
Citation: Hong, F.; Tay, D.W.L.; Ang,

A. Intelligent Pick-and-Place System

Using MobileNet. Electronics 2023, 12,

621. https://doi.org/10.3390/

electronics12030621

Academic Editor: Djuradj Budimir

Received: 22 December 2022

Revised: 22 January 2023

Accepted: 23 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Intelligent Pick-and-Place System Using MobileNet
Fan Hong 1,*, Donavan Wei Liang Tay 2 and Alfred Ang 3

1 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
2 Engineering Cluster, Singapore Institute of Technology, Woodlands 737715, Singapore
3 Tertiary Infotech Pte. Ltd., Woodlands 737715, Singapore
* Correspondence: fan.hong@glasgow.ac.uk; Tel.: +65-69086035

Abstract: The current development of a robotic arm solution for the manufacturing industry requires
performing pick-and-place operations for work pieces varying in size, shape, and color across different
stages of manufacturing processes. It aims to reduce or eliminate the human error and human
intervention in order to save manpower costs and enhance safety at the workplace. Machine learning
has become more and more prominent for object recognition in these pick-and-place applications with
the aid of imaging devices and advances in the image processing hardware. One of the key tasks in
object recognition is feature extraction and object classification based on convolutional neural network
(CNN) models, which are generally computationally intensive. In this paper, an intelligent object
detection and picking system based on MobileNet is developed and integrated into an educational
six-axis robotic arm, which requires less computation resources. An experimental test is conducted
on six-axis robotic arm called Niryo One to train the model and identify three objects with difference
shapes and colors. It is shown by the confusion matrix that the MobileNet model achieves an accuracy
of 91%, a dramatic improvement compared to 65% of the Niryo One’s original sequential model. The
statistical study also shows the MobileNet can achieve a higher precision with more clustered spread
of accuracy.

Keywords: machine learning; MobileNet; robotic arm; pick-and-place system

1. Introduction

In modern manufacturing industries, pick-and-place robots are commonly used due
to their capabilities of automation and expedition of the process of picking and placing
items in desired locations [1]. In addition, using pick-and-place robots to replace humans is
beneficial especially in arduous, highly repetitive, and hazardous tasks, in order to reduce
the labor costs and ensure consistency in the quality control of tasks.

There are different types of pick-and-place robots such as cartesian robots [2], fast
pick-and-place robots [3], robotic arm, delta (or parallel) robots [4], and collaborative robots
(cobot) [5]. Pick-and-place robots have several dedicated parts including the robot arm tool,
end effector, actuators, sensors, and controllers [6].

In manufacturing, various items are often transported via a conveyor belt before
entering into the robots’ work envelope. These items or work pieces vary in size, shape,
color across different stages of manufacturing processes. Multiple automated pick-and-
place robots are commonly mounted on a stand so that they can reach the entire aera
of operation to perform the required tasks. Robots are usually equipped with advanced
vision systems that enable them to identify different objects through object detection and
recognition training. This capability allows robots to identify different items and parts
accurately based on the orientation, location, color, and size. In addition, different end-
effectors can be designed depending on their respective applications in order to segregate
the objects to their respective target locations.

As technology advances, machine learning has become more prominent around the
world. Cameras have been used for object detection so that robots will be able to operate au-

Electronics 2023, 12, 621. https://doi.org/10.3390/electronics12030621 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030621
https://doi.org/10.3390/electronics12030621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12030621
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030621?type=check_update&version=2

Electronics 2023, 12, 621 2 of 15

tonomously based on information gathered from cameras [7]. This is known as “computer
vision” and has attraction a great amount of attention in academia and industries. With
the advances in hardware, such as Graphics Processing Units (GPUs), which allow highly
parallel computations in machine learning to be accelerated greatly, computer vision also
starts to leverage on advances in machine learning and greatly increases the capabilities
and possibilities of what it can achieve.

Object recognition is actually a collection of computer vision tasks to identify objects
from images. These tasks can be categorized generally as feature extraction and object
classification [8]. The feature extraction stage is composed of a filter bank, a non-linear
operation, and some feature pooling operations, together forming the typical convolu-
tional neural networks (CNN). The output of the pooling operation is classified by either
supervised or unsupervised learning classifiers, which are under the object classification
stage [9].

Convolutional neural networks (CNN) have achieved many successful applications,
especially in imagine recognition, such as the AlexNet model [10], which has around
sixty million parameters and eight layers; the VGG model [11] with sixteen layers; as
well as GoogleNet [12] and ResNet [13]. However, the requirements for high accuracy
and powerful feature extractions have made CNN algorithms computationally intensive
with substantial memory footprints [14]. It is inefficient to implement these algorithms
on embedded platforms such as robotics, unmanned vehicles, and IoT devices, which are
subject to constraints in power consumption, memory, resources, and timing. MobileNet,
proposed by Google, is a class of efficient and lightweight neural network model dedicated
to mobile and embedded vision applications. It has considerably reduced the number of
feature parameters and required memory footprint based on streamlined architecture that
uses depth-wise separable convolutions to build neural networks [16].

