recent years by improving models and combining
new techniques. Specifically, Li et al. [4] proposed a novel image denoising method
that combines non-local means and grey theory. Unlike traditional non-local methods,
it analyzes the structural similarity through the grayscale relation of the coefficients and
sets similar weight functions accordingly, effectively reducing the time complexity. Zhang
et al. [5] first used a non-local mechanism to up-sample in hierarchical network to obtain
features related to self-similarity measurements. Sparse method is also popular in image
denoising. For example, Xiao et al. [6] proposed a hierarchical sparse model that can
achieve a good generalization to images with different features in different domains. Shi
et al. [7] proposed a denoising method to reconstruct the high-frequency component and
the low-frequency component. The high-frequency part is reconstructed by a sparse
representation of the structural similarity based on patches, and the low-frequency part is
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reconstructed by singular value decomposition (SVD). Theoretically, the sparser the image
representation, the better the image recovery, but these sparse methods have the problem
that the sparse coefficient is difficult to estimate and the search window is limited, so Zhou
et al. [8] propose a method that combines the non-local clustering sparse representation
with the optimization matching strategy of self-similar patches, which effectively retains
more image details. In addition, there are many excellent model-based methods, such as
median filtering algorithm [9], and a new anisotropic total-variation-based model [10].

For the second type of methods, they are currently the most popular denoising method.
In particular, the convolutional neural network in deep learning, which has fast execution
speed and strong learning ability, is widely used in the field of image denoising [11]. For
nearly 10 years, there have been many excellent CNN-based methods for denoising, such as
IRCNN [12], DnCNN [13], and complex-valued deep CNN [14]. However, these methods
all have a common problem, which is that the network is too deep to train, so to solve
the training problem, Tian et al. [15] propose an enhanced convolutional neural denoising
network (ECNDNet), which combines residual learning (RL) [16], dilated convolution,
and batch normalization (BN) [17] to accelerate network convergence. In addition, CNN
combined with other deep learning methods can also achieve better denoising. For example,
Zhao et al. [18] proposed a hybrid denoising model based on transformer encoder and
convolutional decoder network, which effectively used the advantages of the two networks
to achieve effective real image denoising. Kumwilaisak et al. [19] proposed a new method
based on a deep convolutional neural network and a multidirectional long short-term
memory network to remove pine noise from images. Furthermore, the combination of
unsupervised and CNN can also achieve a better application scene. For example, in order to
solve the overfitting problem caused by the lack of real images, Pan et al. [20] proposed an
unsupervised depth denoiser. Although the appeal method achieved good results in image
denoising, we found that in some cases where the noise level is unknown and the image
background is complex, it is challenging to obtain some robust information through CNN.

Therefore, in this paper we propose a multi-level information fusion CNN in image
denoising (MLIFCNN). It consists of four blocks: a fine information extraction block (FIEB),
a multi-level information interaction block (MIIB), a coarse information refinement block
(CIRB), and a reconstruction block (RB). FIRB is in charge of extracting wide-channel
information through parallel convolution groups. By using a two-layer interaction network,
MIIB strengthens the fusion of wide and deep information, which is more conducive to
obtaining more robust information. To enhance the stability of the training denoiser, CIRB
stacks common and group convolutions to refine and obtain information. Finally, RB uses
a residual operation to act in a single convolution to predict and obtain clean images. Our
main contributions can be summarized as follows.

(1) The proposed MLIFCNN incorporates multi-layer features and effectively improves
the denoising performance;

(2) FIEB utilizes different groups of odd convolutions to extract wide-channel information
and enhance receptive fields to adapt to more complex image backgrounds;

(3) MIIB uses dual-network interaction to strengthen the fusion of wide and deep infor-
mation, which obtains more robust information when the noise level is unknown;

(4) CIRB uses common and group convolutions to further enhance the stability of the
trained denoiser.

The remainder of this paper is organized as follows. Section 2 provides related work of
image denoising based on deep CNN, group convolution, and CNN-based feature fusion
methods. Section 3 offers the proposed method. Section 4 shows experimental results.
Section 5 presents the conclusion.

