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Abstract: An accurate analysis method for an LLC resonant converter and a time-domain analysis
(TDA)-based voltage gain curve derivation algorithm are proposed in this paper. When applied to
an LLC resonant converter, the TDA method can obtain high-accuracy current and voltage waveforms
by solving nonlinear equations for circuit parameters through operation-mode analysis. An LLC
resonant converter operating mode classification algorithm was proposed based on the results of
this analysis. The circuit voltage and current values in the steady state were quickly and precisely
derived using this algorithm. An accurate power-loss analysis is required to design a high-efficiency
converter. Therefore, TDA is a powerful tool for designing an LLC resonant network. The proposed
TDA-based LLC resonant converter analysis and voltage gain curve derivation algorithm provides
high-accuracy voltage, current value estimation and voltage gain curves for all switching-frequency
ranges. The effectiveness of the proposed algorithm is verified using a 500 W LLC resonant converter
prototype experiment.

Keywords: LLC resonant converter; high-efficiency design; time-domain analysis; operating mode
analysis; voltage gain curve

1. Introduction

High-power density DC–DC converters that use wide-bandgap (WBG) power semi-
conductors are required in the modern power electronics industry [1]. High power density
can be achieved by reducing the size of passive components by increasing switching fre-
quency; however, this approach increases the switching loss. An LLC resonant half-bridge
converter is shown in Figure 1, wherein soft switching is achieved over the entire load range
and it shows advantages of minimizing loss despite increasing the switching frequency.
Therefore, LLC resonant half-bridge converters are widely used in applications requiring
high efficiency and density, such as in electric vehicles, LED drivers, and solar power
generation [2,3]. Improving the design accuracy is important to increase the utilization
of the LLC resonant converter and maximize its advantages. To this end, the accurate
operation and loss analysis of the LLC resonant converter needs to be prioritized.

Accordingly, various analysis techniques for the accurate operation and loss analysis
of the LLC resonant converter have been reported. For example, a first-harmonic approxi-
mation (FHA) analysis method that only considers the fundamental sinusoidal components
of the circuit voltage and current was proposed to simplify the analysis and design of the
LLC resonant converter [4]. The FHA technique is the commonly used analysis method in
the frequency domain. It is used as a basic analysis method because its formula is intuitive
and simple. The FHA technique only considers the basic sine wave components of the
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converter’s current and voltage, and therefore, it has a disadvantage that significant errors
can occur with the actual result because the harmonic effect is not considered [5,6].
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Figure 1. Half−bridge LLC resonant converter topology.

To solve these problems, an improved FHA technique that reflects and analyzes
harmonic components in addition to the basic sine wave for the LLC resonant converter
was proposed [4]. This technique performs mathematical modeling based on current and
voltage waveforms while considering harmonics, which enables us to derive accurate
current values. However, accuracy cannot be guaranteed under all conditions because the
analysis error of this method increases depending on the LLC resonant converter design
specification. An analysis technique with higher accuracy was proposed by considering the
resonant factor and load factor according to the design specifications of the LLC resonant
converter [7,8]. This technique helped derive a voltage gain curve for designing a high-
efficiency LLC resonant converter and accurate values of voltage and current. However,
the application range of the technique is limited to the region below the resonant frequency
because of the increase in the estimation error when the switching frequency is above the
resonant frequency.

Therefore, in order to solve these limitations of the frequency-based analysis method,
a time-domain-based LLC resonant converter analysis method has been proposed [9]. In [9],
a method of deriving the voltage and current in the resonant network using a time-based
nonlinear equation below the resonant frequency, at the resonant frequency point, and
above the resonant frequency is proposed. However, this method only classifies three types
of the LLC operation mode (1. fs < fr, 2. fs = fr, 3. fs > fr), so the accuracy of estimating
voltage and current value is not high. To solve this problem, a time-domain analysis
(TDA)-based LLC resonant converter analysis technique that can estimate the magnitude of
voltage and current with high accuracy regardless of design conditions such as operating
frequency and magnitude of the load and a voltage gain derivation algorithm are proposed
in this paper. To this end, the concept of subinterval P, N, O, which is defined according
to the magnitude of the voltage applied to the magnetizing inductor and combination of
those subintervals considering the boundary of each operation mode, is suggested, and the
circuit voltage and current magnitudes are estimated with high accuracy based on these
concepts. The analytical solution for the circuit variables is derived based on nonlinear
equations. This increases the complexity of the equations, which makes it necessary to
use software for performing numerical analysis to solve these equations. Therefore, the
equations reported in this paper and the LLC resonant converter operation mode analysis
are performed using numerical analysis software. The effectiveness of the TDA-based
analysis technique and voltage curve derivation algorithm are verified through comparison
with experimental results based on the 500 W LLC resonant converter prototype.