Motivated by previous works on machine learning using different training models,
an intelligent object detection and picking system based on MobileNet will be developed
and implemented on an educational six-axis robotic arm called Niryo One [17]. The main
contributions of the paper lie in the following:

(i) The MobileNet model for training purposes is built with a properly chosen number
of neurons and activation functions;

(ii) The training program using MobileNet model is coded in Python in the Tensor-
Flow platform;

(iii) The training program for object detection is integrated in the existing Niryo One
robotic system to perform pick-and-place applications;

(iv) The experimental results show that the MobileNet model achieves an accuracy of
91%, a dramatic improvement compared with 65% of the robot system’s existing sequen-
tial model;

(v) The statistical study shows the MobileNet can achieve a higher precision with a
more clustered spread of accuracy.

The rest of the paper is organized as follows. The problem formulation and method-
ology are given in Section 2. The code structure of the developed Python program is
presented in Section 3. The experimental result is shown in Section 4, followed by Section 5
with the discussion of the problems, challenges, and future improvements of the work.
Lastly, Section 6 concludes the paper.

2. Problem Formulation and Methodology

The Niryo One uses TensorFlow, an open-source machine learning tool developed
by Google, to recognize multiple objects on its workspace. It makes use of its vision set,
artificial intelligence, image processing, and machine learning [18]. In its original program,
images of the objects to be identified will go through some pre-processing before being
fed into a Python program called “training.py” to train the neural network to obtain a
TensorFlow model.

Electronics 2023, 12, 621 3 of 15

The model is a sequential class model that consists of a sequence of layers, one after
the other. It has a certain number of inputs, a hidden layer with certain number of neurons,
and an output layer with a single neuron. Additional layers can be created and added to
the model.

In this paper, the MobileNet model is built and coded in Python in the TensorFlow
platform, as well as Keras library and APIs. The MobileNet model will be trained using
image data of the objects and the trained model will be then be used to recognize the
different objects on the workspace.

Figure 1 shows the different layers in the convolutional neural network architecture.
The first layer is the input layer, which feeds images to the second layer, i.e., the convolution
layer. The third layer is the flatten layer, the fourth is fully connected layer, the fifth is the
dropout layer, and the last layer is the output layer. The first, second, and third layers per-
form image extraction, and the fourth, fifth, and sixth layers perform image classification.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 16

program, images of the objects to be identified will go through some pre-processing before

being fed into a Python program called “training.py” to train the neural network to obtain

a TensorFlow model.

The model is a sequential class model that consists of a sequence of layers, one after

the other. It has a certain number of inputs, a hidden layer with certain number of neurons,

and an output layer with a single neuron. Additional layers can be created and added to

the model.

In this paper, the MobileNet model is built and coded in Python in the TensorFlow

platform, as well as Keras library and APIs. The MobileNet model will be trained using

image data of the objects and the trained model will be then be used to recognize the

different objects on the workspace.

Figure 1 shows the different layers in the convolutional neural network architecture.

The first layer is the input layer, which feeds images to the second layer, i.e., the convolu-

tion layer. The third layer is the flatten layer, the fourth is fully connected layer, the fifth

is the dropout layer, and the last layer is the output layer. The first, second, and third

layers perform image extraction, and the fourth, fifth, and sixth layers perform image clas-

sification.

Figure 1. Convolutional neural network architecture for the MobileNet model [15].

The function of each layer is described as follows.

The MobileNet model is a neural network model that uses a new kind of convolution

layer, known as depth-wise separable convolution, as its basic unit. Its depth-wise sepa-

rable convolution has two layers: depth-wise convolution and point convolution. The

depth-wise convolution filter performs a single convolution on each input channel, and

the point convolution filter combines the output of the depth-wise convolution linearly

with 1 ∗ 1 convolutions [16].

Convolution, a form of linear operation used for feature extraction, uses a small array

of numbers known as kernels, applied across the input image. This array of numbers is

called a tensor. A feature map can then be calculated using the input tensor and the kernel

[19]. A simple example of using a dot product between the input matrix and the kernel to

generate the output feature map was shown in [20] (Figure 6.6). The feature map is then

passed to the third layer.

Figure 1. Convolutional neural network architecture for the MobileNet model [15].

The function of each layer is described as follows.
The MobileNet model is a neural network model that uses a new kind of convolution

layer, known as depth-wise separable convolution, as its basic unit. Its depth-wise separable
convolution has two layers: depth-wise convolution and point convolution. The depth-
wise convolution filter performs a single convolution on each input channel, and the point
convolution filter combines the output of the depth-wise convolution linearly with 1 ∗ 1
convolutions [16].

Convolution, a form of linear operation used for feature extraction, uses a small array
of numbers known as kernels, applied across the input image. This array of numbers
is called a tensor. A feature map can then be calculated using the input tensor and the
kernel [19]. A simple example of using a dot product between the input matrix and the
kernel to generate the output feature map was shown in [20] (Figure 6.6). The feature map
is then passed to the third layer.

The third layer or the flatten layer converts the feature map into a single one-
dimensional layer.

