
Citation: Cira, C.-I.; Díaz-Álvarez, A.;

Serradilla, F.; Manso-Callejo, M.-Á.

Convolutional Neural Networks

Adapted for Regression Tasks:

Predicting the Orientation of Straight

Arrows on Marked Road Pavement

Using Deep Learning and Rectified

Orthophotography. Electronics 2023,

12, 3980. https://doi.org/10.3390/

electronics12183980

Academic Editors: Haibin Wu,

Aili Wang and Yuji Iwahori

Received: 10 July 2023

Revised: 8 September 2023

Accepted: 19 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Convolutional Neural Networks Adapted for Regression Tasks:
Predicting the Orientation of Straight Arrows on Marked Road
Pavement Using Deep Learning and Rectified Orthophotography
Calimanut-Ionut Cira 1 , Alberto Díaz-Álvarez 2,* , Francisco Serradilla 2 and Miguel-Ángel Manso-Callejo 1

1 Departamento de Ingeniería Topográfica y Cartografía, E.T.S.I. en Topografía, Geodesia y Cartografía,
Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain

2 Departamento de Sistemas Informáticos, E.T.S.I. de Sistemas Informáticos, Universidad Politécnica de Madrid,
C/Alan Turing s/n, 28031 Madrid, Spain

* Correspondence: alberto.diaz@upm.es

Abstract: Arrow signs found on roadway pavement are an important component of modern trans-
portation systems. Given the rise in autonomous vehicles, public agencies are increasingly interested
in accurately identifying and analysing detailed road pavement information to generate compre-
hensive road maps and decision support systems that can optimise traffic flow, enhance road safety,
and provide complete official road cartographic support (that can be used in autonomous driving
tasks). As arrow signs are a fundamental component of traffic guidance, this paper aims to present
a novel deep learning-based approach to identify the orientation and direction of arrow signs on
marked roadway pavements using high-resolution aerial orthoimages. The approach is based on
convolutional neural network architectures (VGGNet, ResNet, Xception, and DenseNet) that are
modified and adapted for regression tasks with a proposed learning structure, together with an ad
hoc model, specially introduced for this task. Although the best-performing artificial neural network
was based on VGGNet (VGG-19 variant), it only slightly surpassed the proposed ad hoc model in
the average values of the R2 score, mean squared error, and angular error by 0.005, 0.001, and 0.036,
respectively, using the training set (the ad hoc model delivered an average R2 score, mean squared
error, and angular error of 0.9874, 0.001, and 2.516, respectively). Furthermore, the ad hoc model’s
predictions using the test set were the most consistent (a standard deviation of the R2 score of 0.033
compared with the score of 0.042 achieved using VGG19), while being almost eight times more
computationally efficient when compared with the VGG19 model (2,673,729 parameters vs VGG19′s
20,321,985 parameters).

Keywords: convolutional neural network; regression task; road sign; pavement arrow; orientation
direction

1. Introduction

Arrow signs on roadway pavement are a crucial component of modern transportation
systems that provide critical direction and guidance for drivers. The accurate identification
and analysis of these signs is important for creating comprehensive road maps and decision
support systems that can optimise traffic flow and enhance road safety. Traditional methods
applied to identify arrow signs on the pavement involve manual inspection, which can be
time-consuming and prone to errors. However, recent advances in computer vision and
deep learning (DL) can enable the automation of the process of identifying arrow signs on
roadway pavement using orthophotography (it is important to note that no public dataset
or repository containing road arrow signs is available).

This paper aims to present a novel approach that provides accurate and efficient iden-
tification of arrow signs on roadway pavement, together with their angle orientation and
direction using aerial orthophotography and DL algorithms. The method can automatically

Electronics 2023, 12, 3980. https://doi.org/10.3390/electronics12183980 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183980
https://doi.org/10.3390/electronics12183980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7713-7238
https://orcid.org/0000-0002-4150-9052
https://orcid.org/0000-0001-7621-0627
https://orcid.org/0000-0003-2307-8639
https://doi.org/10.3390/electronics12183980
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183980?type=check_update&version=1

Electronics 2023, 12, 3980 2 of 19

determine the travel direction of highways or road network lanes that flow in parallel and
associate the predicted information within the scope of cartography production and updat-
ing to facilitate autonomous vehicle navigation. In this regard, the predicted information is
associated with the geometries of the road axes alongside other types of details such as the
number of lanes and speed limits.

Specifically, in the proposed method, convolutional neural network (CNN) archi-
tectures that were adapted for regression tasks were trained to automatically detect the
orientation and direction of straight arrow signs on roadway pavement, using aerial
high-resolution imagery. This approach enabled us to overcome the limitations of tra-
ditional manual inspection methods and provide a more efficient and accurate way of
analysing these traffic signals. To do so, several popular CNNs (VGGNet [1], ResNet-50 [2],
Xception [3], and DenseNet [4]) were adapted for regression tasks and trained with state-of-
the-art techniques. This investigation was experimental and used a quantitative approach,
where we raised a delimited and concrete study problem and processed data collected
by applying standard processing techniques for training artificial neural networks. In
the experimental design, four CNN models that have proven their effectiveness in image
recognition were considered, together with an ad hoc model that was specifically designed
for the task of arrow orientation recognition with the computational efficiency component
in mind (being better suited for real-time applications). Afterwards, quantitative analyses
and a comparison of the performance achieved in the experimental results were conducted
to identify the most suitable model that can serve as a basis for a future improvement in
the performance metrics or be introduced in a road extraction workflow.

