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Abstract: Hyperspectral imaging (HSI) offers rich spectral and spatial data, beneficial for a variety of
applications. However, challenges persist in HSI classification due to spectral variability, non-linearity,
limited samples, and a dearth of spatial information in conventional spectral classifiers. While various
spectral–spatial classifiers and dimension reduction techniques have been developed to mitigate these
issues, they are often constrained by the utilization of handcrafted features. Deep learning has been
introduced to HSI classification, with pixel- and patch-level deep learning (DL) classifiers gaining
substantial attention. Yet, existing patch-level DL classifiers encounter difficulties in concentrating
on long-distance dependencies and managing category areas of diverse sizes. The proposed Self-
Adaptive 3D atrous spatial pyramid pooling (ASPP) Multi-Scale Feature Fusion Network (SAAFN)
addresses these challenges by simultaneously preserving high-resolution spatial detail data and high-
level semantic information. This method integrates a modified hyperspectral superpixel segmentation
technique, a multi-scale 3D ASPP convolution block, and an end-to-end framework to extract and fuse
multi-scale features at a self-adaptive rate for HSI classification. This method significantly enhances
the classification accuracy of HSI with limited samples.

Keywords: hyperspectral image; atrous spatial pyramid pooling; superpixel segmentation; feature
fusion

1. Introduction

A collected hyperspectral image captures intricate light distribution over several hun-
dred spectral bands. This wealth of spectral and spatial information enhances discrimina-
tive capability compared to standard color images or multi-spectral images. Therefore, hy-
perspectral imaging has found utility in numerous applications, such as classification [1–3],
object tracking [4–6], environmental monitoring [7,8], and object detection [9–11]. In recent
years, the classification of hyperspectral images has emerged as a dynamic research topic.
It is a potent approach for information extraction with extensive applications in geological
prospecting, precision forestry, land resource surveys, and military defense [12–14]. How-
ever, the classification of hyperspectral images (HSI) presents a formidable challenge due
to the significant interference caused by the substantial spectral variability and nonlinearity
of HSI. Moreover, the limited availability of samples in practice exacerbates the complexity
of interpreting high-dimensional data.

Motivated by the remarkable success of deep learning (DL), different works have
utilized DL for hyperspectral image (HSI) classification. HSI classification based on DL can
be grouped into subpixel, pixel, patch, and scene levels. The pixel-level method takes the
spectral vector or the extracted one-dimensional feature of the selected sample as the input
to the DL model. Typical pixel-level DL classifiers include one-dimensional convolutional
neural networks (1D CNNs) [15], recurrent neural networks (RNNs) [16], and deep belief
networks (DBNs) [17]. However, the pixel-level method cannot utilize neighborhood spatial
information for HSI classification. To address this deficiency, patch-level DL classifiers
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take the local cube within a certain neighborhood of the central pixel as input to the DL
model, enabling better feature mining suitable for classification. Thus, patch-level DL
classifiers have received extensive attention in HSI classification, with examples including
3D CNNs [18–21] and capsule networks [22] used to improve accuracy. Wei et al. [23]
proposed a multi-scale principle of relevant information that leverages the multilayer
structure for learning representations in a coarse-to-fine manner. This approach aims
to learn discriminative spectral–spatial features. The Transformer, which incorporates a
self-attention mechanism to capture long-range information, has gained popularity in the
field of HSI processing and has demonstrated its advantages in handling sequential data.
For instance, Hong et al. [24] proposed a backbone network called SpectralFormer for HSI
classification. This network is capable of learning spectral local sequence information from
neighboring bands of HSIs and generating group-wise spectral embeddings. He et al. [25]
introduced a spatial–spectral Transformer classification network, which combines a well-
designed CNN for extracting spatial features with a modified Transformer for capturing
sequential spectra relationships. Selen et al. [26] developed a spectral-swin Transformer
(SpectralSWIN) classification network that utilizes a swin-spectral module to process
spatial and spectral features concurrently. However, some shortcomings remain in CNN-
based methods. Convolution kernels have limited receptive fields, preventing a focus
on long-distance dependencies. Moreover, for remote-sensing scene images, the size of
different category areas varies greatly, sometimes not even in the same order of magnitude.
Although traditional methods use several fixed convolution kernels of different scales in one
layer to increase feature diversity, they cannot accommodate all category area situations.
If a category area is too small, the receptive field contains more useless neighborhood
information, adding useless calculations. In contrast, if an area is too large, the fixed
receptive field may not cover it entirely, resulting in lost domain information [27,28].