2. Related Work

This section is mainly responsible for introducing some of the related work involved
in our paper, including some methods of CNN denoising, group convolution, and feature
fusion from recent years. These three methods are described in detail below.
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2.1. Image Denoising Based on Deep CNNs

Due to its strong learning capabilities, the CNN is often designed with various network
architectures for handling relatively low-level visual tasks, such as image denoising [11].
For decades, most methods to improve denoising performance and efficiency have inte-
grated new components into the CNN and, thus, improved network models. For example,
Zhang et al. [21] combined a rectified linear unit (ReLU) [22], dilated convolution, and
BN to improve the standard Res block, effectively improving the denoising performance.
Gai et al. [23] integrated perceived loss, leakage flow linear unit (leakage ReLU), RL, and
edge information into CNN to improve the performance of denoising. However, general
CNN denoisers can easily lose detailed information in complex scenes, and, therefore, to
recover precise details for complex tasks, Singh et al. [24] presented a new hybrid and
multi-level digital image denoising method (MLAC) that combined anisotropic diffusion
(AD) and CNN. In addition, different CNN models are able to solve different denoising
problems. For example, to improve the practicability of the denoising algorithms, Anwar
et al. [25] proposed a network with characteristic attention and residual structure to handle
single-stage blind real images. In order to preserve the texture details of the image as
much as possible while effectively denoising, Liu et al. [26] proposed a multiscale residual
dense dual-attention network (MRDDANet). The method utilizes modules of different
kernel sizes and dual-attention networks to extract features and combines global residuals
to recover clean images. To balance the denoising time and the denoising performance,
Zhang et al. [27] proposed a discrete shearlet transform (DST)-based denoising network
(DSTnet). Furthermore, the combination of sparse-based low-rank representation method
and CNN also has a good denoising effect on hyperspectral images [28]. CNN can also
denoise medical images [29]. From the above method, we know that the deep CNN is very
popular and effective in image denoising, and, inspired by this, our denoising network is
also based on the basic CNN model.

2.2. Group Convolution

The appearance of group convolution [30] is very important for training very deep
neural networks and can obtain better results with fewer parameters. Inspired by this, Tian
et al. [31] divided feature maps into 1/4 channel and 3/4 channel groups and combined
residual learning and group convolution to fully integrate deep and wide channel informa-
tion to improve image super-resolution performance. Huang et al. [32] proposed a novel
network architecture Condense-Net, which achieves efficient computing by combining
dense connections with new modules called learning group convolution, where dense
connectivity facilitates feature reuse in the network, while the learned group convolution re-
moves the connections between the layers. Zhang et al. [33] proposed an interleaved group
convolution consisting of primary group convolution and a secondary group. It utilizes the
primary group convolution to deal with the spatial correlations, uses the secondary group
convolution to mix the cross-partition channels of the primary group convolution output,
and achieves good results in terms of accuracy and efficiency. Our denoising network also
designs a new group convolution, which effectively improves the denoising performance.

2.3. CNN-Based Feature Fusion Methods

Feature fusion technologies have often been fused into the CNN to better improve
efficiency and enhance performance. Therefore, many CNN-based feature interaction
methods have been proposed in recent years, such as Guo et al. [34] who proposed a
CNN-enhanced multi-level Haar wavelet feature fusion network (CNN-MHWF2N), which
combines factor analysis, Harr wavelet decomposition, dual filtering, and fusion operators;
effectively combines spatial and spectral information; and improves the classification
performance of hyperspectral images. Tian et al. [35] proposed a dual denoising network
(DudeNet), which extracted global and local features through a dual network with sparse
mechanism and fused features using enhanced blocks to effectively recover image details.
Zhao et al. [36] propose a pyramid denoising network, which uses the channel attention



Electronics 2023, 12, 2146 4 of 19

mechanism to recalibrate the channel importance, and then uses each branch of the pyramid
structure to extract the global information and local information, and finally use multiple
branches with different convolution kernel size for feature fusion, effectively solving the
problem of blind denoising. Han et al. [37] propose a novel remote sensing image denoising
network (RSIDNet), and this method effectively integrates the deep and shallow features
of the image through multiple local jumps, retaining more image details. Inspired by this,
the denoising networks mentioned in this paper also design a dual-network interaction
block, which strengthens the fusion of wide information and deep information and obtains
more robust information.