The fourth layer is the fully connected layer. The output of the flatten layer is passed
into numerous amounts of neurons. In [21], 128 neurons with a rectified activation function

Electronics 2023, 12, 621 4 of 15

or rectified linear unit (ReLU) were used. The equation for a single neuron activation using
“ReLU” is given by

hθ(x) = ReLU(wTx + b), where w ∈ Rd, b ∈ R, and θ = (w, b) (1)

where “b” is the bias and “w” is the weight.
The output of the fourth layer is fed into the fifth layer. The fifth layer is the dropout

layer, and it is used to prevent overfitting. According to [22], it has been proven that a
dropout rate of 0.5 is ideal for large neural networks.

The output of the dropout layer is fed into the input of the last layer, the output layer.
Three neurons are used in this layer, as the model is used to predict three types of items.
The output layer uses the “SoftMax” activation function, which is given by

P(y = j|Θ(i)) =
eΘ(i)

∑k
j=0 eΘk

(i) (2)

where Θ = wTx is the sum of scores and “i” is the input parameter [23]. According to [24],
SoftMax activation function outputs decimal probabilities to each class of labels and the
sum of all probabilities adds up to one. This allows for the model to view an item and
produce probabilities of what the image represents.

The confusion matrix is one of the major metrics to determine the performance of the
classification process in CNN [25]. The confusion matrix uses true positives, false positives,
true negatives, and false negatives to determine the precision, recall, accuracy, and f1-score.
True positive means the CNN model correctly predicts the object’s name while false positive
means the model falsely predicts the object’s name. True negative means that the model
predicts a negatively result and the test says the model is true, while false negative means
that the model predicts a negative result, but the test says the model is false [26].

The number of actual occurrences in the dataset is called support. Precision is the ratio
between the true positive result and the total positive guesses, and is calculated as below

Precision =
True Positive

True Positive + False Positive

Recall is the ratio between the true positive result and the summation of true positive
with false negatives, which is calculated as

Recall =
True Positive

True Positive + False Negative

The f1-score is known as harmonic mean and is used to measure the mean score
between precision and recall. It is calculated as

f1− score =
2× (Precision × Recall)

Precision + Recall

Accuracy is the percentage of how many accurate predictions the CNN model has
given over the total number of test cases

Accuracy =
True Positive

True Positive + True Negative + False Positive + False Negative

3. Program and Code Structure

In this paper, the original Python program called “training.py” in Niryo One will
be replaced by a new program called “MobileNet_Training.py” to train the image data
using MobileNet. A detailed explanation of the code structure and functionalities are given
as follows.

Electronics 2023, 12, 621 5 of 15

Firstly, Figure 2 shows the flow chart for the machine learning function called “Mo-
bileNet_Train()”.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 16

MobileNet. A detailed explanation of the code structure and functionalities are given as

follows.

Firstly, Figure 2 shows the flow chart for the machine learning function called “Mo-

bileNet_Train()”.

Figure 2. Function “MobileNet_Train()” in “MobileNet_Training.py”.

As shown in Figure 2, the function “MobileNet_Train()” performs the following func-

tionalities:

1. Initialize variable “start_time” and pass current time to it.

2. Call function “load_dataset()” and pass the return values to the variables “data_set”

and “objects_names”.

Figure 2. Function “MobileNet_Train()” in “MobileNet_Training.py”.

As shown in Figure 2, the function “MobileNet_Train()” performs the following
functionalities:

1. Initialize variable “start_time” and pass current time to it.
2. Call function “load_dataset()” and pass the return values to the variables “data_set”

and “objects_names”.
3. Call the shuffle function and pass the return values to variables “objects_list”, “la-

bels_list”, and “files_names”.
4. If there are no objects in “objects_list”, print “cannot train without a data set of 0”.
5. Otherwise, convert the “objects_list” and “labels_list” to NumPy arrays.
6. Create a Train Test Split and pass the return values to variables “trainX”, “testX”,

“trainY” and “testY”.
7. Call function “ImageDataGenerator()” and pass it to a variable called “datagen”,

which creates a function to augment data.
8. Fit the data augmenter “datagen” to the training data “trainX”, which augments the

training data and creates more training data.
9. Create a variable called “model” and pass an instance of the MobileNet model into it.
10. Print the model summary.
11. Train the MobileNet Model by calling the function model.fit().
12. Create a variable “prediction”, which is used to predict all of the test images “testX”

and return the highest predicted value for each image.

Electronics 2023, 12, 621 6 of 15

13. Print the confusion matrix by calling the function “classification_report()”.
14. Save the MobileNet Model.
15. Create a variable “end_time” and pass the difference between the current time and

the “start_time”.
16. Print “end_time”.
17. Return the MobileNet model.

Figure 3 shows the flow chat of a function called “load_dataset()” in “MobileNet_Training.py”.
This function is from Niryo One’s original code [27], and is used to iterate through all the
folders in the “data” folder and extract all the class names and perform object extraction of
all the images in each folder.

