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Abstract: Recently, orthogonal matching pursuit (OMP) has been widely used in direction of arrival
(DOA) studies, which not only greatly improves the resolution of DOA, but can also be applied to
single-snapshot and coherent source cases. When applying the OMP algorithm to the rectangular
array DOA of the millimeter-wave radar, it is necessary to reshape the two-dimensional (2D) signal
into a long one-dimensional (1D) signal. However, the long 1D signal will greatly increase the
number and length of atoms in the complete dictionary of the OMP algorithm, which will greatly
increase the amount of computation. Taking advantage of the sparsity of targets in the DOA space,
an efficient 2D DOA estimation algorithm based on OMP for rectangular array is proposed. The
main idea is to reduce the number of atoms in the complete dictionary of the OMP algorithm, thereby
greatly reducing the amount of computation required. A simulation verifies that the efficiency
of the proposed algorithm is much higher than the conventional algorithm with almost the same
estimation accuracy.

Keywords: orthogonal matching pursuit (OMP); direction of arrival (DOA); two-dimensional (2D);
rectangular array

1. Introduction

Recently, autonomous driving has become a fast-growing field of research, which is
an important direction to achieve safe and efficient driving. Compared with other sensors,
millimeter-wave radar has the advantages of being usable at any time and in all weather,
motion detection capability, and low cost, and is one of the most important sensors for the
automatic driving of cars [1]. In order to better realize the perception of three-dimensional
space, two-dimensional (2D) direction of arrival (DOA) [2–4] estimation is an important
area of research in the application of vehicle millimeter-wave radar. L-shaped arrays [5],
rectangular arrays [6] and circular arrays [7] are usually used to realize the estimation of
2D DOA. Sufficient array snapshots are required to achieve precise angle estimation due
to the low density of both L-shaped and circular arrays. However, in vehicle-mounted
millimeter-wave radar application scenarios, only a small number of array snapshots, or
even just a single array snapshot can be obtained due to the highly dynamic scene [8,9].
Therefore, in this highly automotive dynamic scenario, L-shaped arrays and circular arrays
are not suitable for accurate 2D angle estimation. Rectangular arrays offer advantages over
L-shaped and circular arrays in that they not only enable accurate angle estimation with
only a small number of array snapshots, but also can be implemented with a few antennas
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through multi-input multi-output (MIMO) radar technology [10,11]. Because of the above-
mentioned advantages, rectangular arrays have been widely used in vehicle-mounted
millimeter-wave radar and various other domains.

In recent years, compressed sensing algorithms have been developed rapidly and
widely used in image fusion [12], ultra-wideband communication [13], and underwater
acoustic communication [14]. The high bandwidth of the millimeter-wave radar enables
it to achieve a high range resolution [15]. Thus, the number of targets in the same range-
Doppler bin is limited, indicating the sparsity of targets in the DOA space. According
to this characteristic, compressed sensing methods can be used for high-resolution angle
estimation of the millimeter-wave radar. The DOA estimation based on compressed
sensing [16] not only improves the resolution of DOA greatly, but can also be applied to the
case of single-snapshot and coherent sources compared with the classical DOA estimation
algorithms, such as MVDR [17], MUSIC [18], ESPRIT [19], etc. Recently, many interesting
angle estimation methods have been proposed. Yardibi [20] proposes an iterative adaptive
approach (IAA), which can obtain high angle resolution through an iterative process.
Tan [21] proposes a sparse learning via iterative minimization method for sparse signal
recovery, which is essentially a regularization minimization method. Pallotta [22] proposes
a two-level interpolation method to perform angle estimation to improve the accuracy of
angle estimation. Ciuonzo [23] derives the asymptotic distribution of the null spectrum
of the well-known MUSIC in its computational time-reversal form, and provides useful
numerical analysis to validate the theory. Although the accuracy of the above algorithms
is high enough, their calculation amount is so huge that they are very hard to apply in
the actual scenarios. Recently, there are also many works to improve the efficiency of the
DOA algorithm. Mao [24] proposed an efficient generalized adaptive asymptotic minimum
variance method to improve the angular resolution. However, it is based on the sparse
asymptotic minimum variance algorithm [25], which has difficulty in controlling the end of
iteration [26]. Luo [27] proposed an online least absolute shrinkage and selection operator
method to achieve efficient DOA estimation. However, it is designed for the time-division
multiplexing multiple-input, multiple-output system, which greatly limits its application
range. Orthogonal matching pursuit [28,29] (OMP) is one of the classic algorithms in
the field of compressed sensing. It is a greedy algorithm with the advantages of simple
implementation, stable performance and low computational complexity.