3. Method

In this subsection, we show our proposed denoising network model that consists of
FIEB, MIIB, CIRB, and RB. For the design of the network architecture, we changed the
form of the traditional grouping convolution [30] and integrated the residual connection
and dilated convolution to better adapt to the image denoising. In order to improve the
image denoising effect, we mainly removed the noise through the proposed three blocks
of FIEB, MIIB, and CIRB. Specifically, FIEB uses the standard convolutions and parallel
group convolutions to extract wide-channel information. To enhance the robustness of the
obtained information, MIIB integrates the residual connection, dilated convolution, and
standard convolution, and uses the form of dual-network interaction to fuse wide and deep
information. To enhance the stability of the training denoiser, CIRB stacks common and
group convolutions to refine obtain information.

Below, we properly describe the network model, network modules, and related func-
tions we mentioned.

3.1. Network Model

The paper proposes a network model (MLIFCNN), which is made up of FIEB, MIIB,
CIRB, and RB, as shown in Figure 1. To better clarify the expression process, we express it
by the following formula:

Ic = MLIFCNN(In) = RB(CIRB(MIIB(FIEB(In)))) (1)

where Ic expresses a predicted clean image, MLIFCNN denotes the function of MLIFCNN,
and In expresses a given noisy image. In addition, RB, CIRB, MIIB, and FIEB are also
functions of RB, CIRB, MIIB, and FIEB, respectively.
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3.2. Loss Function

In order to make our denoising network more persuasive, we selected mean square
error (MSE) as the loss function to train the model parameters. This process can be described
by the following formula:

L(θ) =
1

2N

N

∑
i=1

∥∥∥MLIFCNN
(

Ii
n

)
− Ii

gt

∥∥∥2
(2)

where Ii
n and Ii

gt denote the i-th noisy images and given clean images, respectively, and θ
denotes the parameters in training the denoising model. In addition, N stands for the total
of noisy images.

3.3. Peak Signal-to-Noise Ratio (PSNR)

In order to compare the experimental effect of image denoising more fairly, we chose
the peak signal-to-noise ratio as our image quality evaluation technique, and its specific
expression is as follows:

PSNR = 10log10

(
maxval2

)
/L(θ) (3)

where maxval represents the maximum value in the image data. If it is an 8-bit unsigned
integer data type, maxval is 255. From Equation (3), we can see that it is a representation of
absolute error in dB.

3.4. Fine Information Extraction Block

The fine information extraction block consists of standard and group convolution and
is mainly used to extract wide-channel information. Specifically, the first layer is made
up of a standard convolution and ReLU to extract the shallow features. Its kernel size
is 3 × 3, and the input and output channels are 1 and 64, respectively. In extraordinary
circumstances, if the network is used for denoising of color images, then its input channel
is 3. The ReLU is responsible for converting linear features to non-linear features. The back
five layers are an odd convolution group to extract the local wide-channel information and
enhance the receptive fields. Specifically, the first two layers both consist of Conv + BN +
ReLU, which stands for a combination of a convolutional layer, BN, and ReLU, respectively.
The BN is an activation function. Their kernel sizes were 3 × 3, and the input and output
channels are 64 and 32, respectively. This is to better preserve the global information for
the next phase of training. They are then divided into three groups. The three groups are
composed of Conv + BN + ReLU. Their kernel sizes are 3 × 3, 5 × 5, and 7 × 7, respectively.
Input and output channels are 32. Finally, the three groups are combined into the latter two
layers. The structures of the latter two and the first two layers are similar, except that both
the input and output channels are increased to 32. To make the process clearer, we describe
it using the following formula:

OFIEB = FIEB(In)
= CBR(CBR(Cat(CBR(CBR(CBR(CR(In)))),

CBR5(CBR(CBR(CR(In)))), CBR7(CBR(CBR(CR(In)))))))
(4)

where CR denotes 3 × 3 kernel size of Conv + ReLU, CBR stands for the 3 × 3 kernel size
of Conv + BN + ReLU, CBR5 stands for the 5 × 3 kernel size of Conv + BN + ReLU, and
CBR7 stands for the 7 × 7 kernel size of Conv + BN + ReLU. Cat represents the connection
function C in Figure 1. OFIEB is the output of FIEB.