The remainder of this paper is organized as follows: In Section 2, the operation mode
analysis of the LLC resonant converter is conducted using a TDA-based analysis technique.
Section 3 introduces an algorithm that can classify each operation mode and proposes
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an algorithm for deriving a voltage gain curve based on this algorithm. In Section 4,
the effectiveness of the proposed technique is verified through TDA-based analyses and
experiments. Finally, Section 5 presents the overall summary and conclusions of this study.

2. TDA-Based LLC Resonant Converter Analysis Technique
2.1. Operation Mode Analysis of LLC Resonant Converter

The operation state of an LLC resonant converter can be divided into three states based
on the state during the half-cycle of switching. Figure 2 shows the equivalent circuits in
different operating states [6]. Subinterval P in Figure 2a represents the interval at which the
voltage across the magnetizing inductor Lm of the LLC resonant converter is clamped to the
positive output voltage NVO. By applying Kirchhoff’s voltage law (KVL) to the equivalent
circuit in subinterval P, the differential equation can be expressed as

LrCr
d2

dt2 vCr + vCr = Vi − NVO (1)
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Figure 2. Equivalent circuit for each operating state of the LLC resonant converter: (a) P subinterval,
(b) N subinterval, (c) O subinterval.

When the general solution of Equation (1) is obtained, the resonant capacitor Cr voltage
and the resonant inductor Lr current can be, respectively, expressed as

vCr (t) = k1cos(ωrt) + k2sin(ωrt) + Vi − NVO (2)
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iLr (t) = Crωr[−k1sin(ωrt) + k2cos(ωrt)] (3)

Here, k1 and k2 represent the coefficients determined by the initial conditions of the
circuit, and the series resonance angular frequency ωr is expressed as

ωr =
1√

LrCr
(4)

LrCr
d2

dt2 vCr + vCr = Vi + NVO (5)

Equation (5) can be derived by applying the KVL theory to Figure 2b, and it derives
the nonlinear equation of the N subinterval. When the general solution of Equation (5)
is obtained, it can be, respectively, expressed for the resonant capacitor Cr voltage and
resonant inductor Lr current as

vCr (t) = k3cos(ωrt) + k4sin(ωrt) + Vi + NVO (6)

iLr (t) = Crωr[−k3sin(ωrt) + k4cos(ωrt)] (7)

Here, k3 and k4 are coefficients determined by the initial conditions of the circuit.
In addition, subinterval O in Figure 2c represents the interval where the voltage across

the magnetizing inductor Lm is not clamped to the output voltage. Applying KVL to the
equivalent circuit in subinterval O results in

(Lr + Lm)Cr
d2

dt2 vCr + vCr = Vi (8)

When the general solution of Equation (8) is obtained, it can be, respectively, expressed
for the resonant capacitor Cr voltage and resonant inductor Lr current as

vCr (t) = k5cos(ωmt) + k6sin(ωmt) + Vi (9)

iLr (t) = Crωm[−k5sin(ωmt) + k6cos(ωmt)] (10)

Here, k5 and k6 represent coefficients determined by the initial conditions of the circuit.
The parallel resonance angular frequency ωm is expressed as

ωm =
1√

(Lr + Lm)Cr
(11)

All operating modes of the LLC resonant converter are formed by different combina-
tions of the three operating states defined above. For example, if the half-cycle of the LLC
resonant converter starts with period P and ends with period O, it is defined as the PO
operation mode. Figure 3 shows the current and voltage waveforms in the LLC resonant
converter PO operation mode. In Figure 3, vHB represents the output voltage of the half-
bridge, and the on and off state of the switch can be derived from these voltages. V0, V1 are
the initial and final values of the resonant capacitor voltage, and I0, I1 are the initial and
final values of the magnetizing current. Zc1, Zc2 are the characteristic impedances of the
LLC resonant converter in P, N mode and O mode, which can be expressed as Equations
(12) and (13).