When applying the OMP algorithm to 2D DOA estimation of the rectangular array
for the vehicle-mounted millimeter-wave radar, it is necessary to reshape the 2D sig-
nal into a one-dimensional (1D) signal. However, the 1D signal is excessively lengthy,
leading to a significant increase in the corresponding dictionary’s length and number
of atoms. As a result, the OMP algorithm’s computational complexity is considerably
elevated [30,31], which cannot meet the real-time requirements of the vehicle-mounted
millimeter-wave radar.

An efficient 2D DOA algorithm based on OMP for the rectangular array is proposed
by exploiting the sparsity of the targets. Initially, a 1D digital beamforming (DBF) [32,33]
is conducted in each dimension, resulting in the DBF power spectrum. Subsequently, a
peak search operation is carried out on the DBF result of each dimension, and the peaks’
corresponding intermediate angle set and pitch angle set are returned. Next, these two
angle sets are extended by the method mentioned in the manuscript. Finally, a complete
dictionary is generated based on the two extended angle sets, and the OMP algorithm is
used to reconstruct the sparse vector according to the complete dictionary and the sparse
signal. Finally, the angles of targets can be obtained according to the position of the non-zero
elements in the sparse vector.

The main contribution of our proposed algorithm is to solve the problem of excessive
computation in the OMP-based 2D DOA estimation algorithm. We introduce the 1D DBF,
peak search, and angle set extension operation to reduce the number of atoms greatly in
the complete dictionary, which greatly reduces the computational complexity of the OMP-
based 2D DOA estimation algorithm, and the angle set extension operation introduced
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by us is the key to ensuring the estimation accuracy and robustness of our proposed
algorithm. Compared with the conventional OMP-based 2D DOA estimation algorithm,
our proposed algorithm greatly reduces the amount of computation while maintaining
estimation accuracy. Therefore, our proposed algorithm has broad application prospects in
scenarios requiring real-time performance.

This paper is organized as follows: Section 2 presents the signal model. Our proposed
2D DOA algorithm based on OMP is introduced in Section 3. In Section 4, we apply our
proposed algorithm along with other state-of-the-art techniques to process the simula-
tion data and demonstrate the effectiveness of our approach. Finally, Section 5 provides
the conclusions.

2. Signal Model of Rectangular Array

Figure 1 illustrates a rectangular array with M× N array elements distributed on the
x-z plane. To simplify the modeling process, the array is assumed to be uniform, with
adjacent array elements separated by distances of dx in the x-axis direction and dz in the
z-axis direction. Assuming that the echo signals of the targets come from the far field, the
number of the targets is K, the complex reflection coefficient, the azimuth angle and the
pitch angle corresponding to the k-th target are βk, θk and ϕk, respectively. Assuming no
interference from noise, the response with respect to K targets of the (m, n)-th array element
can be represented as

smn =
K
∑

k=1

{
βk exp

(
j2π dx

λ (m− 1) sin αk

)
· exp

(
j2π dz

λ (n− 1) sin ϕk

)}
,

(1)

where λ is the carrier wavelength, m, n are positive integers, and their value ranges are
1 ≤ m ≤ M, 1 ≤ n ≤ N, and αk is defined as the intermediate angle variable, which is
a combination of the azimuth angle θk and the pitch angle ϕk. The relationship between
them is

sin αk = sin θk cos ϕk. (2)
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Figure 1. Geometry of rectangular array.

The main idea of 2D DOA for the rectangular array is to obtain the intermediate angle
αk and the pitch angle ϕk first, and then calculate the azimuth angle θk according to (2). In
the later discussion, only the intermediate angle αk and the pitch angle ϕk are considered.
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3. Proposed 2D DOA Algorithm Based on OMP
3.1. Perform 1D DBF in Each Dimension

The responses of the first row array elements and the first column array elements are
taken out, and 1D digital beamforming (DBF) is performed on them, respectively. The row
is defined as the x-axis direction, while the column is defined as the z-axis direction in
this manuscript.