3.5. Multi-Level Information Interaction Block

The multi-level information interaction block integrates the skip connection, dilated
convolution, and some standard convolutions, and uses the form of dual-network interac-
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tion to fuse wide and deep information, thus, making the obtained information more robust.
The first layer is made up of Conv + BN + ReLU. Behind it is a block of dual-network
interaction. The upper network consists of 6 layers, and every layer is made up of Conv
+ BN + ReLU. Their kernel size is 3 × 3. The lower network also consists of 6 layers, but
the 1st, 3rd, 5th, and 6th layers are made up of Conv + BN + ReLU. The 2nd and 4th layers
are made up of dilated convolution, BN, and ReLU. Then, the two-layer network input
is connected to the last layer of this block. The last layer is also made up of a standard
convolution, BN, and ReLU. The above description may be expressed as:

OMIIB = CBR(Cat(CBR(CBR(Cat(CBR(CBR(Cat(U2, CBR(O FIEB)))), U2, L5))), CBR(L5)))
L5 = CBR(DCBR5(CBR(DCBR2(Cat(CBR(CBR(OFIEB)), U2)))))

U2 = CBR(CBR(CBR(OFIEB)))
(5)

where DCBR2 represents the Conv + BN + ReLU of dilation = 2 and kernel size = 3 × 3,
and DCBR5 represents the Conv + BN + ReLU of dilation = 5 and kernel size = 3 × 3. The
OMIIB is the output of MIIB.

3.6. Coarse Information Refinement Block

The coarse information refinement block stacks common and group convolutions to
refine obtained information. The first layer of the block is made up of Conv + BN + ReLU,
and then it is output to three parallel group convolutions. To reduce the computational
amount and expand the receptive field, we utilized the size convolution kernel. Thus, we
set their kernels size separately to 1 × 1, 5 × 5, and 7 × 7. Finally, the 3 sets of outputs are
connected to the last two-layer network of the block. For a clearer description, we express
it by the following formula:

OCIRB = CBR(CBR(Cat(CBR1(CBR(OMIIB)), CBR5(CBR(OMIIB)), CBR7(CBR(OMIIB))))) (6)

where CBR1 denotes the 1 × 1 kernel size Conv + BN + ReLU. The OCIRB is the output of
the CIRB.

3.7. Reconstruction Block

The reconstruction block uses a residual operation to act as a single convolution to
predict and obtain clean images, and the process can be explained by the following formula:

Ic = RB(OCIRB) = In − C(OCIRB) (7)

where C stand for the 3 × 3 kernel size convolution, − stands for a residual operation, as
represented ⊕ in Figure 1.

4. Experiment

In this section, we present the datasets we selected and the settings of some experimen-
tal parameters, analyze and discuss ablation experiments and comparative experiments,
and present the corresponding experimental data and denoising images.

4.1. Datasets
4.1.1. Training Datasets

We used different training sets for different types of images. For the grey synthetic
noise images, we used 400 images with a size of 180 × 180 from the Berkeley Segmentation
Dataset (BSD) [38] to train. For the color synthetic noise images, we used 432 color images
with a size of 481 × 321 from BSD [38] for training. In addition, for further image feature
description, we randomly divided gray training image into patches of size 40 × 40 and
color training image into patches of size 50 × 50. For real noisy images, we used 100 real
noisy images with a size of 512 × 512 from the benchmark dataset [39] to train the model.
Also, to increase the diversity of the training sample, we enhanced the image by rotation of
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the image, such as rotating by 90◦ counterclockwise, horizontal flip, and rotating by 180◦

counterclockwise.

4.1.2. Test Datasets

To test the training effect of our model, we chose BSD68 [40] and Set12 [41] for the
grey image test set, CBSD68 [40] for the color image test set, and CC [42] for the real image
test set. Their number of images is 68, 12, 68, and 15, respectively.