To address previous challenges, we introduce the Self-Adaptive 3D ASPP Multi-Scale
Feature Fusion Network (SAAFN) for the efficient preservation of both high-resolution
spatial details and high-level semantic information in HSIs. The key contributions include:

• A newly modified hyperspectral superpixel segmentation method combining Eu-
clidean spectral distance with Log-Euclidean distance to define homogeneous regions.

• A multi-scale 3D ASPP convolution block designed for consistent classification map
output by refining spectral–spatial features.

• An end-to-end framework for HSI classification that self-adaptively extracts and fuses
multi-scale features using global and local HSI information. This network preserves
spatial and spectral details regardless of category area size, converting HSI data into
discriminative features.

The paper structure is as follows: Section 2 describes the SAAFN algorithm details.
Section 3 presents experiments and analysis. Section 4 discusses SAAFN’s performance.
The conclusion is summarized in Section 5.

2. Proposed Method

In this section, we propose a trainable end-to-end Self-Adaptive 3D ASPP Multi-
Scale Feature Fusion Network (SAAFN) model for HSI classification. SAAFN integrates
hierarchical convolutions and multi-scale feature fusion to fully exploit spatial and spectral
discriminability, boosting classification accuracy based on spatial and spectral signatures
of HSIs with limited samples. A self-adaptive dilation rate selection strategy based on
hyperspectral superpixel segmentation solves large-scale differences in remote-sensing
images. It adaptively adjusts the dilation rate and receptive field according to category area
sizes in the HSI.

2.1. Hyperspectral Superpixel Segmentation

Superpixels, which are perceptually meaningful connected regions grouping similarly
colored pixels or other features, were first introduced by Ren and Malik [29]. Over the
years, various algorithmic approaches have been proposed [30–32]. It has been proven that
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using superpixels as adaptive regions [33] generates discriminative information for HSI
classification. Cui et al. [34] demonstrated this by effectively optimizing a Support Vector
Machine (SVM) probability map using a superpixel-based random walker. It was found
that a superpixel spectrum is more stable and less influenced by noise than an individual
pixel spectrum. Among clustering-based superpixel methods, Lloyd’s algorithm [35], a
modified version of the popular k-means clustering algorithm, is most commonly used.
Yu et al. [36] proposed a label augmentation method to generate more labels for training
based on the superpixel algorithm. In this context, we initially formalize the definition of
superpixel segmentation.

An image of integer width w and integer height h is a function I : X → Ω , where Ω
is the image domain and X = [w]× [h] ⊂ Z2; then, a segmentation into superpixels is a
partition

{
Si}n

i=1 of X such that, for each 1 ≤ i ≤ n, we have:

Si =

{
x : d((x, I(x)), F(Si)) = min

1≤j≤n
d
(
(x, I(x)), F

(
Sj
))}

(1)

where each Si is path-connected to Z2, d is a metric on the space X × Ω, and F is the feature
function on the set of all partitions.

The prevalent approach in hyperspectral image superpixel methodologies [37] in-
volves inputting the first three principal components of HSI into RGB-based superpixel
algorithms. However, this method may result in the loss of some higher-dimensional
features. Therefore, when developing our hyperspectral superpixel map, it is crucial to de-
sign an algorithm capable of extracting more effective information from high-dimensional
hyperspectral data. To start, we altered our algorithm from [31], as it takes image data with
any number of bands B. It can map the image I to a 2-D manifold M ∈ RB+2 rather than
the standard M ∈ R5.

Let I = {Ib}, b = 1, . . . ,B be an HSI with dimensions W × H × B representing
the width, height, and number of bands, respectively, and Ib : W ×H. We started by
performing dimensionality reduction via PCA [5] on I for computational efficiency, to
construct a dimensionally reduced HSI I =

{
Îb
}

, a = 1, . . . ,A where A ≪ B.
Denoting an individual pixel as p ∈ Î, we partitioned Î into superpixels by splitting Î

into a family of disjoint sets, Î = ∪K
i=1Si,Si ∩Sj = ∅, where Si corresponds to an individual

superpixel and K is the number of superpixels. Each superpixel Si is made up of a set of ni
connected pixels, Si =