Zc1 =

√
Lr

Cr
(12)
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Zc2 =

√
Lr + Lm

Cr
(13)
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Equations (14)–(16) express the voltage and current of the capacitor and inductor in
the P subinterval in the PO operation mode, and Equations (17)–(19) express the voltage
and current of the capacitor and inductor in the O subinterval in the PO operation mode.

vCr_P(t) = Vi − NVO+Zc1 I0sin(wrt)+(VO −Vi + NVO)cos(wrt) (14)

iLr_P(t) = I0cos(wrt)− (VO −Vi + NVO)Zc1sin(wrt) (15)

iLm_P(t) =
NVO
Lm

+ I0 (16)

These equations can be expressed by using the characteristic impedance and input,
output voltage, turns ratio, time interval, and resonant network parameter. To obtain the
accurate values of current and voltage at each interval, one must equate those equations
properly by using numerical simulation tool. Not only this PO operation mode, but also
other operation modes can be analyzed in the same way.

vCr_N(t) = Vi + Zc2 I1sin(wm(t− t1))+(V1 −Vi)cos(wm(t− t1)) (17)

iLr_N(t) = I1cos(wm(t− t1))− (V1 −Vi)/Zc2sin(wm(t− t1)) (18)

iLm_N(t) = iLr_N(t) (19)

2.2. Classification of LLC Resonant Converter Operation Modes

The main operation modes of the LLC resonant converter can be classified as PO,
PON, PN, P, O, NP, NOP, OP, and OPO. In addition to these nine operating modes, there
are other possible combinations of P, N, and O subintervals; however, the corresponding
operation mode exists in the zero current switching (ZCS) region, where the advantages of
the MOSFET LLC resonant converter can be lost, so a detailed analysis is not performed.
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Consequently, the main operation region of the LLC resonant converter analyzed in this
study is classified into three regions based on the resonant frequency, as follows: (1) the
operation region where the operating frequency of the converter is less than the series
resonant frequency ( fs < fr), (2) the region where the operating frequency of the converter
is equal to the series resonant frequency ( fs = fr), and (3) the region where the operating
frequency of the converter is greater than the series resonant frequency ( fs > fr) [10].

2.3. LLC Resonant Converter Operation Mode below Resonance

Figure 4 shows the waveforms of the representative operating modes of the LLC
resonant converter in the fs < fr region. The PN and PON operation modes only appear in
the ZVS and ZCS boundary conditions. In these modes, ZVS is partially guaranteed. In
the PO operation mode, the switch current operates as a negative current when the switch
is turned on, and consequently, the output cap of the switch is discharged to ensure ZVS
operation. In the OPO operation mode, ZVS operation is guaranteed in the PO operation
mode; however, this operation mode appears under a light load condition with a low load
condition. The corresponding operation mode has an advantage in securing the stability
of the control because of the increase in the input/output voltage gain with a decrease
in the operating frequency. Thus, the design parameters must be adjusted so that it can
operate in the corresponding region when designing an LLC resonant converter. Turn-on
loss can be minimized by operating in the PO and OPO operation modes, and this can help
achieve high efficiency. In addition, if the operating frequency is lowered continuously in
the corresponding operation mode, the maximum voltage gain of the designed converter
can be derived. The maximum voltage gain point determines the feasibility of the design
when designing an LLC resonant converter.

2.4. LLC Resonant Converter Operation Mode at Resonance

Figure 5 shows the P-operation mode of the LLC resonant converter at resonance. The
voltage gain in the P-operation mode is calculated as unity regardless of the load size. In
addition, there is no subinterval in which the energy circulates on the primary side. Further,
a separate reverse recovery loss does not occur because the ZCS operation of the secondary-
side rectifier diode can be guaranteed. These characteristics make it possible to achieve
higher efficiency in the P-operation mode compared to that in the other operation modes.
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2.5. LLC Resonant Converter Operation Mode above Resonance