4.2. Implementation Details

Among the parameters required by our model, the batch size is 128, the initial learning
rate is 1 × 10−3, and the number of epochs is 120 and 70 for training the gray images and
the color images, respectively. The learning rates vary from 1 × 10−3 to 1 × 10−5 with an
increasing epoch. To accelerate the training speed, our experiments were all conducted
on a GPU of Nvidia GeForce RTX 3090. Also, its CUDA was 11.7, and cuDNN was 8.0.4.
Specifically, we used Pytorch 1.7.0, torchvision 0.8.1, and Python 3.8.13 to train and test our
model MLIFCNN.

4.3. Network Analysis

The proposed denoising model (MLIFCNN) includes FIEB, MIIB, CIRB, and RB, and
below we specifically describe their rationality and effectiveness.

FIEB: As mentioned in the above method, it is a module that extracts the wide-channel
information and enhances receptive fields. Due to grouping convolution [30], it can achieve
good results by reducing the number of model parameters; we propose a parallel group
convolution in FIEB. We set three different odd kernel sizes convolutions, of 3, 5, and 7. The
benefits of such a setup can be illustrated by Tables 1 and 2 from the ablation experiment.
In Table 1, we find MLIFCNN has a higher PSNR result than MLIFCNN without group
convolutions in FIEB. From Table 2, we can see that the setting of this parameter has a
higher PRNR value. Therefore, the proposed parallel group convolutions are effective in
image denoising.

Table 1. PSNR (dB) values of different denoising methods on gray test dataset BSD68 with noise
level of 15.

Methods PSNR (dB)

MLIFCNN without group convolutions in FIEB 31.745
MLIFCNN without group convolutions, dilated convolution, residual

connections in FIEB and MIIB 31.717

MLIFCNN without group convolutions, dilated convolution, residual
connections in MIIB and CIRB 31.418

MLIFCNN without dilated convolution, residual connections in MIIB 31.726
MLIFCNN without group convolutions in CIRB 31.756

MLIFCNN 31.798

MIIB: It is a double-layer interaction module. In general, the interaction between
different modules is conducive to the complementarity of global information and local
information, increasing horizons and improving model learning ability [35]. Inspired by
this, we used a six-layer Conv + BN + ReLU in the upper network and combined it with the
jump connection to interact with the lower network. Also, we used two-layer dilated Conv
+ BN + ReLU and four-layer standard Conv + BN + ReLU in lower networks to obtain
more contextual information. We can clearly see in Table 1 that MLIFCNN has higher
PSNR values than MLIFCNN without residual connection and dilated convolution in MIIB.
Therefore, the interaction network that we improve is beneficial to denoising.
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Table 2. PSNR (dB) values of different group convolution kernel methods on gray test dataset BSD68
with noise level of 15. In order to denoise the results more clearly in the table, we use red and blue
lines to express the best and second-best PSNR values, respectively.

Methods FIEB CIRB PSNR (dB)

1, 3, 5 1, 5, 7 3, 5, 7 1, 3, 5 1, 5, 7 3, 5, 7

MLIFCNN

X X 31.68
X X 31.71
X X 31.73

X X 31.74
X X 31.72
X X 31.74

X X 31.76
X X 31.80
X X 31.77

CIRB: It is a module used to enhance the stability of the training denoiser. We used a
group convolution similar to the FIEB module, except for the convolution kernel sizes of 1,
5, and 7 upon grouping. As can be seen in Table 1, MLIFCNN has a higher PSNR result
than MLIFCNN without group convolutions in CIRB. From Table 2, we can see that the
setting of this parameter has a higher PRNR value. This shows that the group convolutions
do enhance the denoising performance.

RB: To output the clear image that we want to predict, we use a residual operation to
act as a single convolution, with the effect shown in Figure 1.