The response of the first row array elements to the targets is

Srow1 =


s11
s21
s31
. . .
sM1


M×1

. (3)

The steering vector corresponding to the first row of array elements is

vrow1(α) =


frow1(α, 1)
frow1(α, 2)
frow1(α, 3)

. . .
frow1(α, M)


M×1

, (4)

where

frow1(α, m) = exp
(

j2π
dx

λ
(m− 1) sin α

)
. (5)

Perform uniform discrete sampling of the intermediate angle α

αp = 2
p− (P− 1)/2

P
αmax, p = 1, 2, 3, . . . , P, (6)

where the total number of discrete points P is assumed to be odd, and αmax is defined as
the maximum unambiguous intermediate angle, which can be calculated as

αmax = arcsin
(

λ

2dx

)
. (7)

The set of the discrete intermediate angles can be written as

A = {α1, α2, α3, . . . , αP}. (8)

The steering matrix based on the discrete intermediate angles is

Vrow1 = [vrow1(α1), vrow1(α2), vrow1(α3), . . . , vrow1(αP)]M×P. (9)

One-dimensional DBF in the first row is performed by multiplying the transpose
conjugate of (9) and (3)

DBFrow1
(
αp
)
= VH

row1Srow1, p = 1, 2, 3, . . . , P, (10)

where (·)H denotes the transpose conjugate.
The response of the first column of array elements to the targets is

Scol1 =


s11
s12
s13
. . .
s1N


N×1

. (11)
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The steering vector corresponding to the first column of array elements is

vcol1(ϕ) =


fcol1(ϕ, 1)
fcol1(ϕ, 2)
fcol1(ϕ, 3)

. . .
fcol1(ϕ, N)


N×1

, (12)

where

fcol1(ϕ, n) = exp
(

j2π
dz

λ
(n− 1) sin ϕ

)
. (13)

Perform uniform discrete sampling on the pitch angle ϕ

ϕq = 2
q− (Q− 1)/2

Q
ϕmax, q = 1, 2, 3, . . . , Q, (14)

where the total number of discrete points Q is assumed to be odd, and ϕmax is defined as
the maximum unambiguous pitch angle, which can be calculated as

ϕmax = arcsin
(

λ

2dz

)
. (15)

The set of the discrete pitch angles can be written as

φ =
{

ϕ1, ϕ2, ϕ3, . . . , ϕQ
}

. (16)

The steering matrix based on the discrete pitch angles is

Vcol1 = [vcol1(ϕ1), vcol1(ϕ2), vcol1(ϕ3), . . . , vcol1(ϕQ)]N×Q. (17)

One-dimensional DBF in the first column is performed by multiplying the transpose
conjugate of (17) and (11)

DBFcol1
(

ϕq
)
= VH

col1Scol1, q = 1, 2, 3 . . . , Q. (18)

3.2. Search Peaks on the 1D DBF Results

Peak search operation is performed on the 1D DBF results DBFrow1
(
αp
)

and
DBFcol1

(
ϕq
)
. This operation specifically refers to finding all peaks of the DBF power

spectrum, which are greater than a certain discrimination threshold, and the angular
coordinates corresponding to these peaks are outputted.

Assuming that K1 and K2 peaks are found for DBFrow1
(
αp
)

and DBFcol1
(

ϕq
)
, respec-

tively. The intermediate angle set and pitch angle set corresponding to these peaks can be
respectively recorded as

U =
{

uk1 ∈ A|k1 = 1, 2, 3, . . . , K1
}

, (19)

W =
{

wk2 ∈ φ|k2 = 1, 2, 3, . . . , K2
}

, (20)

where uk1 is the azimuth angle corresponding to the k1th peak in the 1D DBF results in
row, and wk2 is the intermediate angle corresponding to the k2th peak in the 1D DBF results
in column.

3.3. Extend the Intermediate Angle Set and Pitch Angle Set

When the angular difference between two targets is less than the angular resolution,
the two targets cannot be distinguished by using the DBF operation. In this case, the angle
set obtained above deviates greatly from the angle set of the actual targets. Therefore, the
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angle set obtained in Section 3.2 needs to be extended to ensure that it contains the angle
set of the actual targets. The specific angle set extension method is shown as follows:

The new intermediate angle set D can be extended from the angle set U as

D = {d ∈ A|u1 − αres ≤ d ≤ u1 + αres,
u2 − αres ≤ d ≤ u2 + αres,
u3 − αres ≤ d ≤ u3 + αres,

. . . ,
uK1 − αres ≤ d ≤ uK1 + αres

}
,

(21)

where αres is the intermediate angle resolution, and it can be calculated as

αres =
λ

Mdxcos(α)
. (22)

The new pitch angle set E can be extended from the pitch angle set W as

E = {e ∈ φ|w1 − ϕres ≤ e ≤ w1 + ϕres,
w2 − ϕres ≤ e ≤ w2 + ϕres,
w3 − ϕres ≤ e ≤ w3 + ϕres,