Figure 6 shows the voltage and current waveforms of the representative operation
modes of the LLC resonant converter in the fs > fr region. Typically, there are four op-
eration modes (NP, OPO, OP, and NOP), and the voltage gain of the resonant network
is always lower than the unity gain in the corresponding region. The input impedance
of the resonant network has an inductive load, and it guarantees the ZVS operation of
the primary-side switch. However, the turn-off loss of the primary-side switch and the
reverse recovery loss of the secondary-side rectifier diode increase during the switching
operation. Therefore, avoiding this operation region is helpful when reducing power loss
and achieving high efficiency.
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3. LLC Resonant Converter Analysis Algorithm

An algorithm that determines the operation mode and derives the voltage gain curve
according to the operating conditions of the LLC resonant converter is proposed in this
section based on the TDA-based LLC resonant converter analysis method. This algorithm
helps to improve the design accuracy of the LLC resonant converter and achieve high
efficiency and density at the design step.

3.1. Operation Mode Determination Algorithm Considering Boundary Conditions

Analyzing the operating modes of a TDA-based LLC resonant converter is difficult
because one equation cannot be applied to all operation modes. Thus, clarifying the
equation for the operating state corresponding to each time interval and distinguishing the
boundary conditions between the operating modes are necessary steps for analyzing the
operating mode of the LLC resonant converter accurately.

The operation mode can be determined through a conditional expression for the
magnitude of voltage VLm across the magnetizing inductor according to the operating
state of the converter [10]. Figure 7 shows the LLC resonant converter operation mode-
classification algorithm. In the first step, it is determined whether there is a load or not; in
the case of no load, it is determined as an O operation mode. Next, the magnitudes of the
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switching frequency and resonant frequency are compared and classified into three regions
( fs < fr, fs = fr, fs > fr), and a conditional expression suitable for each operating frequency
is employed. The fs = fr region is not classified through a separate conditional expression,
and only the P operation mode exists.
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3.2. fs < fr (Below Resonant Frequency Operation)

If fs < fr, the LLC resonant converter operation mode is assumed to be PO. Further-
more, the sizes of VLm(0 + ∆) and VLm(α+ ∆) are calculated, where α represents the length
of the P subinterval and ∆ is an arbitrary value. The voltage VLm waveform across the
magnetizing inductor in the PO operation mode is shown in Figure 8a. If the conditional
expression VLm(0 + ∆) = NVout or |VLm(α+ ∆)| < NVout is satisfied, the corresponding
operation mode is determined as the PO operation mode. If the PO operation mode
determination condition is not satisfied, the OPO operation mode is assumed and the
values of VLm(0 + ∆) and VLm(β + ∆) are calculated. The voltage VLm waveform across
the magnetizing inductor in the OPO operation mode is shown in Figure 8b. The OPO
operation mode can be determined if the conditional expressions |VLm(0 + ∆)| < NVout
and |VLm(β + ∆)| < NVout are satisfied. Similarly, if the determination condition of
the OPO operation mode is not satisfied, the values of VLm(0 + ∆), VLm(α + ∆), and
VLm(β + ∆) are calculated by assuming the PON operation mode. The voltage VLm wave-
form across the magnetizing inductor in the PON operation mode is shown in Figure 8c. The
conditional expression VLm(0 + ∆) = NVout, |VLm(α + ∆)| < NVout, VLm(β + ∆) = −NVout
is satisfied simultaneously, and it is determined as the PON operation mode. If none of the
conditional expressions presented above are satisfied, the corresponding operation mode is
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determined as the PN operation mode. Figure 8d shows the voltage VLm waveform across
the magnetizing inductor in the PN operation mode.

Figure 8. LLC resonant converter fs < fr operation mode waveform: (a) PO, (b) OPO, (c) PON, and
(d) PN operation modes.

3.3. fs > fr (Above Resonant Frequency Operation)