4.4. Comparison with the State-of-the-Art Denoising Methods

In this section, in order to test denoising performance of MLIFCNN, we performed
the analysis from both quantitative and qualitative perspectives. For the quantitative
analysis, we compared the PSNR, running time, and complexity with many competitive
denoising methods, such as: MLP [43], CNLNet [44], BM3D [45], enhanced convolutional
neural denoising network (ECNDNet) [15], DnCNN [13], TNRD [46], FFDNet [47], a
hybrid denoising CNN (HDCNN) [48], EPLL [49], image restoration CNN (IRCNN) [12],
weighted nuclear norm minimization (WNNM) [50], attention-guided CNN (ADNet) [51],
RDDCNN [52], cascade of shrinkage fields (CSF) [53], MemNet [54], residual encoder
decoder network (RED30) [55], deep universal blind denoiser (DUBD) [56], contourlet-
transform-based CNN (CTCNN) [57], adaptively tuned denoising network (ATDNet) [58],
CBM3D [59], neat image (NI) [60], and TID [61]. We mainly denoise the synthetic noise
images and real images. Synthetic noise images include gray and color synthetic noise
images, and their noise levels include a specific value and vary from 0 to 55. Noise images
with different noise levels are called blind noise images. Therefore, we performed the
following comparative experiments.

To test the denoising performance of MLIFCNN on gray Gaussian synthetic noisy
images, we compared PSNR with certain competitive methods on the datasets BSD68 and
Set12. The experimental results are shown in Tables 3 and 4. We can see from Table 3 and
Figure 2 that our PSNR results are both the highest in the denoising levels of 15, 25, and
50. Similarly, we can see from Table 4 that the average PSNR values are the best at the
denoising levels 15 and 25, and are also better at 50.
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Table 3. PSNR (dB) values of different denoising methods on gray test dataset BSD68 with noise level
of 15, 25, and 50.

Methods BM3D [45] ECNDNet [15] DnCNN [13] TNRD [46] HDCNN [48] FFDNet [47]

σ = 15 31.07 31.71 31.72 31.42 31.74 31.63
σ = 25 28.57 29.22 29.23 28.92 29.25 29.19
σ = 50 25.62 26.23 26.23 25.97 26.23 26.29

EPLL [49] IRCNN [12] WNNM [50] ADNet [51] RDDCNN [52] MLIFCNN MLCNN-B
31.21 31.63 31.37 31.74 31.76 31.80 31.46
28.68 29.15 28.83 29.25 29.27 29.29 29.08
25.67 26.19 25.87 26.29 26.30 26.32 26.28

Table 4. Average PSNR (dB) values of different denoising methods on gray test dataset Set12 with
noise levels of 15, 25, and 50.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise
level 15

DnCNN
[12] 32.61 34.97 33.3 32.2 33.09 31.7 31.83 34.62 32.64 32.42 32.46 32.47 32.86

ECNDNet
[15] 32.56 34.97 33.25 32.17 33.11 31.7 31.82 34.52 32.41 32.37 32.39 32.39 32.81

RDDCNN
[52] 32.61 35.01 33.31 32.13 33.13 31.67 31.93 34.57 32.62 32.42 32.38 32.46 32.85

IRCNN
[13] 32.55 34.89 33.31 32.02 32.82 31.7 31.84 34.53 32.43 32.34 32.4 32.4 32.77

FFDNet
[47] 32.43 35.07 33.25 31.99 32.66 31.57 31.81 34.62 32.54 32.38 32.41 32.46 32.77

WNNM
[50] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.6 32.27 32.11 32.17 32.7

EPLL [49] 31.85 34.17 32.64 31.13 32.1 31.19 31.42 33.92 31.38 31.93 32 31.93 32.14
BM3D

[45] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.1 32.13 31.92 32.1 32.37

TNRD
[46] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.5

MLIFCNN 32.62 35.06 33.33 32.26 33.21 31.69 31.97 34.6 32.63 32.28 32.3 32.45 32.87
MLIFCNN-

B 32.28 34.85 33.12 31.95 32.89 31.47 31.78 34.35 32.11 32.24 32.12 32.25 32.62

Noise
level 25

DnCNN
[13] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30 30.21 30.1 30.12 30.43

ECNDNet
[15] 30.11 33.08 30.85 29.43 30.3 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39

RDDCNN
[52] 30.2 33.13 30.82 29.38 30.36 29.05 29.53 32.4 30.03 30.19 30.05 30.1 30.44

IRCNN
[12] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38

FFDNet
[47] 30.1 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.2 30.44

WNNM
[50] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26

EPLL [49] 29.26 32.17 30.17 28.51 29.39 29.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69
BM3D