{
pi,1, . . . , pi,ni

}
. Our superpixel segmentations were produced via

the minimization of:

Q({S1,SK}) = ∑ K
i=1 ∑ p∈Îd

((
p, Î(p)

)
, F(Si)

)
(2)

where d is a distance function and F(Si) is the average of Si.
To combine the spatial and spectral data more effectively, a combination of the Eu-

clidean spectral distance [31] and LED [38] of a covariance matrix representation [39] was
proposed for clustering distance. For each pixel p ∈ Î, we constructed a covariance matrix
Cp using the same methodology as Fang et al. [3] and used the LED metric to calculate the
distances between these matrices. The distance between two pixels px, py is given by:

d
(

px, py
)
=∥ log m

(
Cpx

)
− log m

(
Cpy

)
∥F + ∥ Î(px)− Î

(
py
)
∥ +

m
S

∥ px − py ∥ (3)

where m controls the compactness of superpixel and S scales the spatial distance.
Finally, we merged superpixels with similar spectral properties; that is, we merged

neighboring seeds which satisfy:

j = argmin
sj∈N

∥ Pm
i −Pm

j ∥ (4)
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where Pm
i is the average spectral information of the seed si and N is the set of neighboring

seeds. The proposed changes allow the production of accurate superpixels for HSIs. The su-
perpixel segmentation maps for the Indian Pines, KSC, and Pavia University experimental
datasets are illustrated in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 14 
 

 

𝑗 = argmin∈𝒩 ∥ 𝒫 − 𝒫 ∥ (4)

where 𝒫  is the average spectral information of the seed 𝑠  and 𝒩 is the set of neigh-
boring seeds. The proposed changes allow the production of accurate superpixels for 
HSIs. The superpixel segmentation maps for the Indian Pines, KSC, and Pavia University 
experimental datasets are illustrated in Figure 1. 

(a) (b) (c) 

Figure 1. Visualization of (a) Indian Pines, (b) KSC, and (c) Pavia University datasets. For each da-
taset, the first and second images denote the false-color image and the homogeneous regions gen-
erated by the superpixel segmentation method. 

2.2. 3D Atrous Spatial Pyramid Pooling Convolution Block 
In general convolutional neural networks, multi-scale information extraction has 

proven effective for the classification of related problems [40]. This is partly because multi-
scale structures contain abundant context information. However, upsampling fits infor-
mation through interpolation, so it cannot restore lost details. As a result, target object 
information cannot be fully reconstructed. Moreover, extracting features at different scales 
requires substantial computation to resize and aggregate feature maps. To address these 
issues, we propose a multi-scale 3D ASPP (atrous spatial pyramid pooling) convolution 
block, shown in Figure 2. 

3D Atrous Spatial 
Pyramid Pooling

1×1×1 conv

3×3×3 conv
Rate=6

3×3×3 conv
Rate=12

3×3×3 conv
Rate=18

Image Pooling

Input feature Output feature

Concat

Conv 1×1×1

 
Figure 2. Illustration of the 3D ASPP Convolution Block with dilation rates of {6, 12, 18}. 

Figure 1. Visualization of (a) Indian Pines, (b) KSC, and (c) Pavia University datasets. For each
dataset, the first and second images denote the false-color image and the homogeneous regions
generated by the superpixel segmentation method.

2.2. 3D Atrous Spatial Pyramid Pooling Convolution Block

In general convolutional neural networks, multi-scale information extraction has
proven effective for the classification of related problems [40]. This is partly because
multi-scale structures contain abundant context information. However, upsampling fits
information through interpolation, so it cannot restore lost details. As a result, target object
information cannot be fully reconstructed. Moreover, extracting features at different scales
requires substantial computation to resize and aggregate feature maps. To address these
issues, we propose a multi-scale 3D ASPP (atrous spatial pyramid pooling) convolution
block, shown in Figure 2.
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Based on atrous spatial pyramid pooling (ASPP) [41], the multi-scale dilated convolu-
tion enables combining features extracted at variable scales. It realizes a larger receptive
field without increasing convolution parameters or sacrificing resolution. The proposed
block is designed to fuse different levels of feature outputs to concurrently preserve spatial
details and spectral information. This converts the HSI’s spatial and spectral data into
discriminative features. The joint abstract features are acquired by the same dilated con-
volution with different dilation rates, then refined as spectral–spatial features. The block
takes full advantage of hierarchical complementarity without sacrificing time cost. As such,
it could be utilized as a basic structure to construct more powerful CNN models for HSI
detection and classification.