If fs > fr, then the LLC resonant converter operation mode is assumed to be the NP
operation mode, and the magnitudes of VLm(0 + ∆) and VLm(α + ∆) are calculated. The
voltage VLm waveform across the magnetizing inductor in the NP operation mode is shown
in Figure 9a. If the conditional expressions VLm(0 + ∆) = −NVout and VLm(α + ∆) = NVout
are satisfied, it is determined as the NP operation mode. If the determination condition
of the NP operation mode is not satisfied, the values of VLm(0 + ∆) and VLm(β + ∆) are
calculated by assuming the OPO operation mode. The voltage VLm waveform across the
magnetizing inductor in the OPO operation mode is shown in Figure 9b. The OPO op-
eration mode can be determined if the conditional expressions |VLm (0 + ∆)| < NVout
and |VLm(β + ∆)| < NVout are satisfied. If the determination condition of the OPO op-
eration mode is not satisfied, the magnitudes of VLm(0 + ∆), VLm(α + ∆), and VLm(β + ∆)
are calculated assuming the NOP operation mode. The voltage VLm waveform across
the magnetizing inductor in the NOP operation mode is shown in Figure 9c. The con-
ditional expression VLm(0 + ∆) = −NVout, |VLm(α + ∆)| < NVout, VLm(β + ∆) = NVout is
satisfied simultaneously, and the NOP operation mode is determined. If none of the con-
ditional expressions presented above are satisfied, the OP operation mode is determined.
Figure 9d shows the voltage VLm waveform across the magnetizing inductor in the OP
operation mode.
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4. Operating Mode Boundary Search and Voltage Gain Curve Derivation Algorithm

Figure 10 shows the TDA-based boundary search and voltage gain curve derivation
algorithm for the LLC resonant converter. The operation mode can be classified based on
the magnitude of the operation switching frequency and load using the proposed operation
mode determination algorithm. The voltage gain value can be derived using the solver
of the determined operation mode, and the voltage gain curve can be derived based on
this analysis. For the TDA-based voltage gain curve, an appropriate formula must be
applied according to the operating mode. A significant error can occur if the voltage gain
is calculated without considering a specific operating mode. Thus, it is possible to derive
a voltage gain curve that is considerably more similar to the actual result than the existing
voltage gain curve based on the FHA.

First, the algorithm proceeds by entering the design conditions (input voltage, res-
onance parameter, and number of turns). Second, the designer selects and inputs the
minimum switching frequency fs(min), maximum switching frequency fs(max), and oper-
ation switching frequency interval fs(step) required when executing the algorithm. The
algorithm is executed by sequentially applying the load factor size interval pon(step). The
algorithm is repeatedly performed within the range of the switching operating frequency
and load factor. The execution is terminated when each variable reaches the maximum
value. Finally, the derived information is stored temporarily until the next execution.
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5. Performance Verification

The TDA-based resonant current and voltage gain values are compared with the
values obtained from the experiment of the LLC resonant converter prototype. As shown
in Figure 11, a 500 W LLC resonant converter experimental set is constructed and tested to
validate the proposed algorithm. The primary side of the LLC resonant converter prototype
has a half-bridge structure, and the switch to use is TP65H035GWS, which is manufactured
by the Transphorm; the secondary side is a full-wave rectifier circuit structure, and the
rectifier diode element is SCS320AE2HR. In addition, the resonant network is composed of
a resonant inductor Lr, resonant capacitor Cr, and transformer with magnetizing inductance
Lm. A transformer with a turn ratio of 1.5 was manufactured for the conversion of the
input and output voltage of the LLC converter, and the core used was EE6565, and the
material type was FM10. In the case of winding, the number of turns on the primary side
was six (turns), and the number of turns on the secondary side was four (turns) according
to the values calculated using the transformer design procedure [11]. In addition, the
transformer winding was manufactured using 9.3 (sq) and 13.6 (sq) Litz wires, and the
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diameter was 0.12 (mm). An MSO56 5-BW-500 oscilloscope from Tektronix, Beaverton,
OR, U.S. was used for the measurement. The equipment used to measure the operating
waveform, specifically in the case of Vgs voltage, was Tektronix’s THDP0200 Differential
Probe, and the Vds voltage was measured using Tektronix’s TPP0500B Passive Probe. In
addition, the resonance current was measured using a TCP0030A Current Probe. For the
power supply and load simulation device, ITECH’s IT6018C-1500-40 was used. The TI
TMS320F28337D controller was used to control the operating frequency of the LLC resonant
converter. Table 1 lists the LLC resonant converter system parameters to verify the LLC
resonant converter operation. The output voltage of the converter was controlled using the
PFM (Pulse Frequency Modulation) method by adjusting the switching frequency within
the range of 185–350 kHz. By adjusting the operating frequency, the desired output voltage
could be obtained, and based on the input voltage of 210 (V), the minimum output voltage
was 80 (V), the nominal output voltage was 100 (V), and the maximum output voltage
was 120 (V). In order to find the total overall efficiency, it was necessary to calculate the
loss, and the conduction loss of the transistors was calculated based on their on-resistance,
and the switching loss included both turn-on and turn-off losses, as well as body diode
reverse recovery losses. The turn-on loss was ignored assuming ZVS operation, and the
turn-off loss, body diode reverse recovery loss, and the conduction loss of the diode in the
secondary rectification stage were considered to calculate the overall efficiency. Depending
on the load factor, the output efficiency was different, and it had an efficiency of 93.7%
under the 50% load condition and 94.9 (%) efficiency under the 100% load condition.
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Figure 11. LLC resonant converter prototype experimental set configuration.

