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Abstract: Diagnosing some eye pathologies, such as diabetic retinopathy (DR), depends on accurately
detecting retinal eye lesions. Automatic lesion-segmentation methods based on deep learning involve
heavy-weight models and have yet to produce the desired quality of results. This paper presents a
new deep learning method for segmenting the four types of DR lesions found in eye fundus images.
The method, called LezioSeg, is based on multi-scale modules and gated skip connections. It has
three components: (1) Two multi-scale modules, the first is atrous spatial pyramid pooling (ASPP),
which is inserted at the neck of the network, while the second is added at the end of the decoder
to improve the fundus image feature extraction; (2) ImageNet MobileNet encoder; and (3) gated
skip connection (GSC) mechanism for improving the ability to obtain information about retinal eye
lesions. Experiments using affine-based transformation techniques showed that this architecture
improved the performance in lesion segmentation on the well-known IDRiD and E-ophtha datasets.
Considering the AUPR standard metric, for the IDRiD dataset, we obtained 81% for soft exudates,
86% for hard exudates, 69% for hemorrhages, and 40% for microaneurysms. For the E-ophtha dataset,
we achieved an AUPR of 63% for hard exudates and 37.5% for microaneurysms. These results show
that our model with affine-based augmentation achieved competitive results compared to several
cutting-edge techniques, but with a model with much fewer parameters.

Keywords: image segmentation; deep learning; medical image analysis; diabetic retinopathy; affine
transformation augmentation

1. Introduction

Diabetes is a widespread chronic disease that affects many people worldwide. It is a
major human health problem related to microvascular abnormalities. As a consequence,
diabetic retinopathy (DR) is one of the most severe chronic diseases affecting the human
eye. It is caused by damage to the blood vessels of the light-sensitive tissue at the back
of the eye, i.e., the retina, and can lead to blindness [1]. Luckily, early identification and
effective treatment can prevent many new cases from emerging [2]. Fundus images of the
human eye have been widely used for early screening and detection of various diseases,
including DR and glaucoma. Different signs of retinal eye lesions, such as hard exudates
(EX), microaneurysm (MA), hemorrhages (HE), and soft exudates (SE), can be found in
fundus images, indicating the presence and severity of DR. Figure 1 shows some examples
of these lesions. MA and HE appear in a fundus image as abnormal red lesions and indicate
the early stages of DR, whereas EX and SE appear as light lesions, indicating advanced
stages of DR disease [3].
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Figure 1. An example of a fundus image showing EX, MA, HE, and SE retinal lesions.

The manual detection and segmentation of small objects, like lesions, in fundus images
is a painstaking process that consumes ophthalmologists’ time and effort [4]. Furthermore,
it is difficult for ophthalmology professionals to recognize lesions effectively and analyze a
large number of fundus images at once, due to the complicated structure of lesions, their
varied sizes, differences in brightness, and their inter-class similarities with other tissues [5].
Moreover, training new workers on this kind of diagnosis based on these complicated
images requires significant time, to build knowledge through regular practice [6].

Different computer-aided diagnosis (CAD) systems utilizing artificial intelligence
models have been proposed in the last two decades to deal with these challenges, where
lesion detection and segmentation are performed automatically [7,8]. Deep learning
techniques have recently become the core of CAD systems, due to their high accuracy
compared to other traditional machine learning and computer vision methods. Several
deep learning-based CAD systems have been proposed for segmenting retinal eye lesions
based on an encoder–decoder network method, which is widely used in medical image
segmentation [3,9].

However, most of the deep learning-based CAD systems proposed in the literature,
such as [3,10–12], did not reach sufficient segmentation accuracy and employed heavy-
weight deep learning models, which made them less reliable and computationally expen-
sive during the training and testing phases. Additionally, many methods may perform
well with one type of retinal lesion and fail with others [3,13], or they work well with some
datasets but not with others [14].

Therefore, there is still a need to develop a deep learning-based segmentation model
that performs well in all eye lesion segmentation tasks (i.e., EX, MA, HE, and SE segmenta-
tion), while having a reasonable computational cost.

Driven by the aforementioned discussion, in this paper, we propose an efficient deep
learning method for segmenting the different kinds of retinal lesion. Specifically, we
propose two multi-scale modules to enhance deep-learning segmentation model perfor-
mance [15], for extracting relevant features from fundus images. Additionally, we integrate
data augmentation techniques based on affine transformations. These methods mimic
the actual deformations happening in the human eye, addressing the challenge of mis-
classification of tiny objects by generating a more realistic synthetic training dataset. The
contributions of this paper can be listed as follows:

1. Proposing an effective multi-scale attention (SAT) module in the decoder, to capture a
wider range of lesion-relevant features by mixing low- and high-resolution data from
different decoder layer sources. The goal is to enhance the concentration towards the
small objects that might be lost during the image reconstruction in the decoder block;

2. Integration of a gated skip connection (GSC) mechanism in the decoder layers to help
the network focus on retinal lesion features coming from the encoder;
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3. Application of affine transformations as data augmentation for generating geomet-
ric distortions or deformations that occur with non-ideal image angles, leading to
enhancing the performance of the segmentation model;

4. Considering the same method for segmentation of the four different types of lesion of
the retina. Experimentation was conducted on well-known public datasets: IDRiD
and E-ophtha. For the four retinal lesions, our model achieved an acceptable and
competitive performance compared to state-of-the-art methods;

5. Generalization capability of the LezioSeg segmentation model with a low-resolution
DDR fundus dataset. Our model achieved a competitive performance compared to
state-of-the-art results without training the model on the dataset.