2.3. SAAFN Model

Our HSI superpixel segmentation block and 3D ASPP convolution block form the
components of an SAAFN model, as depicted in Figure 3. The SAAFN model comprises
a superpixel segmentation block, a 3D ASPP convolution block, and a fully connected
layer. Initially, an HSI undergoes dimensional reduction prior to superpixel segmentation.
Given that each superpixel block signifies the smallest homogeneous region, we strived to
capture as much of the entire category areas as possible. This was achieved by extending
the receptive field, denoted as fr, by one pixel on the largest superpixel edge length.

fr = max(edgehorizontal , edgevertical) + 1 (5)
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Based on [42], the adaptive dilation rate rdilation can be calculated as

rdilation =
max(edgehorizontal , edgevertical) + k − 1

k − 1
(6)

where k is the size of the dilated convolution kernel.
Given the constraints of labeled data in the hyperspectral imaging (HSI) field, along

with the spatial resolution of the data and the target sizes for each class to be classified, a
relatively small kernel size in both the spatial and spectral dimensions was suitable for our
experiments. The 3D atrous spatial pyramid pooling (ASPP) convolution block employs
three dilated convolutions with adaptive dilation rates, allowing different scale levels on
the feature map. Global average pooling is used to capture comprehensive image context
data. Despite the use of a relatively small kernel size, a larger receptive field is achievable
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without an increase in convolution parameters or sacrificing spatial and spectral resolution.
The same model setting was applied to all datasets; hyperparameters are not intentionally
adjusted to achieve higher performance. Our network was trained using multinomial
logistic loss.

E = − 1
N

N

∑
n=1

log(pn
l ) (7)

p is the output of the softmax layer:

pi =
exp xi

∑m
i′=1 expxi′

(8)

where N is the number of training samples, l the correspondent label of sample n, m is the
number of classes, and x is the input of the softmax layer.

3. Experimental Results and Analysis
3.1. Experimental Settings

The performance of the SAAFN algorithm was evaluated on three commonly used
hyperspectral datasets: Indian Pines, Pavia University, and Kennedy Space Center (KSC).
Six representative hyperspectral feature extraction classifiers were selected as benchmarks,
including SVM with RBF kernel, 2D+1D CNN [43], 3D CNN [44], SSRN (spectral–spatial
residual network) [45], and HybridSN (3D+2D CNN) [46], comprising both shallow and
deep classifiers. All CNN networks were trained using 3 × 3-pixel patches. As expected,
we obtained lower classification accuracy than results reported in the literature, since prior
works used slightly different setups:

• Some articles consider only a subset of the classes, excluding classes with fewer than
100 samples in Indian Pines, for example.

• The number of training samples varies, with some articles using a fixed percentage of
the full training set and others using a fixed amount per class.

• Some authors further divide the training set into proper training and validation sets
for hyperparameter tuning.

The experiments were run on a computer with an Intel i7-11700K 3.60 GHz CPU and
NVIDIA RTX 3080Ti 12 GB GPU using PyTorch 1.13.0. For all experiments, only 10% of the
labeled samples were randomly selected for training, with the rest used for testing. Both
qualitative maps and quantitative evaluations comprehensively analyzed performance
using four common metrics: producer’s accuracy, overall accuracy, average accuracy, and
kappa. The experiments were repeated 10 times independently, reporting average precision
and standard deviation.

3.2. Experiment on Indian Pines Dataset

The Indian Pines image covers an agricultural area in Indiana, USA, obtained by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [47]. The 145 × 145-pixel
image has 200 bands from 0.4 to 2.5 µm after removing water absorption bands. It contains
16 different classes, including many similar crop subclasses. The scene has an imbalanced
sample distribution, with single-digit training samples for several classes. This makes
classification very challenging with limited samples.