Table 1. System parameters.

Symbol Quantity Value (Unit)

Vin Input voltage 210 (V)
Pout Rated output power 500 (W)
Lr Resonant inductor 9.4 (µH)
Cr Resonant capacitor 30 (nF)
Lm Magnetizing inductance 20 (µH)
N Transformer turn 1.5
fr Resonant frequency 300 (kHz)
fs Switching frequency 185–350 (kHz)
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5.1. Comparison of the TDA Technique and Experimental Current Waveform

Figure 12a shows the gate-source and drain-source voltages and the resonant current
waveforms of the primary-side switch of the LLC resonant converter prototype under the
condition that the switching frequency is equal to the resonance frequency ( fs = 300 kHz).
When the LLC resonant converter prototype operates in the P-mode, the resonant current
iLr appears as a sine waveform, and the ZVS operation of the primary-side switch can be
achieved. Under the condition that operating frequency fs is 300 kHz, Figure 12b shows
the resonant and magnetizing current waveforms of the P operation mode derived from
the proposed TDA-based classification algorithm. Figure 13a shows the experimental
waveform when the LLC resonant converter prototype operates at a switching frequency
of 185 kHz. The prototype operates in the PON operation mode. If the switching frequency
is reduced further at that point, the LLC resonant converter operates as a capacitive
load and cannot achieve ZVS operation, as shown in the experimental waveform of the
prototype in Figure 13a, which results in ringing on the source voltage. Therefore, the
power loss may increase, and it may be difficult to secure control stability. Figure 13b shows
the resonance and magnetizing current waveforms in the PON operation mode derived
using the TDA-based classification algorithm. Results similar to the actual experimental
waveform can be obtained. Figure 14a shows the experimental waveform when the LLC
resonant converter prototype operated at a switching frequency of 330 kHz in the NP
operation mode. When the switching frequency was higher than the resonance frequency,
the voltage gain decreased with an increase in the switching frequency, and it achieved
a ZVS operation similar to that in the PO operation mode. However, there was a possibility
that the power loss may have increased because of the reverse recovery loss of the additional
secondary-side rectifier diode. Figure 14b shows the resonant and magnetizing current
waveforms in the NP operating mode, which were derived using the proposed TDA-
based classification algorithm. As shown in Figure 14, the results are similar to the actual
experimental waveform. Table 2 lists the results of the initial value, maximum value, and
root mean square (RMS) of the resonance current value. The values derived from the TDA
and the experiment are analyzed and compared. The error value in Table 2 represents the
error of the result value obtained through actual experiment compared to the current value
(initial value, peak value, and rms value) estimated using the TDA analysis technique, and
the method of derivation is as follows:

Error [%] =
|TDA method value− Experiment value|

Experiment value
× 100 [%] (20)

Table 2. Values extracted using the TDA method and the experiment.

Switching
Frequency Value TDA Method Experiment Error

185 kHz

iLr(0) 5.1 A 5.2 A 2 %

iLr(peak) 21.6 A 22.2 A 2 %

iLr(rms) 14.1 A 14.5 A 2 %

300 kHz

iLr(0) −4.2 A −4.4 A 4 %

iLr(peak) 5.3 A 5.5 A 3 %

iLr(rms) 3.9 A 4 A 2 %

330 kHz

iLr(0) −4.3 A −4.5 A 4 %

iLr(peak) 4.7 A 4.8 A 2 %

iLr(rms) 3.2 A 3.3 A 3 %
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5.2. Derivation of LLC Operation Boundary Curve and Comparison of LLC Resonant Converter
Voltage Gain Curve