1. Create a list called “objects_names” and add all the names of the folder in the list.
2. Prints all the names in the “objects_names” list.
3. Create “objects_list”, “labels_list” and “files_names”, which are used to store object

images, object labels, and object names respectively.
4. Try to make a data mask directory. If it already exists, go to the next line of code.
5. Iterate over all the names in the “object_names” list:

a. Create a variable called “list_dir”, which stores the address of the folder where
the images are stored.

b. Print the name of the folder and the number of images in the folder.
c. Try to make a “data_mask/object name” directory. If it exists, go to the next

line of code.
d. Iterate through all the images in “list_dir”:

i. Create a variable called “img” which is used to read the image.
ii. Call “utils.standardize_img()”. This function originates from Niryo

One’s library and is used to normalize the color of “img”.
iii. Call “utils.objs_mask()” and pass the image “img” to it. This function is

from Niryo One’s library and is used to create extract regions of interest
from images. The returned result is passed to the variable “mask”.

iv. Call “utils.extract_objs()” and pass “img” and “mask” to it. This func-
tion comes from Niryo One’s library and is used to find shapes in an
image. If an object is found from an image, the code will create a rect-
angle around the object, make the image in a vertical orientation and
return the image. The returned image is passed to the variable “objs”.

v. Iterate through all pixel in the image “objs”:

(1) Save image “img” in folder “data_mask/object Name/number/
file_name”.

(2) Resize the image to (64,64) pixel.
(3) Create a NumPy array called “img_float” full of zeros with argu-

ments (64, 64, 3), np.float32. This indicates that the pixel size is
64 by 64, and the number of colour channels is 3, i.e., Red, Green,
and Blue in this case.

(4) Scale the colour of the image “img” between 0 and 1 and pass it
to the NumPy array “img_float”.

(5) Create a NumPy array called “label” full of zeros with the size
of “object_names”.

(6) Set label[obj_id] to 1, which changes the label names to binary
form. Each index will represent a class name.

(7) Add the NumPy array “img_float” which contains the images to
“object_list”.

(8) Add the NumPy array “label” which contains the label index to
“label_list”.

(9) Add the total number of images and file name to the list “files_names”.

Electronics 2023, 12, 621 7 of 15

vi. Print the number of objects detected, which can inform the user how
many objects that function “utils.extract_objs()” has detected.

vii. Print “|”, which informs the user that the algorithm is running the
next loop.

e. Print “” this creates a new line. This is to indicate that the algorithm is per-
forming object extraction for the next class name.

f. Increment the variable “obj_id”, which is used to indicate the index of the labels.

6. Return “objects_list”, “labels_list”, files_names”, and “objects_names”.
Electronics 2023, 12, x FOR PEER REVIEW 7 of 16

Figure 3. Function “load_dataset()” in “MobileNet_Training.py”.

1. Create a list called “objects_names” and add all the names of the folder in the list.

2. Prints all the names in the “objects_names” list.

3. Create “objects_list”, “labels_list” and “files_names”, which are used to store object

images, object labels, and object names respectively.

4. Try to make a data mask directory. If it already exists, go to the next line of code.

5. Iterate over all the names in the “object_names” list:

Figure 3. Function “load_dataset()” in “MobileNet_Training.py”.

Electronics 2023, 12, 621 8 of 15

Figure 4 shows the flow chart for the shuffle function, which is originally from Niryo
One. The shuffle function is used to randomize the dataset; this is used to increase the
model’s accuracy.

1. Create a Zip the input dataset and convert it to a list. After that pass it to a variable “c”.
2. Shuffle the list c.
3. Zip the list c and return the list.

A class called “MyModel” is created. This class is used to create instances of the
MobileNet Model. Figure 5 shows functionalities of the class.

1. When the class is called, the arguments for learning rate, Epoch, Batch_size, and
Num_objectNames must be filled. The class will then initialize these values as vari-
ables under the same name.

2. The bottom layer of MobileNet will first be created (“Bottom_model”). The bottom layer
is important as it acts as the convolutional layer. This layer performs feature extraction.

3. The Top Layer of MobileNet is then created using the output of the bottom layer
(“Bottom_model”).

4. A flatten layer is added to convert the output map from the bottom layer to a one-
dimensional array of numbers and vectors.

5. A dense hidden layer of 128 neurons with activation function of “ReLU” is added.
The “ReLU” function is added in the hidden layers as its less susceptible to vanishing
gradient problems and performs calculations faster compared with other activa-
tion functions.

6. A dropout layer is added to prevent overfitting in the model.
7. The final output layer is then added with an activation function of “SoftMax”. The

“SoftMax” activation function is always used as it converts the output to a normalized
probability distribution.

8. The bottom and the top layers are then combined.
9. The bottom layers are frozen as the convolutional layer does not need to be trained.
10. An optimizer variable is created using the Adam function. Adam optimizer is a

gradient descent optimizer and its widely used as its more efficient and consumes
lesser memory.

11. The MobileNet Model is then compiled.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 16

Figure 4. Shuffle function in “MobileNet_Training.py”.

1. Create a Zip the input dataset and convert it to a list. After that pass it to a variable

“c”.

2. Shuffle the list c.

3. Zip the list c and return the list.

A class called “MyModel” is created. This class is used to create instances of the Mo-

bileNet Model. Figure 5 shows functionalities of the class.

1. When the class is called, the arguments for learning rate, Epoch, Batch_size, and

Num_objectNames must be filled. The class will then initialize these values as varia-

bles under the same name.