The rest of this paper is organized as follows: Section 2 reviews recent studies on
eye lesion segmentation in fundus images. Section 3 presents the proposed retinal lesion
segmentation model. Section 4 provides the results and discusses them. Finally, Section 5
gives the conclusions and future work.

2. Related Work

Retinal lesion segmentation in the human eye has been tackled using various deep
learning-based automated techniques. The task remains challenging due to the diverse
characteristics of lesions, including the variations in size, shape, location, color, and texture
in fundus images. Several methods based on convolutional neural networks (CNNs) have
been developed to address these challenges.

A widely adopted architecture for lesion segmentation is UNet [16], leveraging its
ability to automatically learn representative high-level features. For instance, in [11], the
authors proposed GlobalNet and LocalNet networks, employing an encoder–decoder
architecture similar to UNet for MA, SE, EX, and HE segmentation. However, their method
relies on two encoders, demanding significant computational resources and resulting in
resource consumption issues.

CARNet [17] introduced a multi-lesion segmentation approach based on ResNets
networks [18]. Despite acceptable results on the IDRiD, E-ophtha, and DDR datasets, the
use of two heavy ResNets encoders poses a resource-intensive challenge.

EAD-Net [3] proposed a CNN-based system incorporating an encoder module, a dual
attention module, and a decoder. While achieving acceptable results on the ophtha_EX
dataset, it struggled with MA and SE segmentation on the IDRiD dataset, reporting AUPR
scores of 24.1% and 60.8%, respectively.

In [19], a scale-aware attention mechanism with various backbones was introduced,
achieving good results on the IDRiD and DDR datasets for some lesions. However, simulta-
neous success on the same dataset was limited, with low AUPR scores of 41.5% and 19.33%
for MA on the IDRiD and DDR datasets, respectively.

Methods utilizing VGGNet networks, known for their heavyweight, have also been
explored. For example, L-Seg [12] proposed a unified framework based on a modified
VGG16 [20] encoder, achieving favorable results on the IDRiD dataset for all lesions.
However, the performance dropped on the E-ophtha and DDR datasets, particularly for
MA, with AUPR scores of 16.8% and 10.5%, respectively.

In [10], the authors employed the HEDNet edge detector with a conditional generative
adversarial network based on VGGNet for semantic segmentation of retinal lesions. While
achieving an AUPR of 84.1% for EX, the performance for other lesions, such as MA, HE,
and SE, fell below 50% on the IDRiD dataset.

Furthermore, several works in the literature have shown that combining deep learn-
ing architectures with a multi-scale attention mechanism shows promise for enhancing
feature representational strength and target localization for medical image classification
and segmentation [21–23].

Hence, the current work aimed to develop an accurate lesion segmentation method for
fundus images using lightweight backbone architectures within a single network model,
incorporating scale-aware attention and gated skip connections. This approach significantly
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reduces computational costs compared to methods relying on heavy backbone architectures
like ResNets and VGGs or those dependent on multiple backbone encoders.

3. Methodology

This section explains in detail the architecture of the proposed method, LezioSeg,
which is composed of three parts, as shown in Figure 2. First, the encoder network (i.e.,
the backbone) encodes the input image and generates feature maps. Second, we insert an
atrous spatial pyramid pooling (ASPP) [24] layer after the encoder network (i.e., the neck)
that can capture contextual information at multiple scales, to generate better representations
of the small lesions of the retinal eye. Third, the decoder network (i.e., the head) contains
four blocks, each having a GSC mechanism [25] to encourage the model to learn eye-lesion-
relevant features. Finally, a multi-scale attention (SAT) mechanism is connected with each
decoder block as an additional lesion segmentation, to enhance learning efficiency by
combining low and high-resolution data from different sources. After presenting these
three parts of the method, we focus on the loss function and propose the use of an affine
transformation for data augmentation.

384 × 256 × 64

Final Predicted Mask

Skip Connec�ons

Layer Output

384 × 256 × 3

ASPP

Input Image

384 × 256 × 64

384 × 256 × 1Summa�on

MobileNet Encoder

Decoder Block

Output Layer

SAT

DecOut1

DecOut2

DecOut3

DecOut4

GSCs

GSCs

GSCs

GSCs

GSCs

Figure 2. Architecture of the network for lesion segmentation in fundus images.
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3.1. Encoder Network

In this study, we employ an ImageNet pretrained MobileNet [26] encoder as a back-
bone. MobileNet was selected because it is a lightweight deep neural network with effective
feature extraction capabilities and a cutting-edge foundation for many computer vision
tasks [27,28].

MobileNet uses depth-wise separable convolution, comprised of two layers: depth-
wise convolution, and point-wise convolution. The depth-wise convolution layer applies a
single filter to each input channel. The point-wise convolution layer combines the output
depthwise using a 1× 1 convolution to create new feature maps. Furthermore, MobileNet
has two different global hyperparameters, to reduce the computational cost-effectiveness:
the width multiplayer, and the resolution-wise multiplayer.