. . . ,
wK2 − ϕres ≤ e ≤ wK2 + ϕres

}
,

(23)

where ϕres is the pitch angle resolution, and it can be calculated as

ϕres =
λ

Ndzcos(ϕ)
. (24)

Suppose there are K3 elements in the set D and K4 elements in the set E. At this time,
D and E can be simply written as

D =
{

d1, d2, . . . , dK3

}
, (25)

E =
{

e1, e2, . . . , eK4

}
. (26)

3.4. OMP Algorithm

In order to apply the OMP algorithm to rectangular array DOA, the 2D response needs
to be reshaped into a 1D response as follows:

Sall = [s11, s21, . . . , sM1,
s12, s22, . . . , sM2,
s13, s23, . . . , sM3,

. . . ,
s1N , s2N , . . . , sMN ]

T
1×MN ,

(27)

where (·)T denotes the transpose.
The steering vector of the array corresponding to the 1D response in (27) is

vall(α, ϕ) = [kron(vcol1(ϕ), vrow1(α))]MN×1, (28)

where kron(·) stands for the Kronecker product [34].
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Then, the steering matrix of this array under the angle set D and E is

Vall =
[
vall(d1, e1), vall(d2, e1), . . . , vall(dK3 , e1),

vall(d1, e2), vall(d2, e2), . . . , vall(dK3 , e2),
vall(d1, e3), vall(d2, e3), . . . , vall(dK3 , e3),

. . . ,
vall(d1, eK4), vall(d2, eK4), . . . , vall(dK3 , eK4)

]
MN×K3K4

.

(29)

The steering matrix Vall can be regarded as the complete redundant dictionary, and
Sall in (27) can be regarded as the observation signal. The following sparse linear model
can be constructed

Sall = Vall x, (30)

where x is the corresponding sparse vector. The sparsity of x is K, and the size of x is
K3K4 × 1.

The sparse vector x in (30) can be reconstructed by the OMP algorithm. Finally, the
angles of targets can be obtained by finding positions of non-zero elements in x.

The processing flow of the algorithm is summarized as shown in Figure 2. First,
perform a 1D DBF in each dimension. Then, perform a peak search operation in the
DBF result of each dimension, and return the set of intermediate angles and pitch angles
corresponding to the peaks found above. Next, extend these two angle sets using the
method mentioned in this manuscript. Finally, a complete dictionary is generated based on
the two extended angle sets, the OMP algorithm is used to reconstruct the sparse vector
according to the complete dictionary and the sparse signal, and the angles of targets can be
obtained according to the positions of the non-zero elements in the sparse vector.

Perform 1D DBF in 

Each Dimension

Search Peaks

Extend the Angle Set 

Generate the  
Complete Dictionary 

Reconstruct the 
Sparse Vector 

Find Non-Zero 
Elements and 

Calculate Angles

OMP

Rectangular 
Array Data

Figure 2. Flow chart of our proposed algorithm.
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3.5. Comparison of Computational Complexity

The conventional 2D DOA based on OMP has PQ atoms, whereas our proposed
algorithm has K3K4 atoms. In OMP, the most time-consuming step is to search atoms in
the complete dictionary. In each iteration, the conventional method searches atoms at a
cost of O(MNPQ), resulting in a total complexity of O(KMNPQ). Conversely, our method
searches atoms at a cost of only O(MNK3K4) in each iteration, giving it a total complexity of
O(KMNK3K4). As the targets are sparse, K3K4 is much smaller than PQ, so our algorithm’s
computational complexity is much lower than that of the conventional 2D DOA based
on OMP.

4. Simulation Results

The simulation is carried out in MATLAB R2021a on a PC with Intel® Core™ i7-9700
CPU @3.00 GHz and 16 GB RAM, and the system is 64-bit operating system-Microsoft
Windows 11.

To mitigate the impact of randomness on algorithm performance assessment, multiple
independent random Monte Carlo simulations are conducted to evaluate both the root
mean square error (RMSE) and the average time consumption. The RMSE is defined as

RMSE

=

√√√√ 1
NmcK

Nmc
∑

n=1

K
∑

k=1

[(∧
αn,k − αn,k

)2
+

(
∧
ϕn,k − ϕn,k

)2
]

,
(31)

where Nmc is the number of Monte Carlo simulations. Variables
∧
αn,k and αn,k are the

estimated value and the true value of the intermediate angle of the k-th target in the

n-th independent simulation, respectively. Variables
∧
ϕn,k and ϕn,k are the estimated

value and the true value of the pitch angle of the k-th target in the n-th independent
simulation, respectively.