2. The bottom layer of MobileNet will first be created (“Bottom_model”). The bottom

layer is important as it acts as the convolutional layer. This layer performs feature

extraction.

3. The Top Layer of MobileNet is then created using the output of the bottom layer

(“Bottom_model”).

4. A flatten layer is added to convert the output map from the bottom layer to a one-

dimensional array of numbers and vectors.

5. A dense hidden layer of 128 neurons with activation function of “ReLU” is added.

The “ReLU” function is added in the hidden layers as its less susceptible to vanishing

gradient problems and performs calculations faster compared with other activation

functions.

6. A dropout layer is added to prevent overfitting in the model.

7. The final output layer is then added with an activation function of “SoftMax”. The

“SoftMax” activation function is always used as it converts the output to a normal-

ized probability distribution.

8. The bottom and the top layers are then combined.

9. The bottom layers are frozen as the convolutional layer does not need to be trained.

10. An optimizer variable is created using the Adam function. Adam optimizer is a gra-

dient descent optimizer and its widely used as its more efficient and consumes lesser

memory.

11. The MobileNet Model is then compiled.

Figure 4. Shuffle function in “MobileNet_Training.py”.

Electronics 2023, 12, 621 9 of 15Electronics 2023, 12, x FOR PEER REVIEW 10 of 16

Figure 5. Class “MyModel” in “MobileNet_Training.py”. Figure 5. Class “MyModel” in “MobileNet_Training.py”.

Electronics 2023, 12, 621 10 of 15

4. Results

In this paper, three objects named “IC_Chip”, “Circle_Wafer”, and “Square_Wafer”
are chosen to test the program. Figure 6 shows the “Play” menu in Niryo One’s graphical
user interface (GUI). As seen, the images on the right are the live feeds of the workspace. If
an object is placed on the workspace, it will be detected by the object recognition program.
Once the program detects the object, the object’s name and prediction percentage will
appear in the GUI. When the button for the respective object is pressed in the left-hand-side
menu, the robot will pick up this particular object from the workspace and place it on the
conveyor belt or the pre-defined position.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 16

4. Results

In this paper, three objects named “IC_Chip”, “Circle_Wafer”, and “Square_Wafer”

are chosen to test the program. Figure 6 shows the “Play” menu in Niryo One’s graphical

user interface (GUI). As seen, the images on the right are the live feeds of the workspace.

If an object is placed on the workspace, it will be detected by the object recognition pro-

gram. Once the program detects the object, the object’s name and prediction percentage

will appear in the GUI. When the button for the respective object is pressed in the left-

hand-side menu, the robot will pick up this particular object from the workspace and place

it on the conveyor belt or the pre-defined position.

Figure 6. “Play” menu in GUI.

Next is the “Settings” menu, as shown in Figure 7. Among the options, “Sequential

Training” is for the original machine learning algorithm in Niryo one, and “MobileNet

Training” is for the developed algorithm using MobileNet model. When the model is be-

ing trained by either of these two models, the dataset will be split into two, one is for

training and the other is for testing. Number “0” is used to represent if there is no

edge/shape detected in the image, and the associated images will form the training set.

Integers “1”, “2”, etc. show the number of edges/shapes detected in the image, and these

images will form the testing set.

Figure 7. “Settings” menu in GUI.

Usually, a good dataset after the training process returns majority of the images as

testing data. Table 1 shows the training results for the MobleNet model.

Figure 6. “Play” menu in GUI.

Next is the “Settings” menu, as shown in Figure 7. Among the options, “Sequential
Training” is for the original machine learning algorithm in Niryo one, and “MobileNet
Training” is for the developed algorithm using MobileNet model. When the model is being
trained by either of these two models, the dataset will be split into two, one is for training
and the other is for testing. Number “0” is used to represent if there is no edge/shape
detected in the image, and the associated images will form the training set. Integers “1”,
“2”, etc. show the number of edges/shapes detected in the image, and these images will
form the testing set.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 16

4. Results

In this paper, three objects named “IC_Chip”, “Circle_Wafer”, and “Square_Wafer”

are chosen to test the program. Figure 6 shows the “Play” menu in Niryo One’s graphical

user interface (GUI). As seen, the images on the right are the live feeds of the workspace.

If an object is placed on the workspace, it will be detected by the object recognition pro-

gram. Once the program detects the object, the object’s name and prediction percentage

will appear in the GUI. When the button for the respective object is pressed in the left-

hand-side menu, the robot will pick up this particular object from the workspace and place

it on the conveyor belt or the pre-defined position.

Figure 6. “Play” menu in GUI.

Next is the “Settings” menu, as shown in Figure 7. Among the options, “Sequential

Training” is for the original machine learning algorithm in Niryo one, and “MobileNet

Training” is for the developed algorithm using MobileNet model. When the model is be-

ing trained by either of these two models, the dataset will be split into two, one is for

training and the other is for testing. Number “0” is used to represent if there is no

edge/shape detected in the image, and the associated images will form the training set.

Integers “1”, “2”, etc. show the number of edges/shapes detected in the image, and these

images will form the testing set.

Figure 7. “Settings” menu in GUI.

Usually, a good dataset after the training process returns majority of the images as

testing data. Table 1 shows the training results for the MobleNet model.