The backbone in our suggested model includes four layers. It aims to encode the input
eye fundus image and extract abstract information about retinal lesions at various levels
of generality.

3.2. Neck of the Network

The LezioSeg architecture includes an atrous spatial pyramid pooling (ASPP) module,
to aid in the extraction of multi-scale feature maps and to maximize the capture of contextual
data of the small lesions. ASPP includes four parallel atrous convolutions with varying
atrous rates. It combines atrous convolution with spatial pyramid pooling. ASPP [29] is
expressed as follows:

y[p] =
K

∑
k=1

x[p + r · k] f [k] (1)

Atrous convolution is applied to the input x for each pixel p on the output y and filter
f with length k, where the rate r determines the stride of sampling of the input image.
The input x is convolved with the filters produced by inserting r− 1 zeros between two
consecutive filter values in atrous convolution. We can change the filter’s receptive field by
adjusting the rate r. The ASPP module in this study is made up of one 1× 1 convolution
and three parallel 3× 3 convolutions with rates of 6, 12, and 18, respectively, as well as an
image-level feature produced through global average pooling. The features of the branches
are concatenated and upsampled to the input size. The output of ASPP is the concatenation
of the results of multi-scale feature maps passed through another 1× 1 convolution. The
decoder network follows the neck block of the network.

3.3. Decoder Network

The decoder network comprises four layers, a SAT mechanism, and an output layer
that produces the final mask. Each decoder layer employs the GSCs mechanism followed
by double convolution layers, batch normalization, and a rectified linear unit activation
function. Below, we introduce the GSC and SAT mechanisms.

3.3.1. Gated Skip Connections (GSCs)

The LezioSeg method uses four GSC blocks to boost feature map production and
improve discrimination between the lesion and background pixels in retinal eye lesion
segmentation. All four decoder blocks share the same GSC architecture, represented in
Figure 3.

Each GSC decoder block receives feature maps expressed as S1 from the corresponding
Mobilenet encoder block, which are concatenated with the feature maps produced by the
previous block (either the ASPP neck block or a previous decoder block, expressed as S2).
These feature maps can be expressed as S1 ∈ Rh×w× f and S2 ∈ Rh/2×w/2×2 f , where h, w,
and f stand for height, width, and the filter’s number of features. Then, to produce feature
maps Ŝ2, the S2 is fed into an UpSampled2D transposed convolution layer with a kernel
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size of 2× 2. After that, a concatenation is performed of the same width and height of Ŝ2
and S1 as follows:

C = ϕ1×1([S1||Ŝ2]) (2)

where ϕ1×1 indicates the kernel size of the 1× 1 of convolution operation and || signifies
the concatenation function. A sigmoid activation function is performed on the C feature
maps to generate the weights ϑ, which enhances the discrimination process between the
lesion pixels and background pixels for the segmentation of retinal eye lesions. As a result
of D, the generated weights ϑ(C) are multiplied by the summation of A, where A indicates
summation of Ŝ2 and C, as follows:

A = Ŝ2 + C (3)

D = ϑ(C)× A (4)

After that, D enhanced feature maps are fed into double convolution layers, followed
by batch normalization and a rectified linear unit activation function. Finally, the output of
each decoder layer is fed into the second multi-scale block, as explained in Section 3.3.2
(Figure 3), where a binary image will be generated as a final mask.

Input from ASPP neck or
from previous decoder block

Skip Connec�ons from
MobileNet Encoder 

Conv2D 1 × 1

Conv2D 1 × 1

Layer Output

Concat

Conv2D 3 × 3, BatchNorm, Relu

UpSampling2D
2 × 2

Conv2D 3 × 3, BatchNorm, Relu

Summa�on

Sigmoid

Mul�plica�on

C

S1

S2

A

D

Figure 3. The architecture of the GSC mechanism.

3.3.2. Multi-Scale Attention (SAT) Mechanism

The multi-scale mechanism used to capture a wider range of relevant features with
attention helps the model to maintain the multi-scale nature of each decoder block output,
to consider features from the four decoder blocks. Figure 4 shows the SAT block. In SAT, we
first collect the four different copies of the features from the different stages of the decoder,
to extract features and to reduce the dimensions of features from coarser stages to the finest
scale. Then, we unify the different scales using a 1× 1 convolutional with a Kernal of 64.

Next, we upsample each scale size to the original size of the input image using
UpSampled2D transposed convolution with different strides, to make four upscaled feature
copies of the output features of the decoder blocks. SAT can be expressed as follows:

SAT = ϑ(
3

∑
k=1
↑ (ϕ1×1(Lk))

2×k + ϕ1×1(L4))× L4. (5)
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UpSampling2D
stride(8 × 8)

UpSampling2D
stride(4 × 4)

UpSampling2D
stride(2 × 2)

Conv2D 1 × 1 × 64

Mul�-Scale A�en�on (SAT)

DecOut1

DecOut2

DecOut3

DecOut4

384 × 256 × 64

384 × 256 × 64

384 × 256 × 64

384 × 256 × 64

384 × 256 × 64

384 × 256 × 64

Conv(DecOut1)

Conv(DecOut2)

Conv(DecOut3)

Conv(DecOut4)

Summa�on Sigmoid Mul�plica�onOutput Layer

Figure 4. Structure of the SAT block.