The classification maps and quantitative evaluations are shown in Figure 4 and Table 1.
The optimal and sub-optimal values are in bold and underlined, respectively, for each
method. Overall, the deeper classifiers performed better, yielding higher accuracies. SSRN
obtained results comparable to SVM, with 55.51% and 56.38% OA. The 3D CNN surpassed
the 2D+1D CNN, achieving 78.09% OA and 0.86 kappa versus 69.94% and 0.66. The pro-
posed SAAFN algorithm further improved performance, achieving the highest accuracy
with 87.45% OA and 0.85 kappa. It obtained optimal or sub-optimal precision for most
classes, especially grass-pasture and woods. Overall, SAAFN outperformed the other clas-
sifiers, achieving the best results for this scene in both visual and quantitative evaluations.
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Table 1. Quantitative evaluations for Indian Pines experiment (%). The optimal and sub-optimal
values are bolded and underlined, respectively.

Class SVM 2D+1D CNN 3D CNN SSRN HybridSN SAAFN

Alfalfa 43.42 28.4 62.7 19 69.5 83.2
Corn-notill 45.3 66 79 51 90.0 86

Corn-mintill 8.4 46.8 69.1 28 77.1 80.7
Corn 4.6 51.4 63.9 24.5 75.7 83.3

Grass-pasture 14.4 74.4 81.2 54.2 85.4 90.2
Grass-trees 77.8 93 86.3 78.6 93.3 96.7

Grass-pasture-mowed 94.91 10.2 61.4 22.8 64.4 91.1
Hay-windrowed 89.8 93.5 87.4 84.3 88.1 98.7

Oats 31.67 4.8 60.4 4.4 71.0 67.5
Soybean-notill 20.9 60.5 76 44.5 90.4 82.4

Soybean-mintill 60.1 55.8 78.9 45.3 81.8 86.7
Soybean-clean 3.9 59.6 72 34.4 77.5 78.2

Wheat 78.3 94.5 88.4 76.2 88.8 98
Woods 83.8 91.9 86.1 79.5 87.2 96.4

Buildings-Grass-Trees-Drives 9 62.4 67.6 46.2 69.8 76.2
Stone-Steel-Towers 91 94.2 85.2 61.2 90.7 82.6

OA 56.38 69.94 78.09 55.51 86.69 87.45
±0.96 ±7.38 ±1.28 ±8.84 ±1.38 ±1.07

AA 47.33 61.71 75.35 47.13 81.29 86.2
±1.01 ±11.48 ±4.87 ±14.59 ±3.75 ±3.86

Kappa 0.48 0.66 0.86 0.5 0.81 0.85
±0.01 ±0.08 ±0.02 ±0.10 ±0.01 ±0.01

3.3. Experiment on Kennedy Space Center Dataset

The second experiment used the Kennedy Space Center (KSC) image obtained by
AVIRIS over Kennedy Space Center, FL, USA [47]. This 512 × 614-pixel scene has 176 bands
after removing water absorption and noisy bands, with an 18 m spatial resolution. It
contains 13 classes in total.
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The classification maps and quantitative evaluations are presented in Figure 5 and
Table 2. Consistent with the Indian Pines experiment, SSRN performed worst, while the
proposed SAAFN algorithm again achieved the best performance. SAAFN obtained opti-
mal or sub-optimal producer’s accuracies for most classes, demonstrating its effectiveness.
Notably, it yielded significant improvements for the scrub and graminoid marsh classes.
Overall, SAAFN achieved the best visual map and highest accuracies, including 88.40%
overall accuracy, 82.02% average accuracy, and 0.87 kappa.
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Figure 5. The results for KSC experiment: (a) false-color image; (b) ground truth; (c) SVM; (d) 1D
CNN; (e) 2D+1D CNN; (f) 3D CNN; (g) RNN; (h) SAAFN.

Table 2. Quantitative evaluations for KSC experiment (%). The optimal and sub-optimal values are
bolded and underlined, respectively.

Class SVM 2D+1D CNN 3D CNN SSRN HybridSN SAAFN

Scrub 56.7 69.2 93.1 39.4 93.4 94.7
Willow swamp 42.8 53.1 87.3 39.0 87.4 88.6
CP hammock 70.8 10.9 47.8 55.2 68.7 70.9

CP/Oak 28.7 18.7 34.8 21.3 24.1 48.3
Slash pine 25.6 46.4 23.3 23.0 36.5 42.5

Oak/Broadleaf 28.0 12.4 53.6 30.7 46.7 74.2
Hardwood swamp 55.9 15.7 76.1 26.1 70.8 80.6
Graminoid marsh 32.4 47.7 79.6 31.0 78.8 84.8