Table 1 lists the simulation parameters, and there are K = 3 far-field targets in
the simulation. For a given signal-to-noise ratio (SNR), Nmc = 1500 trials Monte Carlo
simulations are made. In each trial, the angles of these three targets are randomly
generated in the range of [−50◦, 50◦]. Simulation results are shown in Figure 3 and
Table 2. Figure 3 shows the average RMSE variation of the estimated angles of all
three targets in 1500-trials Monte Carlo simulations, where the OMP-based 2D DOA,
IAA-based 2D DOA, DBF-based 2D DOA, and our proposed algorithm are compared.
Table 2 shows the average time consumed by the above four algorithms in 1500-trials
Monte Carlo simulations. It can be inferred that our proposed algorithm is capable of
achieving a similar estimation performance to the conventional 2D DOA method based
on OMP. Moreover, our proposed algorithm consumes significantly less time on average
compared to the conventional algorithm. The RMSE of IAA-based 2D DOA is lower
than that of OMP-based 2D DOA, DBF-based 2D DOA, and our proposed algorithm,
which means that the estimation accuracy of IAA-based 2D DOA is highest. However,
its computational load is very large, which makes it difficult to apply in vehicular
radar. Since DBF-based 2D DOA is not a super-resolution algorithm, its accuracy is the
worst among these four DOA algorithms, and it cannot meet the requirements of some
application scenarios that require high angular resolution.

When the two targets are too close, the angle set obtained by the 1D DBF operation
will be inaccurate. Therefore, we design the angle set extension operation to enhance the
robustness of our proposed algorithm. In order to verify the effectiveness of the angle set
extension operation, we have designed the following simulation.

When SNR = 15 dB, the 2D angles of two targets are set as (9◦, 20◦) and (8◦, 40◦),
respectively. The simulation results are shown in Table 3. It can be seen that our pro-
posed algorithm can distinguish the two targets in both dimensions, while our proposed
algorithm (without the angle set extension operation) can only distinguish the two tar-
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gets in the second dimension. The simulation results prove the effectiveness of the angle
extension operation, which is the key step to ensure the accuracy and robustness of our
proposed algorithm.

Figure 3. Average RMSE of the estimated angles of three targets in 1500-trials Monte Carlo simulations.

Table 1. Main simulation parameters.

Parameter Description Symbol Value Unit

Light Speed c 3× 108 m/s
Central Frequency fc 77× 109 Hz

Wavelength λ c/ fc m
Snapshot Number 1

Target Number K 3
Element Number per Row M 20

Element Number per Column N 20
Adjacent Element Distance in Row dx λ/2 m

Adjacent Element Distance in Column dz λ/2 m
Randomized Simulation Number Nmc 1500

Discrete Number of Intermediate Angle P 181
Discrete Number of Pitch Angle Q 181

Table 2. The average time consumed in 1500-trials Monte Carlo simulations.

Algorithms Average Time Consumed (s)

OMP-based 2D DOA 0.3934
DBF-based 2D DOA 0.0286

Our proposed algorithm 0.0244
IAA-based 2D DOA 15.1074
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Table 3. DOA estimation results.

Target 1 Target 2

2D angle of target (9◦, 20◦) (8◦, 40◦)
OMP-based 2D DOA (9◦, 20◦) (8◦, 40◦)
IAA-based 2D DOA (9◦, 20◦) (8◦, 40◦)
DBF-based 2D DOA (9◦, 20◦) (8◦, 40◦)

Our proposed algorithm (9◦, 20◦) (8◦, 40◦)
Our proposed algorithm (without the angle set extension operation) (9◦, 20◦) (9◦, 40◦)

5. Conclusions

Taking advantage of the sparsity of the targets in the same range-Doppler bin of
the millimeter-wave radar, an efficient 2D DOA estimation algorithm based on OMP
for the rectangular array is proposed. Compared with the conventional OMP-based 2D
DOA estimation algorithm, our proposed algorithm can greatly reduce the number of
atoms in the complete dictionary, thereby greatly reducing the amount of calculation
required and greatly improving the estimation efficiency under the premise of ensuring the
estimation accuracy. This has important application prospects in some scenarios requiring
real-time high-precision 2D DOA, such as in the application of vehicle-mounted millimeter
wave radar.

This paper mainly discusses how to improve the efficiency of the OMP algorithm so
that it can be applied to 2D DOA estimation of the automotive radar. Although subspace-
based DOA estimation methods have high resolutions, they need the accumulation of
multiple snapshots, which affects the real-time performance of them. In the future, it will
also be meaningful to apply subspace-based DOA methods, such as MUSIC and ESPRIT, to
automotive radar.
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