In this expression, L indicates the decoder network layer output, ϑ stands for the
sigmoid activation function, ↑ indicates the UpSampled2D transposed convolution layer
with a kernel size of 3× 3, and ϕ1×1 stands for the convolution operation with a kernel
size of 1 × 1, where the ϕ1×1(Lk) feature maps pass to a ↑ by 2× k stride k = (1, 2, 3) and
fuse them. Next, the fusion feature results are added to ϕ1×1(L4) and passed to sigmoid
activation function weights, which help to improve the discrimination between the lesion
pixels and background pixels. Then, the sigmoid results are multiplied by L4. After that,
we use another fusion to improve the model performance in lesion segmentation by adding
the SAT result to the final decoder network output, which is fed into 1× 1 convolutional
with 64 kernals, to be balanced with SAT output as follows:

Z = ϑ(
3

∑
k=1
↑ (ϕ1×1(Lk))

2×k + ϕ1×1(L4))× L4 + ϕ1×1(Dout) (6)

where Dout stands for the final output of the decoder network.
Finally, the output layer of the model takes Z to generate the predicted mask for

lesion segmentation.

3.4. Loss Function

To optimize the performance of our method in segmenting retinal lesions, we trained
the network with cross-entropy loss, which is the most commonly used loss function
in classification problems [9,16,30]. The binary cross-entropy loss LBCE [31] function is
defined as follows:

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (7)

where y, ŷ ∈ {0, 1}, and ŷ indicate the predicted value, while y indicates the ground
truth label. LBCE returns the average loss across all pixels based on minimizing the pixel-
wise error.

3.5. Affine-Based Augmentation

It has been proven that advanced data augmentation techniques, such as affine-based
methods and generative adversarial network (GAN)-based augmentation, can play a key
role in enhancing the generalization of models, while mitigating overfitting challenges,
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especially in tasks like small object segmentation, such as of retinal eye lesions. Unlike
conventional augmentation approaches, these methods not only expand the scale of small
datasets but also create synthetic samples with diverse variations by mimicking the actual
deformations occurring in the human eye [32–34]. Therefore, for correcting geometric
distortions or deformations that occur with non-ideal camera angles, we use an affine-
based transformation technique (also known as affinity) [35]. There are many types of
affinity, such as rotation, translation, and shear.

In this study, we apply rotational affine transformation to the training data of fundus
images and their labels with many angles, to increase the robustness and accuracy of
the deep learning model [36,37]. This transformation may give better results than other
traditional augmentation methods, such as flipping, brightness, and simple rotation, due to
a greater flexibility and capability to perform a broader range of geometric modifications
and corrections, specifically in cases of small and irregular objects, such as retinal lesions.

Figure 5 shows some affine transformations applied to fundus images.

Split image orignal

Affine transformed images

Figure 5. Sample of split fundus image before affine transformation (left), and after (right).

An affine transformation can be expressed as follows: x′

y′

1

 =

 cos(θ) − sin(θ) sx
sin(θ) cos(θ) sy

0 0 1

 ·
 x

y
1

 (8)

where θ indicates the angle of rotation, x′ and y′ are the new points of x and y after rotation,
sx stands for scaled x axis, and sy stands for scaled y axis.

4. Experimental Results and Discussion

In this section, we describe the experiments conducted to evaluate the performance
of the proposed model, including a description of the datasets, experimental setup, and
evaluation metrics, as well as an analysis of the results.

4.1. Dataset, Preprocessing, and Experimental Setup

To demonstrate the efficacy of LezioSeg, we employed three public and well-known
datasets, namely the Indian Diabetic Retinopathy Image Dataset (IDRiD) [38], E-ophtha [39],
and DDR [40]. Table 1 shows general information, and Figure 6 shows an example of an
image from each of these datasets, with the corresponding ground truth for exudates, EX.

The IDRiD dataset includes 81 high-resolution retinal fundus images sized 4288× 2848.
This dataset has images with at least one labeled mask for each of the four types of DR
lesion: EX, SE, MA, and HE. The dataset was split into 2/3 for training (distributed as
54, 54, 54, and 26 for EX, HE, MA, and SE, respectively) and 1/3 for testing (distributed as
26, 27, 27, and 14 for EX, HE, MA, and SE).
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Table 1. Number of images in the experimental datasets for each lesion.

Dataset EX HE MA SE Total Country

IDRiD 80 81 81 40 81 India

E-ophtha 47 - 148 - 195 France

DDR 171 194 124 42 225 China

The E-ophtha dataset contains 47 images with masks for exudate lesions and 148
images with microaneurysms. We randomly divided the dataset into two parts: 80% of
images for training and 20% for testing. From the DDR dataset, we only used the test set to
examine the model generalization.

In
pu

t I
m

ag
e

IDRiD E-ophtha DDR

G
ro

un
d 

Tr
ut

h

Figure 6. Samples of images and the ground truth from the three datasets.