Spartina marsh 59.5 62.4 91.1 39.2 92.2 93.2
Cattail marsh 23.9 69.0 97.5 27.6 91.0 94.5

Salt marsh 91.4 91.7 98.1 42.4 94.7 99.1
Mud flats 72.2 81.2 91.9 24.6 87.8 94.9

Water 98.5 99.7 99.9 46.2 100.0 100.0
OA 59.74 66.42 85.2 44.03 82.7 88.4

±1.35 ±7.56 ±3.23 ±18.77 ±0.8 ±0.49
AA 52.79 52.16 74.93 34.28 75.35 82.02

±2.82 ±15.31 ±10.42 ±20.22 ±3.44 ±3.25
Kappa 0.54 0.62 0.84 0.18 0.83 0.87

±0.02 ±0.09 ±0.04 ±0.20 ±0.02 ±0.01
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3.4. Experiment on Pavia University Dataset

The third dataset was the Pavia University image, obtained by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over Pavia University, Northern Italy [47].
This urban scene covers 610 × 340 pixels with 103 bands from 0.43 to 0.86 µm. It contains
nine different classes in total with a complex distribution.

Figure 6 and Table 3 present the classification results. Overall accuracy was better
than the Indian Pines experiment, likely due to more training samples and higher spatial
resolution (20 m/pixel vs. 1.3 m/pixel). As before, SSRN performed worst. The deeper
classifiers yielded higher accuracies, especially for asphalt and metal sheets classes, with
over 80% OA. The 3D CNN slightly outperformed SAAFN, achieving 94.67% OA and
0.93 kappa compared to 93.89% and 0.92 for SAAFN. Both 3D CNN and SAAFN achieved
the best performance, with 3D CNN having the highest average OA, while SAAFN had the
best single run but larger deviation due to 10% random sampling.
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Table 3. Quantitative evaluations for Pavia University experiment (%). The optimal and sub-optimal
values are bolded and underlined, respectively.

Class SVM 2D+1D CNN 3D CNN SSRN HybridSN SAAFN

Asphalt 83.8 93.3 96.3 93.1 97.0 95.8
Meadows 88.8 93.6 96.2 45.0 96.5 95.3

Gravel 4.9 86.0 91.5 42.3 91.7 92.0
Trees 89.9 93.6 96.7 62.7 97.5 97.9

Metal sheets 99.1 99.7 99.6 86.7 99.3 99.9
Bare soil 33.8 88.6 97.2 31.4 97.3 97.1
Bitumen 83.1 86.7 93.1 21.4 93.9 91.5

Bricks 76.1 91.8 94.3 13.0 94.9 95.7
Shadows 99.9 99.5 99.6 43.1 100.0 99.7

OA 79.76 91.24 94.67 44.12 90.10 93.89
±0.09 ±1.61 ±0.42 ±18.88 ±0.43 ±0.74

AA 73.27 92.53 96.06 48.74 95.83 96.10
±0.48 ±2.43 ±1.28 ±22.80 ±1.52 ±2.39

Kappa 0.72 0.87 0.93 0.36 0.90 0.92
±0.01 ±0.02 ±0.01 ±0.17 ±0.01 ±0.01

3.5. Discussion

Analysis of the results indicates the traditional SVM classifier generally failed to
achieve high performance due to limited shallow feature discriminability, resulting in
numerous misclassifications. Especially for Indian Pines and KSC, SVM obtained relatively
low average accuracies (under 60%), insufficient for practical applications. Although a
deep classifier, SSRN suffered from overfitting and had the lowest accuracy. The remaining
deep classifiers showed clear superiority by learning high-level non-linear spatial–spectral
representations hierarchically.
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The 3D CNN significantly boosted accuracy by 37.93%, 3.18%, and 21.21% over
2D + 1D CNN, demonstrating the efficient fusion of spatial and spectral patterns. Com-
pared to other classifiers, SAAFN further improved performance, achieving the best single
OA consistently. It had the best average OA for Indian Pines and KSC and the second best
for Pavia University. The optimal maps and metrics demonstrated effectiveness in mining
discriminative spatial–spectral features. Specifically, SAAFN integrated complementary
hierarchical information and cross-channel dependencies to overcome limitations.