Figure 7. “Settings” menu in GUI.

Usually, a good dataset after the training process returns majority of the images as
testing data. Table 1 shows the training results for the MobleNet model.

Electronics 2023, 12, 621 11 of 15

Table 1. MobileNet model training result.

MobileNet Model

Total Time Taken: 21.0 s
1/1 [==============================]—ls 656 ms/step
len 1 3
[‘Circle_wafer’, “IC_Chip”, “Square_Wafer”]
Circle_Wafer 32
1|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|1|2|1|1|2|2|1|1|1|1|1|1|1|
IC_Chip 38
1|1|1|1|1|1|1|1|2|1|1|2|1|1|1|1|1|1|1|1|2|1|1|1|1|1|1|1|1|1|2|1|1|0|1|1|1|1|
Square_Wafer 38
1|

Figure 8 shows the “Configure Observation Pose” function, which allows the user to
switch workspace environment provided if the workspace consists of four debug markers.
In this robotic arm system, the user is able to interchange with two workspaces, i.e.,
conveyor belt and a stationary workspace.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 16

Table 1. MobileNet model training result.

MobileNet model

Total Time Taken: 21.0 s

1/1 [==============================]—ls 656 ms/step

len 1 3

[‘Circle_wafer’, “IC_Chip”, “Square_Wafer”]

Circle_Wafer 32

1|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|1|2|1|1|2|2|1|1|1|1|1|1|1|

IC_Chip 38

1|1|1|1|1|1|1|1|2|1|1|2|1|1|1|1|1|1|1|1|2|1|1|1|1|1|1|1|1|1|2|1|1|0|1|1|1|1|

Square_Wafer 38

1|

Figure 8 shows the “Configure Observation Pose” function, which allows the user to

switch workspace environment provided if the workspace consists of four debug markers.

In this robotic arm system, the user is able to interchange with two workspaces, i.e., con-

veyor belt and a stationary workspace.

Figure 8. Configure observation pose function.

Next is to configure the drop pose for three individual objects. As seen in Figure 9, if

the user chooses any object’s “Configure Drop pose”, the GUI will turn green, and the

robot is set in the learning mode. The user is then required to guide the robot arm to the

new desired position for the object to be released. If pressing the “enter” key, it overwrites

the pre-defined position that was initially coded in the program. However, once the pro-

gram exits, it reverts to the original pre-defined position.

Figure 8. Configure observation pose function.

Next is to configure the drop pose for three individual objects. As seen in Figure 9, if
the user chooses any object’s “Configure Drop pose”, the GUI will turn green, and the robot
is set in the learning mode. The user is then required to guide the robot arm to the new
desired position for the object to be released. If pressing the “enter” key, it overwrites the
pre-defined position that was initially coded in the program. However, once the program
exits, it reverts to the original pre-defined position.

In this experiment, the learning rate is set as 1 × 10−4. The epoch is set as three times
that of the total number of objects. The batch size is 32.

Table 2 shows the training performance of the MobileNet model. The confusion matrix
shows that the MobileNet model has an accuracy score of 91%. Table 3 shows the training
performance of the Niryo One’s existing sequential model, which shows an accuracy score
of 65%. The MobileNet Model has a 26% improvement in accuracy compared to the
sequential model.

Electronics 2023, 12, 621 12 of 15

Electronics 2023, 12, x FOR PEER REVIEW 12 of 16

Table 1. MobileNet model training result.

MobileNet model

Total Time Taken: 21.0 s

1/1 [==============================]—ls 656 ms/step

len 1 3

[‘Circle_wafer’, “IC_Chip”, “Square_Wafer”]

Circle_Wafer 32

1|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|1|2|1|1|2|2|1|1|1|1|1|1|1|

IC_Chip 38

1|1|1|1|1|1|1|1|2|1|1|2|1|1|1|1|1|1|1|1|2|1|1|1|1|1|1|1|1|1|2|1|1|0|1|1|1|1|

Square_Wafer 38

1|

Figure 8 shows the “Configure Observation Pose” function, which allows the user to

switch workspace environment provided if the workspace consists of four debug markers.

In this robotic arm system, the user is able to interchange with two workspaces, i.e., con-

veyor belt and a stationary workspace.

Figure 8. Configure observation pose function.

Next is to configure the drop pose for three individual objects. As seen in Figure 9, if

the user chooses any object’s “Configure Drop pose”, the GUI will turn green, and the

robot is set in the learning mode. The user is then required to guide the robot arm to the

new desired position for the object to be released. If pressing the “enter” key, it overwrites

the pre-defined position that was initially coded in the program. However, once the pro-

gram exits, it reverts to the original pre-defined position.

Figure 9. Configure object drop pose function.

Table 2. MobileNet model training performance.

Precision Recall f1-Score Support

Circle_wafer 1.00 0.71 0.83 7
IC_Chip 0.80 1.00 0.89 8

Square_wafer 1.00 1.00 1.00 8
accuracy 0.91 23

macro avg 0.93 0.90 0.91 23
weighted avg 0.93 0.91 0.91 23

MobleNet model
Total Time Taken: 19.362 s

Table 3. Sequential model training performance.