To increase the amount of data and improve the regularity of the model, we employed
the following training pipeline (including some data augmentation techniques) to process
the images in the training set.

First, as shown in Figure 7, each image was divided into four non-overlapping sub-
images with corresponding sub-masks. Negative sub-images (i.e., sub-images with only
a background mask) were discarded. To reduce the GPU memory limitation, we resized
the sub-images and sub-masks to 384× 256. We applied cubic interpolation to the images,
whereas for the masks, we used the nearest neighbor. Then, to enhance the generalization
of the LezioSeg model, we applied standard augmentation techniques, such as horizontal,
flipping, and simple rotation. Additionally, we utilized affine augmentation methods with
different angles, such as 15◦, 60◦, 135◦, −35◦, and −75◦, because of its ability to perform
a broader range of geometric modifications and corrections for the 12 repetitions of each
dataset used.

Figure 7. Samples of a split image.

Each model was trained on a single RTX 3080 Ti GPU (Nvidia Corporation, Santa
Clara, CA, USA) with 12 GB RAM for 50 epochs, with an Adam optimizer, batch size of
4, and learning rate of 0.001, while binary cross-entropy was used as a loss function. To
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save the best checkpoint for the trained models, we sampled a subset (20%) of the training
set as a validation set. During the inference phase, we only resized the input image to
768× 512 and utilized an entire image segmentation process (i.e., no image splitting or
image augmentation was used in the testing phase).

4.2. Evaluation Metrics

In this study, we used the following evaluation metrics to assess the performance of
our segmentation model [41,42]:

• Area under precision-recall curve (AUPR) is recognized as a realistic measure of lesion
segmentation performance, such as for eye lesions;

• Pixel accuracy (ACC) is the percentage of pixels in an image that are correctly classified.
It is formally defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

• Intersection-over-union (IOU), also known as the Jaccard index, is a method for
calculating the percentage overlap between the predicted mask and the ground truth
mask. It can be expressed as follows:

IOU =
TP

TP + FP + FN
(10)

• Recall (Re) stands for the percentage of real lesion pixels classified as lesion pixels.
Formally, it is defined as follows:

Recall =
TP

TP + FN
(11)

• Precision (Pre) is the total number of positive predictions divided by the number of
true positive lesions. It is described as follows:

Precision =
TP

TP + FP
(12)

• F1-score is defined as the harmonic mean of precision and recall, as follows:

F1 =
2 · Precision× Recall

Precision + Recall
(13)

The term TP refers to the true positive (the pixels were labeled as foreground, i.e.,
retinal lesion pixels, and correctly classified); FP stands for false positive (the pixels were
labeled as background and misclassified as foreground); TN is true negative, referring to
healthy pixels correctly classified by the network; and FN is a false negative representing
lesion pixels misclassified as healthy pixels.

4.3. Ablation Study

In this section, we assess the performance of the proposed architecture with an ablation
study, using the testing images of the IDRiD and E-ophtha datasets. We separately con-
ducted five experiments for each retinal lesion with the different architectures: Baseline (in-
dicates the Unet model with MobileNet backbone encoder), Baseline + GSCs, Baseline + SAT,
Baseline + GSCs + SAT (i.e., LezioSeg method), and the LezioSeg + Affine methods.
Tables 2 and 3 present the performance of the EX, SE, HE, and MA retinal lesion seg-
mentation models on the IDRiD dataset. Similarly, we conducted the same five experiments
on the E-ophtha dataset for the EX and MA retinal lesions (see Table 4).
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Table 2. IDRiD dataset experimental results for the EX and SE. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
EX SE

IOU F1 AUPR IOU F1 AUPR

Baseline 78.13 ± 0.025 72.44 ± 0.039 80.93 ± 0.15 74.02 ± 0.07 65.13 ± 0.18 67.48 ± 0.31

+GSCs 80.37 ± 0.016 75.94 ± 0.024 83.85 ± 0.15 75.68 ± 0.07 68.06 ± 0.18 69.97 ± 0.27

+SAT 78.98 ± 0.015 73.77 ± 0.024 82.95 ± 0.17 75.18 ± 0.07 67.17 ± 0.17 73.56 ± 0.21

LezioSeg 80.27 ± 0.013 75.77 ± 0.020 84.54 ± 0.17 78.52 ± 0.08 72.78 ± 0.19 77.64 ± 0.24

LezioSeg + Affine 81.62 ± 0.011 77.81 ± 0.016 86.03 ± 0.18 80.10 ± 0.08 75.28 ± 0.19 81.05 ± 0.24

Table 3. IDRiD dataset experimental results for MA and HE. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
MA HE

IOU F1 AUPR IOU F1 AUPR

Baseline 57.03 ± 0.008 24.81 ± 0.026 32.56 ± 0.12 69.15 ± 0.028 56.20 ± 0.052 62.53 ± 0.21

+GSCs 60.02 ± 0.007 33.96 ± 0.020 33.69 ± 0.12 67.63 ± 0.019 53.01 ± 0.038 58.56 ± 0.22