SAAFN successfully achieved its objectives in classes where HybridSN failed. For
instance, it significantly enhanced PAs for various classes in Indian Pines as well as in KSC.
This serves as further evidence of the effectiveness of SAAFN. In general, SAAFN outper-
formed alternative spatial–spectral classifiers, clearly demonstrating its competitiveness in
HSI classification.

4. Ablation Study and Comparative Experiments

We designed an ablation study to confirm that the effectiveness of the proposed
Self-Adaptive Atrous Filter Network (SAAFN) is primarily due to the following factors:

The efficacy of the self-adaptive dilation rate derived from the modified hyperspectral
superpixel segmentation method. This method should provide an optimal receptive field
size that covers the entire area without the loss of domain-specific information.

The integration of the self-adaptive dilation rate with a multi-scale 3D atrous spatial
pyramid pooling (ASPP) convolution block, which is engineered to merge different levels
of feature outputs. This integration utilizes the relationship between homogeneous regions
to determine dilation rates according to the range of distinct category areas. Regardless
of the category areas’ size, the network can preserve both spatial details and spectral
information simultaneously, effectively transforming the spatial and spectral information
of hyperspectral imaging (HSI) into discriminative features.

To conduct the ablation study and validate the effectiveness of the self-adaptive
dilation rate, the classification performance of various adapted dilation rates was compared
using three datasets: Indian Pines, Kennedy Space Center (KSC), and Pavia University. To
analyze the impact of dilation rate at varying scales, we compared the derived adapted
dilation rates at 100%, 50%, and 150%. To further assess the effectiveness and robustness of
the proposed SAAFN and its ability to preserve spatial details and spectral information,
different methods were compared using various sizes of training samples (i.e., 10%, 20%,
30%, 40%, 50%) for the Indian Pines, KSC, and Pavia University datasets.

4.1. Dilation Rate vs. Classification Performance Comparison

The effectiveness of the self-adaptive dilation rate was evaluated by comparing the
classification performance of the adapted dilation rate, 50% of the adapted dilation rate, and
150% of the adapted dilation rate across all three datasets. The adapted dilation rates for the
Indian Pines, KSC, and Pavia University datasets were {6, 10, 15}, and the corresponding
50% and 150% dilation rates were {3, 5, 8} and {9, 15, 23}, respectively. The results, as
depicted in Figure 7, show that the adapted dilation rate significantly outperforms the
others in terms of overall accuracy and standard deviations across all datasets. This suggests
that the optimized dilation rate effectively translates the spatial and spectral information
of hyperspectral imaging (HSI) into discriminative features regardless of the size of the
category areas.
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4.2. Training Sample Size vs. Classification Performance Comparison

The effectiveness and robustness of the classification performance of differing methods
were evaluated by comparing them using various training sample sizes, namely, 10%, 20%,
30%, 40%, and 50%. The results of this comparison are presented in Figure 8. It is evident
from the data that the overall accuracy of all methods escalated in direct proportion to the
increase in training samples. On a general note, SRN demonstrated the most significant
improvement, primarily due to the reduction in overfitting as the sample size expanded.
However, SAAFN consistently outperformed all other methods in all scenarios. More
specifically, SAAFN displayed a pronounced superiority when dealing with small- to
medium-sized samples.
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5. Conclusions

In this study, we introduce a novel end-to-end self-adaptive multi-scale feature fusion-
based SAAFN for hyperspectral image (HSI) classification. Initially, we propose a modified
hyperspectral superpixel segmentation method that combines Euclidean spectral distance
with the Log-Euclidean distance (LED) of a covariance matrix representation as a clustering
distance. This approach enables us to define more meaningful homogeneous regions to
establish an optimized receptive field size that considers all category areas. Furthermore, we
propose a multi-scale 3D ASPP convolution block to merge different levels of feature output.
This technology leverages hierarchical complementarity without sacrificing time efficiency,
making it suitable as a foundational structure for constructing more robust CNN models
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for HSI detection and classification. The final SAAFN framework utilizes the relationship
between homogeneous regions to determine optimized dilation rates according to the range
of different category areas for the 3D ASPP network. Regardless of the category areas’
size, our proposed framework can simultaneously preserve spatial details and spectral
information, converting the HSI’s spatial and spectral data into discriminative features.
This is achieved by fully utilizing the global and local information of the HSI. We tested
the proposed SAAFN on three commonly used hyperspectral image datasets. The results
demonstrate that it surpasses other typical spectral classifiers and can be a competitive
method for practical applications.
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