[45] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.9 29.61 29.71 29.97

TNRD
[46] 29.72 32.53 30.57 29.02 30.85 28.88 29.18 32 29.41 29.91 29.87 29.71 30.06

MLIFCNN 30.22 33.16 30.78 29.45 30.36 29.08 29.5 32.46 30.07 30.21 30.06 30.15 30.46
MLIFCNN-

B 29.97 33.02 30.7 29.24 30.21 28.91 29.42 32.21 29.51 29.99 29.83 29.91 30.25
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Table 4. Cont.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise
level 50

DnCNN
[13] 27.03 30 27.32 25.7 26.78 25.87 26.48 29.39 26.22 27.2 27.24 26.9 27.18

ECNDNet
[15] 27.07 30.12 27.3 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15

RDDCNN
[52] 27.16 30.21 27.38 25.72 26.84 25.88 26.53 29.32 26.36 27.23 27.22 26.88 27.23

IRCNN
[12] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.4 26.24 27.17 27.17 26.88 27.14

FFDNet
[47] 27.05 30.37 27.54 25.75 26.81 25.89 26.57 29.66 26.45 27.13 27.29 27.08 27.32

WNNM
[50] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05

EPLL [49] 26.1 29.12 26.8 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.3 26.47
BM3D

[45] 26.13 29.69 26.68 25.04 25.82 25.1 25.9 29.05 27.22 26.78 26.81 26.46 26.72

TNRD
[46] 26.62 29.48 27.1 25.42 26.31 25.59 26.16 28.93 25.7 26.94 26.98 26.5 26.81

MLIFCNN 27.2 30.38 27.39 25.75 26.89 25.92 26.57 29.43 26.53 27.28 27.26 27.02 27.3
MLIFCNN-

B 27.08 30.2 27.29 25.64 26.8 25.85 26.47 29.3 26.27 27.2 27.18 26.87 27.18
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To test the denoising performance of MLIFCNN in color Gaussian synthetic noisy
image, we compared PSNR with some better methods on the dataset CBSD68, and its
experimental results are shown in Table 5. From Figure 3, we can see that our method has a
very good PSNR results on the dataset CBSD68, and that it is optimal at the noise levels of
25 and 50. Second, from Table 5, we also find that the blind denoising PSNR value of our
color images is better than the partial method under specific noise conditions. This shows
that our method is very effective in color blind denoising.
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Table 5. PSNR (dB) values of different denoising methods on color test dataset CBSD68 with noise
levels of 15, 25, and 50.

Datasets Methods σ = 15 σ = 25 σ = 50

FFDNet [47] 33.80 31.18 27.96
MLP [43] 32.07 28.92 26.00

TNRD [46] 31.37 26.88 25.94
CNLNet [44] 33.87 31.21 27.96

CBSD68 CBM3D [59] 33.52 30.71 27.38
DnCNN [13] 33.98 31.31 28.01
IRCNN [12] 33.86 31.16 27.86
ADNet [51] 33.99 31.31 28.04
MLIFCNN 33.95 31.31 28.07

MLIFCNN-B 33.97 31.31 28.04
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Moreover, our proposed MLIFCNN is excellent on the real-world noisy image dataset
CC. As shown in Table 6, our average PSNR value is 0.51 dB higher than ADNet and
2.34 dB higher than DnCNN. This shows that our denoising method performs well in real
noisy images.

We can see from Table 7 that we selected 10 excellent methods for comparison to test
the denoise run-time from noise images of different sizes (i.e., 256 × 256, 512 × 512, and
1024 × 1024). Compared to these methods, the running time is very short. Also, we tested
the complexity of the model, as shown in Table 8. We find that the parameters of our model
are still relatively few.
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Table 6. Average PSNR (dB) values of different denoising methods on real-world dataset CC.