+SAT 61.41 ± 0.004 37.28 ± 0.010 35.79 ± 0.10 68.03 ± 0.022 53.85 ± 0.044 60.58 ± 0.22

LezioSeg 60.57 ± 0.009 35.03 ± 0.023 37.06 ± 0.11 70.82 ± 0.019 59.50 ± 0.035 65.76 ± 0.19

LezioSeg + Affine 63.50 ± 0.011 42.65 ± 0.026 40.04 ± 0.12 72.65 ± 0.019 63.01 ± 0.031 69.11 ± 0.18

Table 4. E-ophtha dataset experimental results for EX and MA. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
EX MA

IOU F1 AUPR IOU F1 AUPR

Baseline 69.43 ± 0.018 56.13 ± 0.039 62.84 ± 0.10 60.09 ± 0.015 33.6 ± 0.038 30.01 ± 0.17

+GSCs 69.69 ± 0.022 56.67 ± 0.050 58.25 ± 0.11 60.43 ± 0.013 34.57 ± 0.033 29.6 ± 0.21

+SAT 68.75 ± 0.027 54.72 ± 0.063 58.74 ± 0.14 62.29 ± 0.015 39.49 ± 0.034 32.24 ± 0.19

LezioSeg 70.62 ± 0.018 58.57 ± 0.037 61.98 ± 0.10 63.37 ± 0.020 42.21 ± 0.045 36.30 ± 0.20

LezioSeg + Affine 71.74 ± 0.018 60.8 ± 0.037 63.04 ± 0.10 64.12 ± 0.020 44.06 ± 0.043 37.50 ± 0.19

4.3.1. Experiments on the IDRiD Dataset

As we can see from Tables 2 and 3, the LezioSeg model achieved the best results for
all metrics of the EX, SE, HE, and MA retinal lesions on the IDRiD dataset; specifically with
the AUPR metric, a popular metric used for the IDRiD dataset challenge. Merging the GSC
and SAT techniques generally increased the results’ robustness; since the GSCs help filter
the results produced from the encoder block and SAT helps filter the results produced by
the decoder blocks. Moreover, a significant improvement in the segmentation results was
achieved when we added affine to the LezioSeg, obtaining AUPR values of 86.03, 81.05,
40.04, and 69.11% for EX, SE, HE, and MA, respectively.

The mean ± standard deviations of the evaluation metrics for the test dataset of
the IDRiD dataset are reported in Tables 2 and 3, and the results of our LezioSeg and
LezioSeg + Affine models were within the range of the means ± one standard deviation.
These effects revealed that LezioSeg, with or without Affine, presented a more precise and
robust segmentation.

Figure 8 shows the boxplots of the F1 metric of the Baseline, +GSCs, +SAT, LezioSeg, and
LezioSeg + Affine models on the IDRiD dataset for SE, EX, HE, and MA retinal lesions. From
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the figure, among the tested models, we can see that the LezioSeg + Affine model had the
highest mean and median for all lesions. In addition, it had the smallest standard deviation
of EX and HE, and the outliers were in the top whisker, which were positive outliers for EX,
HE, and MA. Using the boxplots, we can see that the LezioSeg + Affine provided the best
performance for all lesions, while achieving the best mean and median values.

Figure 8. Box plots of F1 for EX, SE, HE, and MA segmentation results for the IDRiD dataset (green
dashed lines indicate the mean, and the oranges indicate the median). Outliers are values that fell
outside the whiskers, denoted by the (◦) symbol.

Moreover, it is helpful to refer to the statistical significance of the differences in
performance between the proposed LezioSeg + Affine and the Baseline model in terms of
the F1 and IOU for each lesion. To accomplish this, we used Student’s t-test (significance
level < 0.05) to reveal the distinction between F1 values. At the same time, we used this
to specify the distinction between IOU values. The p-values for F1 and IOU terms were
less than 0.05, indicating statistical significance for EX, HE, and MA, and higher than 0.05
for SE with the IDRiD dataset. Table 5 displays the average increase in percentage δ%
as each component was added to the Baseline model for the AUPR metric. As we can
see, merging the GSCs and SAT into the Baseline model notably enhanced the results. In
addition, adding affine to them resulted in a huge performance improvement.

Table 5. IDRiD dataset ablation studies for the different experiments. This table displays the AUPR,
mean AUPR (mAUPR), and average increase percentage over Baseline ↑. Bold highlighting values
denote the highest results.

Method EX HE MA SE mAUPR δ%

Baseline 80.93 62.53 32.56 67.48 60.88 -

+GSCs 83.85 58.56 33.69 69.97 61.52 ↑ 0.64

+SAT 82.95 60.58 35.69 73.56 63.20 ↑ 2.32

LezioSeg 84.54 65.76 37.06 77.64 66.30 ↑ 5.38

LezioSeg + Affine 86.03 69.11 40.04 81.05 69.06 ↑ 8.18
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4.3.2. Experiments on the E-Ophtha Dataset

We conducted the same five experiments used on the IDRiD dataset on the E-ophtha
dataset for EX and MA (the only lesions given in the E-ophtha dataset), to show the
impact of introducing LezioSeg and LezioSeg + Affine. As shown in Table 4, the LezioSeg
model achieved the best segmentation results for MA for all metrics, with IOU = 63.37%,
F1 = 42.21%, and AUPR = 36.30%. At the same time, it achieved the highest values for EX
segmentation, with an IOU and F1 of 70.62 and 58.57%. On the other hand, LezioSeg +
Affine significantly enhanced the results of all metrics for MA and EX. For MA segmentation,
it obtained an IOU, F1, and AUPR of 64.12, 44.06, and 60.8%, respectively, and it obtained
an IOU, F1, and AUPR of 71.74, 60.8, and 63.04%, respectively, for EX segmentation.