Precision Recall f1-Score Support

Circle_wafer 1.00 0.71 0.83 7
IC_Chip 0.80 1.00 0.89 8

Square_wafer 1.00 1.00 1.00 8
accuracy 0.91 23

macro avg 0.93 0.90 0.91 23
weighted avg 0.93 0.91 0.91 23

Niryo One Sequential model
Total Time Taken: 7.191 s

Figure 10 shows the scatterplot, which compares the accuracy vs. time for 40 obser-
vations of the MobileNet and Sequential model. It could be seen from the graph that the
Niryo One’s sequential model has less accuracy and has a wider spread of accuracy. The
MobileNet model, although it takes a longer time, has better accuracy and a more clus-
tered spread of accuracy. This concludes that the MobileNet model has a higher precision
and accuracy.

Electronics 2023, 12, 621 13 of 15Electronics 2023, 12, x FOR PEER REVIEW 14 of 16

Figure 10. Scatterplot of MobileNet vs. Sequential Model.

5. Discussion

As shown in the last section, the existing Niryo One robotic arm system can work on

any surface as long as it has four debug markers to perform camera calibration. In actual

pick-and-place applications, the workspace is subject to change or being altered. There-

fore, the constraint of having four markers is preferable to be removed so that the intelli-

gent pick-and-place system is able to work on a broader range of applications.

It was found in the experimental study that sometimes both models failed to detect

the objects, or took a long time to detect the objects. We tried to change the lighting con-

dition or shift the location of the objects in order to solve this issue. It was also found that

the live feed of the Niryo one’s camera was slow, probably due to the low-quality graphics

driver in the microprocessor.

As the MobileNet model had to be coded and integrated into the Niryo One’s existing

platform, there were compatibility issues among the OS, the programming language, and

various libraries and platforms. Some libraries or packages were backtracked with older

versions so that they could work together with the existing platform. For example, the

Niryo One Visual pick-and-place demonstration code does not work in newer versions of

Pygame and Pygame-menu library. The ROS version used in Niryo one is the outdated

ROS Kinetic. Solutions were found by installing older versions of the libraries and using

Anaconda to create a virtual environment with Python 3.6. We also wish to compare Mo-

bileNet model with other neural-network based training models in the future and to inte-

grate it into commercial robots.

Another compatibility issue lay in the Python and OpenCV in the GUI file. It was

resolved by editing the file and importing it to cv2 (i.e., the module import name for

opencv-python).

In addition, there was an overfitting issue in the training process, resulting in inac-

curate predictions of the model. To fix this, we tried to collect good data by taking around

300 images of the object and identifying the data masks of the object. The process only

returned 5 to 10 mask images. These good masks were picked up with their names iden-

tified in the data folder and copied into the folder to store good data.

Figure 10. Scatterplot of MobileNet vs. Sequential Model.

5. Discussion

As shown in the last section, the existing Niryo One robotic arm system can work on
any surface as long as it has four debug markers to perform camera calibration. In actual
pick-and-place applications, the workspace is subject to change or being altered. Therefore,
the constraint of having four markers is preferable to be removed so that the intelligent
pick-and-place system is able to work on a broader range of applications.

It was found in the experimental study that sometimes both models failed to detect the
objects, or took a long time to detect the objects. We tried to change the lighting condition
or shift the location of the objects in order to solve this issue. It was also found that the live
feed of the Niryo one’s camera was slow, probably due to the low-quality graphics driver
in the microprocessor.

As the MobileNet model had to be coded and integrated into the Niryo One’s existing
platform, there were compatibility issues among the OS, the programming language, and
various libraries and platforms. Some libraries or packages were backtracked with older
versions so that they could work together with the existing platform. For example, the
Niryo One Visual pick-and-place demonstration code does not work in newer versions of
Pygame and Pygame-menu library. The ROS version used in Niryo one is the outdated
ROS Kinetic. Solutions were found by installing older versions of the libraries and using
Anaconda to create a virtual environment with Python 3.6. We also wish to compare
MobileNet model with other neural-network based training models in the future and to
integrate it into commercial robots.

Another compatibility issue lay in the Python and OpenCV in the GUI file. It was
resolved by editing the file and importing it to cv2 (i.e., the module import name for
opencv-python).

In addition, there was an overfitting issue in the training process, resulting in inaccu-
rate predictions of the model. To fix this, we tried to collect good data by taking around
300 images of the object and identifying the data masks of the object. The process only re-

Electronics 2023, 12, 621 14 of 15

turned 5 to 10 mask images. These good masks were picked up with their names identified
in the data folder and copied into the folder to store good data.

6. Conclusions

This paper has developed an intelligent object detection and picking system based
on machine learning. The MobileNet model for training purposes has been built with a
properly chosen number of neurons and activation functions. The training program has
been coded in Python in the TensorFlow platform and has been implemented and integrated
into an educational six-axis robotic arm. An experimental test has been conducted with
three different objects to train the model and identify the objects. The testing results have
shown that the MobileNet model outperformed the robot’s existing sequential model, as
can be seen from the accuracy score in the confusion matrix. The statistical study has shown
that the MobileNet achieved a higher precision with a more clustered spread of accuracy.