Camera Settings CBM3D
[59]

DnCNN
[13] NI [60] ADNet

[51] CSF [53] TID [61] MLIFCNN

Cannon 5 D ISO = 3200_1 39.76 37.26 37.68 35.96 35.68 37.22 37.65
Cannon 5 D ISO = 3200_2 36.4 34.13 34.87 36.11 34.03 34.54 36.58
Cannon 5 D ISO = 3200_3 36.37 34.09 34.77 34.49 32.63 34.25 35.95
Nikon D600 ISO = 3200_1 34.18 33.62 34.12 33.94 31.78 32.99 35.05
Nikon D600 ISO = 3200_2 35.07 34.48 35.36 34.33 35.16 32.99 35.6
Nikon D600 ISO = 3200_3 37.13 35.41 38.68 38.87 39.98 35.58 38.25
Nikon D800 ISO = 1600_1 36.81 37.95 37.34 37.61 34.84 34.49 38.41
Nikon D800 ISO = 1600_2 37.76 36.08 38.57 38.24 38.42 34.49 39.14
Nikon D800 ISO = 1600_3 37.51 35.48 37.87 36.89 35.79 35.26 37.91
Nikon D800 ISO = 3200_1 35.05 34.08 36.95 37.2 38.36 33.7 37.02
Nikon D800 ISO = 3200_2 34.07 33.7 35.09 35.67 35.53 31.04 36.24
Nikon D800 ISO = 3200_3 34.42 33.31 36.91 38.09 40.05 33.07 36.75
Nikon D800 ISO = 6400_1 31.13 29.83 31.28 32.24 34.08 29.4 32.9
Nikon D800 ISO = 6400_2 31.22 30.55 31.38 32.59 32.13 29.4 32.58
Nikon D800 ISO = 6400_3 30.97 30.09 31.4 33.14 31.52 29.21 32.94

Average 35.19 33.86 35.49 35.69 35.33 33.36 36.2

Table 7. Running time of different denoising methods for the noisy images of sizes 256 × 256, 512 ×
512, and 1024 × 1024.

Methods Device 256 × 256 512 × 512 1024 × 1024

WNNM [50] CPU 203.1 773.2 2536.4
CSF [43] CPU – 0.92 1.72

TNRD [46] CPU 0.45 1.33 4.61
BM3D [45] CPU 0.59 2.52 10.77

MemNet [54] GPU 0.8775 3.606 14.69
ADNet [51] GPU 0.0467 0.0798 0.2077

CTCNN [57] GPU 0.068 0.103 0.364
RED30 [55] GPU 1.362 4.702 15.77

DnCNN [13] GPU 0.0344 0.0681 0.1556
MLIFCNN GPU 0.0188 0.0678 0.2075

Table 8. Complexity of different denoising methods.

Methods Parameters Flops

DnCNN [13] 0.56 M 0.891 G
ADNet [51] 0.52 M 0.832 G
DUBD [56] 2.09 M -
RED30 [55] 4.13 M 10.33 G

ATDNet [58] 9.45 M -
MLIFCNN 0.66 M 1.49 G

In terms of qualitative analysis, we apply some visual figures from BSD68, Set12, and
CBSD68 to present the denoising effect of different methods. We can see the visual effect of
the grey image being denoised from Figures 4 and 5. Moreover, as shown in Figure 6, we
can see the effect of the color image denoising. From these Figures, we choose a predictive
image area to amplify as the observed area, and find that our method is clearer than some
state-of-the-art denoising methods. In order to denoise the results more clearly in the table,
we use red and blue lines to express the best and second-best PSNR values, respectively.
According to the above experimental analysis, our denoising model is very efficient.
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5. Conclusions

In this paper, we propose a multi-level information fusion CNN (MLIFCNN) for
image denoising. MLIFCNN mainly denoises through three blocks: FIEB, MIIB, and CIRB.
Specifically, FIEB uses parallel group convolution to extract wide-channel information
and enhance receptive fields to adapt to more complex image backgrounds. The MIIB
realizes the interaction of wide and deep information through two sub-networks, which
better adapts it to the distribution of different noise levels and enhances the robustness of
obtained information. The CIRB further enhances the stability of the training denoiser and
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improves the denoising performance by combining the size convolutional kernel and group
convolution. After performing the above three blocks, RB uses a residual operation to act
as a single convolution to predict and obtain clean images. Experimental results show that
our proposed MLIFCNN is very effective in both quantitative and qualitative evaluation.

Although we show that the multi-level information fusion CNN method can indeed
achieve image denoising well, we can also combine transformers or some heterogeneous
network fusion methods in the future to further enhance the performance of real image
denoising.
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have read and agreed to the published version of the manuscript.
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