The results of the LezioSeg and LezioSeg + Affine models for the mean ± standard
deviation of the evaluation metrics for the test dataset for the E-ophtha dataset were within
the range of the mean ± one standard deviation, as shown in Table 4. These results show
that the LezioSeg and LezioSeg + Affine data augmentation could provide a more precise
and robust segmentation. In Figure 9, we show the boxplots for the F1 metric on the
E-ophtha dataset for EX and MA retinal lesions for the Baseline, +GSCs, +SAT, LezioSeg,
and LezioSeg + Affine models. From the figure, among the tested models, we can see that
Ex had the highest mean and median, and smallest standard deviation when using the
LezioSeg + Affine model. The LezioSeg + Affine model also gave the smallest standard
deviation and the second-best mean and median. In comparison, the LezioSeg + Affine
outliers were on the positive side (top whisker) of MA and higher than the bottom whisker
of all related models in the case of EX.

Using the boxplots, we can see that the proposed method, LezioSeg + Affine, achieved
the best performance for EX, while achieving the second-best performance for MA, consid-
ering the F1 evaluation metric.

Figure 9. Box plots of F1 for EX, SE, HE, and MA segmentation results on the E-ophtha dataset (green
dashed lines indicate the mean and the oranges indicate the median). Outliers are values that fall
outside the whiskers, denoted by the (◦) symbol.

Finally, the Student’s t-test for statistical differences in performance between the LezioSeg
method and the Baseline model for the terms F1 and IOU clearly showed that p-values less
than 0.05 indicated statistical significance for EX and MA with the E-ophtha dataset.

4.3.3. Visualization

To show the influence of the LezioSeg and LezioSeg + Affine segmentation models
compared to the Baseline model, we show realistic segmentation cases from the IDRiD and
E-ophtha datasets. Figure 10 shows samples from the IDRiD dataset for EX, SE, HE, and
MA segmentation. In addition, Figure 11 shows samples from the E-ophtha dataset, to
demonstrate the segmentation efficacy of EX and MA. The blue color illustrates the false
positives, whereas the green color indicates the false negatives. From the cases shown,
LezioSeg + Affine worked well on small and large lesions.
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Figure 10. Sample of the segmentation results of SE, EX, HE, and MA on the IDRiD dataset (blue and
green indicate FP and FN).
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Figure 11. Sample of the segmentation results for EX and MA on the E-ophtha dataset (blue and
green indicate FP and FN).
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4.4. Comparison with Existing Lesion Segmentation Methods

To ensure the proposed method’s efficacy, we compared LezioSeg + Affine and some
state-of-the-art methods using the AUPR metric of the IDRiD and E-ophtha datasets.
The comparison of IDRiD included the top-3 IDRiD challenge teams [43], L-Seg [12],
CASENet [14], DeepLabV3+ [13], HEDNet + cGAN [10], CARNet [17], EAD-Net [3], PMC-
Net [44], and PBDA [33].

Table 6 shows that the LezioSeg + Affine model achieved a significant improvement
in performance in segmenting retinal lesions. It achieved the best AUPR of SE (81.05%) and
the second best for HE (69.11%). In addition, LezioSeg + Affine obtained a high average
value for the mean of area under precision-recall (mAUPR) over all lesions, with a value of
69.06%, only surpassed by PBDA.

Table 6. Comparison with existing methods for lesion segmentation on the IDRiD dataset. (-) stands
for ‘not reported’. Bold highlighting values denote the highest results.

Method EX HE SE MA mAUPR

VRT (1st) [43] 71.27 68.04 69.95 49.51 64.69

PATech (2nd) [43] 88.50 64.90 - 47.40 -

iFLYTEK-MIG (3rd) [43] 87.41 55.88 65.88 50.17 64.84

L-Seg [12] 79.45 63.74 71.13 46.27 65.15

CASENet [14] 75.64 44.62 39.92 32.75 48.23

DeepLabV3+ [13] 71.18 47.72 59.12 15.14 48.29

HEDNet + cGAN [10] 84.05 48.12 48.39 43.92 56.12

CARNet [17] 86.75 63.89 71.25 51.48 68.34

EAD-Net [3] 78.18 56.49 60.83 24.08 54.90

PMCNet [44] 87.24 67.05 71.11 46.94 68.08

PBDA [33] 86.43 71.53 73.07 53.41 71.11

LezioSeg + Affine 86.03 69.11 81.05 40.04 69.06

Furthermore, for the E-ophtha dataset, the comparison included CASENet [14],
L-Seg [12], PMCNet [44], DeepLabV3+ [13], and PBDA [33]. Table 7 shows that
LezioSeg + Affine surpassed most of the previous works by a considerable margin. We can
also observe that it was slightly better than PBDA for the two types of lesion available in
this dataset.