Author Contributions: Writing—original draft, F.H.; Writing—review & editing, D.W.L.T. and A.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data generated from this study are available from the correspond-
ing author on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Executive Summary World Robotics 2021 Industrial Robots. Available online: https://ifr.org/img/worldrobotics/Executive_

Summary_WR_Industrial_Robots_2021.pdf (accessed on 20 November 2021).
2. Ott, C. Cartesian Impedance Control of Redundant and Flexible-Joint Robots. Springer: Berlin/Heidelberg, Germany, 2008.
3. Nabat, V.; Pierrot, F.; De La O’Rodriguez-Mijangos, M.; Azcoitia Arteche, J.M.; Bueno Zabalo, R.; Company, O.; Florentino Perez

De Armentia, K. High-Speed Parallel Robot with Four Degrees of Freedom. U.S. Patent US20090019960A1, 15 June 2010.
4. Stock, M.; Miller, K. Optimal kinematic design of spatial parallel manipulators: Application to linear delta robot. J. Mech. Des.

2003, 125, 292–301. [CrossRef]
5. Østergaard, E.H. The Role of Cobots in Industry 4.0; White Paper; Universal Robots: Odense, Denmark, 2017.
6. Lightstead, A. What is a Pick and Place Robot and How Does it Work? Available online: https://www.pwrpack.com/what-is-a-

pick-and-place-robot (accessed on 19 April 2022).
7. Riordan, A.D.O.; Toal, D.; Newe, T.; Dooly, G. Object recognition within smart manufacturing. Procedia Manuf. 2019, 38, 408–414.

[CrossRef]
8. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; LeCun, Y. What is the best multi-stage architecture for object recognition? In Proceedings

of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2146–2153.
9. LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE

International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 253–256.
10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; MIT Press: Cambridge, MA, USA,
2012; Volume 25, pp. 1097–1105.

11. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

13. He, K.; Zhang, X.; Ren, S.J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

14. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016,
arXiv:1605.07678.

15. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef] [PubMed]

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf
http://doi.org/10.1115/1.1563632
https://www.pwrpack.com/what-is-a-pick-and-place-robot
https://www.pwrpack.com/what-is-a-pick-and-place-robot
http://doi.org/10.1016/j.promfg.2020.01.052
http://doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053

Electronics 2023, 12, 621 15 of 15

17. Niryo One, a 6 Axis Robot Arm Designed for Education and Research. Available online: https://niryo.com/robotic-solution-
education-research/niryo-one (accessed on 28 February 2022).

18. Visual Picking with Artificial Intelligence—Niryo. Available online: https://niryo.com/docs/niryo-one/niryo-one-industrial-
demonstrators/visual-picking-with-artificial-intelligence (accessed on 24 May 2021).

19. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Into Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

20. Singh, S.A.; Meitei, T.G.; Majumder, S. Short PCG classification based on deep learning. In Deep Learning Techniques for Biomedical
and Health Informatics; Agarwal, B., Balas, V.E., Jain, L.C., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 141–164.

21. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; Volume 27, pp. 807–814.

22. Ranjan, C. Understanding Dropout with the Simplified Math behind It. In Towards Data Science; Connaissance Publishing: Paris,
France, 2020; Available online: https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f472
75 (accessed on 8 May 2019).

23. Mahmood, H. The Softmax Function, Simplified—How a Regression Formula Improves Accuracy of Deep Learning. In Towards
Data Science; Connaissance Publishing: Paris, France, 2020; Available online: https://towardsdatascience.com/softmax-function-
simplified-714068bf8156 (accessed on 26 November 2018).

24. Google Developers. Multi-Class Neural Networks: Softmax. In Machine Learning Crash Course. Available online: https:
//developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax (accessed on 19 July 2022).

25. Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; Deroski, S. An extensive experimental comparison of methods for multi-label learning.
Pattern Recogn. 2012, 45, 3084–3104. [CrossRef]

26. Narkhede, S. Understanding Confusion Matrix. In Towards Data Science; Connaissance Publishing: Paris, France, 2020; Available
online: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 (accessed on 9 May 2018).

27. Niryo One Demonstrator’s Source Code. Available online: https://github.com/NiryoRobotics/niryo_one_industrial_
demonstrators/tree/master/Visual_Picking_Artificial_Intelligence (accessed on 19 November 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://niryo.com/robotic-solution-education-research/niryo-one
https://niryo.com/robotic-solution-education-research/niryo-one
https://niryo.com/docs/niryo-one/niryo-one-industrial-demonstrators/visual-picking-with-artificial-intelligence
https://niryo.com/docs/niryo-one/niryo-one-industrial-demonstrators/visual-picking-with-artificial-intelligence
http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
http://doi.org/10.1016/j.patcog.2012.03.004
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://github.com/NiryoRobotics/niryo_one_industrial_demonstrators/tree/master/Visual_Picking_Artificial_Intelligence
https://github.com/NiryoRobotics/niryo_one_industrial_demonstrators/tree/master/Visual_Picking_Artificial_Intelligence

	Introduction
	Problem Formulation and Methodology
	Program and Code Structure
	Results
	Discussion
	Conclusions
	References