Figure 15a shows the LLC operation mode region based on the operating frequency
and magnitude of the load obtained using the TDA-based boundary-mode classification
algorithm. As shown in Figure 15a, the magnitude of the load and the operating frequency
are normalized by the resonant frequency. When the boundary of the operating mode for
each load size and operating frequency is determined, the voltage gain for each operating
frequency is obtained using the proposed voltage gain curve derivation algorithm, as
illustrated in Figure 15b. Figure 16 shows the results of the voltage gain values through
experiments using the FHA, improved FHA, and TDA methods under the full-load 500 W
LLC resonant converter. If the FHA and improved FHA methods are applied, the voltage
gain curve can be derived using the equation of voltage gain, which is derived from the
equivalent circuit that approximates the LLC resonant converter. However, the switching
frequency exhibits a large error when it moves away from the resonant frequency. However,
the voltage gain curve derived using the proposed TDA method shows high accuracy
compared to that of the actual gain curve, which is derived from the LLC resonant converter
prototype over the entire switching frequency range. Figure 17 shows the error of the
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voltage gain curve derived from the actual experiment and the voltage gain curve estimated
by using each analysis method (FHA method, improved FHA method, and TDA method).
In Figure 17, the voltage gain value at each operating frequency was calculated based
on the measurement points for each operating frequency (23 points were selected in the
experiment) in order to estimate the voltage gain curve in the actual experiment. The
method to derive the gain curve estimation error is to calculate the average of the sum
of the difference between the voltage gain value actually measured at each point and the
voltage gain value estimated using the analysis method, and it can be expressed in the form
of Equation (21).

Error [%] =

∣∣∣∑k
i=1(Mmethod(i)−MExp(i))

∣∣∣
k

× 100 [%] (21)

k = number of measurement points in the experiment;
method = FHA, improved FHA, or TDA;
Exp = experiment.
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The error was 8.4% on average in the case of the FHA method and 4.8% in the case of
the improved FHA method. It was confirmed that the error rate of the TDA technique was
only 0.7%. These results indicate that the gain curve can be estimated accurately when the
TDA method is applied. Consequently, it can lead to the high-efficiency design of the LLC
converter because it can precisely estimate not only the value of the current and voltage
but also the voltage gain curve of the LLC resonant converter.

6. Conclusions

A method for accurately analyzing LLC resonant converters to increase their design
accuracy was proposed in this paper. An algorithm for determining the LLC resonant
converter operation mode and deriving the voltage gain curve was also proposed. Accord-
ing to the proposed TDA technique, the estimated error for the experimental results was
around 2–4%. This allows for the accurate estimation of voltage and current magnitudes.
Furthermore, when deriving the voltage gain curve of the LLC converter, the proposed
TDA technique achieved higher accuracy compared to the existing FHA techniques. The
estimated error of the proposed technique was 0.7%, which was significantly lower than the
7.7% estimated error of the commonly used FHA technique. Therefore, the proposed TDA
technique can estimate the magnitude of current and voltage with high accuracy regardless
of design conditions such as switching frequency and load size, which helps to improve
the design accuracy of LLC resonant converters. This is advantageous for achieving high
efficiency and high density. In addition, the proposed LLC resonant converter voltage gain
curve derivation algorithm can be established to achieve high efficiency and density in
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the design stage. The accuracy of the TDA technique and effectiveness of the proposed
algorithm were verified by comparing the experimental results of the 500 W LLC resonant
converter prototype. However, as the TDA method is a kind of numerical-based analysis
technique, it requires a significant number of computations. Furthermore, since the anal-
ysis is based on nonlinear relationships among design parameters, it may be somewhat
difficult to intuitively understand the relationship between design parameters and results.
Additionally, the scope of this research is limited to accurately estimating the voltage and
current magnitudes, and it does not include analyses of losses or efficiency. Therefore,
in order to design a high-efficiency resonant converter using this analysis, it is necessary
to analyze loss and efficiency for each operation mode through the proposed method.
Through this, it is possible to design a high-efficiency converter, and not only this, but
research on the optimal design of a converter that can achieve both high efficiency and high
density through accurate analysis techniques will also be conducted in the future.
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