Table 7. Comparison with existing methods for lesion segmentation on the E-ophtha dataset. Bold
highlighting values denote the highest results.

Method EX MA mAUPR

CASENet [14] 17.15 15.65 16.40

DeepLabV3+ [13] 55.12 0.45 27.78

L-Seg [12] 41.71 16.87 29.29

PMCNet [44] 51.20 30.60 40.90

PBDA [33] 62.32 35.68 49.01

LezioSeg + Affine 63.04 37.50 50.27

From the results on these two datasets, we can see that LezioSeg + Affine performed
fairly comparably to PBDA for the IDRiD dataset and was superior to it for the E-ophtha
dataset, by 0.92, 1.82, and 1.26% for EX, MA segmentation, and mAUPR, respectively.
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4.5. Evaluating the Generalization Capability of LezioSeg + Affine

It was also meaningful to study the generalization capability of the methods over vari-
ous domains and imaging conditions. We used our models pretrained on the IDRiD dataset
to verify their effectiveness and generalization ability with the low-resolution test data of
the DDR fundus image dataset. The comparison included DeepLabV3+ [13], CASENet [14],
L-Seg [12], and PMCNet [44]. LezioSeg + Affine obtained a performance for EX, SE, HE,
and MA with the AUPR metric of 56.12, 28.62, 22.21, and 33.81%, and an mAUPR of 35.19%,
as shown in Table 8. Furthermore, LezioSeg + Affine outperformed all state-of-the-art
approaches for segmenting MA and EX without training, which was much better than the
PMCNet and L-Seg models, by 2.27 and 0.66% for MA and EX, respectively, and it also
achieved the second-best result for SE and mAUPR.

Table 8. Performance comparison of the generalization of the different methods. Bold highlighting
values denote the highest results.

Method EX HE MA SE mAUPR

DeepLabV3+ [13] 53.49 38.94 2.23 21.20 28.97

CASENet [14] 27.77 26.25 10.05 13.04 19.28

L-Seg [12] 55.46 35.86 10.52 26.48 32.08

PMCNet [44] 54.30 39.87 19.94 31.64 36.44

LezioSeg + Affine 56.12 33.81 22.21 28.62 35.19

4.6. Computational Complexity

To confirm the efficacy of our network, we examined different models on the IDRiD
dataset, in terms of parameters, flop, test time, and mAUPR. In comparison, we achieved
the second-best average value for the AUPR metric. However, our model achieved the best
computing parameter with 10.7M and the best test time of 0.17 s, which were significantly
lower than the models using dual networks and a cascade architecture, such as CARNet [17]
and PBDA [33], and those models based on ResNet or VGGNet encoders, such as L-Seg [12],
and CARNet. Furthermore, our model obtained the best value compared to the reported
models’ flop values, with 177.8 G. As shown in Table 9.

Table 9. Computational complexity of the different lesion segmentation models on the IDRiD dataset.
(-) stands for ‘not reported’. Bold highlighting values denote the highest results.

Method Parameters (M) Flops (G) Time (S) mAUPR

L-Seg [12] ≈14.3 - - 65.15

DeepLabV3+ [13] ≈41.1 621.6 0.32 48.29

CARNet [17] ≈22 - 0.2 68.34

PBDA [33] ≈24.6 1554.11 0.26 71.11

LezioSeg ≈10.7 177.8 0.17 69.06

5. Conclusions

The automatic segmentation of the retinal lesions in fundus images (SE, EX, HE, and
MA of the human eye) was performed in this paper using a new deep-learning architecture.
The new model, called LezioSeg, comprises four main elements: two multi-scale modules,
an ASPP at the neck of the network and a SAT unit after the decoder of the network, a
MobileNet backbone encoder, and a modified UNet decoder block using several GSCs. It
is worth highlighting that, in terms of parameters, LezioSeg is much lighter than those
models that depend on ResNets or VGGNets backbones and those models that use dual
networks or a cascading architecture.
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The extension of the proposed model with affine transformations improved the seg-
mentation performance of retinal eye lesions for the IDRiD and E-ophtha datasets. Ex-
tensive experiments showed that LezioSeg + Affine had a competitive performance with
the other state-of-the-art models, achieving the top performance for segmenting SE and
second-best for HE of over 81.0 and 69.11% for AUPR and the second-best mAUPR of
69.06% with the IDRiD dataset. Moreover, with the E-ophtha dataset, LezioSeg showed a
high performance of 63.04 and 37.50% for segmenting EX and MA for AUPR and achieved
the best mAUPR of 50.27%. LezioSeg showed a competitive performance when it was
generalized on the DDR dataset, which had images taken in different conditions and in a
different population.

LezioSeg + Affine proved that it is a reliable and robust method for lesion segmentation
of fundus images, which may prove an excellent help for ophthalmologists in detecting
diabetic retinopathy. One of its main features is that it can be applied to real-world color
fundus images taken with different camera settings, which is often a handicap of other
techniques. This new architecture may also be applied to other medical images where the
identification of small objects is needed.

In future work, we plan to use the presented lesion segmentation model to create
an integrated application for retinal eye illnesses such as DR, glaucoma, and age-related
macular degeneration.
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