The main contributions of this work are summarised as follows.

1. A deep learning-based methodology was developed that can accurately analyse
straight arrow signs on road pavement using orthophotography and predict their
orientation. The proposed approach was based on the adaptation of convolutional
neural networks for regression tasks and was evaluated and implemented on popular
deep learning image recognition models, where it achieved a maximum mean R2

score of 0.993 on the training set and a maximum R2 score of 0.896 on the test set.
2. A benchmark dataset (RoadArrowORIEN) was developed for predicting the orienta-

tion angle of road directional arrows, and the method applied to create it is described.
The dataset can be used for training and evaluating the performance of future model
implementations; it is hosted by the Zenodo repository [5] and can be downloaded
under a CC-BY 4.0 licence.

3. A new artificial neural network architecture was designed to improve the performance
and efficiency in the task of predicting the orientation of arrow signs found on road
pavement that was specifically constructed for faster prediction times. The model
achieved a mean R2 score of 0.987 on the training set and a maximum R2 score of
0.862 on the test set.

The remainder of this article is organised as follows. In Section 2, similar studies found
in the relevant literature are discussed. Section 3 presents the proposed deep learning
method. Section 4 describes the experimental design and the additional algorithmic imple-
mentations considered in this study. In Section 5, the discussion of the obtained results can
be found. Lastly, Section 6 draws the conclusions of this study and mentions future lines
of work.

2. Related Work

During the last decade, there have been significant advances in the DL field, mainly
caused by the progress made in computer vision techniques—the introduced methods have
impacted and affected most areas of science. In the research field related to the analysis
of road pavement markings and signs, several studies have explored the use of machine
learning algorithms for the identification of various road markings, such as stop lines,
pedestrian crossings, and lane markings [6–8]. These studies have shown promising results
in terms of accurate detection and classification of these markings.

Electronics 2023, 12, 3980 3 of 19

Orthophotography was used in several studies focused on the detection of lane mark-
ings on roads. For example, Soilan et al. [9] use ortho-imagery to identify arrow signs
that were manually segmented as ground truth for an application system using mobile
laser scanning (MLS). Ansarnia et al. [10] use orthophotography from vertically installed
cameras for pedestrian and vehicle detection, and their approach involves the use of DL for
different tasks including image classification (where the YOLO algorithm [11] was used).
Both papers discuss the potential for DL-based approaches to accurately detect the position
of elements on the road transport network. In addition, Pritt et al. [12] use satellite or-
thophotography and DL techniques for the identification of traffic objects, thus overcoming
the existing limitations of traditional object detection and classification. Specifically, this
approach made use of an ensemble of deep CNNs for object recognition in high-resolution,
multispectral satellite images.

As Malik and Siddiqi [13] also indicate (who propose a feature point detection and
description algorithm with scale invariance and rotation invariance algorithm called BRISK),
existing approaches for traffic signal extraction (in particular, vertical signals) apply more
classical techniques, such as the scale-invariant feature transform (SIFT) algorithm [14],
to detect and describe local features in digital images, and the Speeded-Up Robust Features
(SURF) [15] computer vision algorithm, to obtain a visual representation of an image and
extract detailed and content-specific information.

Li et al. [16] detect traffic signals over real-time video with YOLO-V4-tiny and YOLO-
MobileNet networks, while Zhou et al. [17] use an improved version of VGG (IVGG) to
detect traffic signals in Germany. Other works identified in the survey carried out by
Sanyal et al. [18] (where different databases are used to test the algorithms for traffic signs
in real-time video) apply different classifiers such as support vector machine [19], Gaussian,
multilayer perceptrons, and convolutional neural networks that feature max pooling and
fully connected layers.

In the field of object orientation detection, works that extend beyond the last decade
can be found. Rybski et al. [20] determine the global orientation of vehicle trajectories
from images by training an ensemble of histogram of oriented gradient (HOG) classifiers
and counting instances of gradient orientation in localised parts of an image. Asad and
Slabaugh [21] use random forest [22] to detect angles in hand positions registered with
images, while Sun et al. [23] propose the BiFA-YOLO model as a bidirectional feature
fusion and angular classification architecture based on YOLO to detect ship orientation on
high-resolution synthetic aperture radar (SAR) images.

Shi et al. [24] propose an object detection method for remote sensing images that is
based on angle classification and uses rotation detection bounding boxes labelled with
angle information. Specifically, they incorporate the neural architecture search framework
with a feature pyramid network module (NAS-FPN) in a dense detector (RetinaNet) and
use a binary encoding method in angle classification. Zhao et al. [25] propose a modification
of the YoloV5 framework to detect the orientation of the bounding boxes of objects and
apply it in the field of electrical insulators on electricity transmission towers.

In a more recent study, Yang and Yan [26] propose the transformation of the regression
problem into a circular classification problem (CSL), for which they develop an object
heading detection module that can be useful when exact heading orientation information
is needed (e.g., for detecting the orientation of ships and aeroplanes). Also, Wang et al. [27]
evidence that using CSL does not work well because of the type of loss function used
and propose the use of classification loss with adaptive Gaussian attenuation on the
negative locations to solve the problem of negative angles and achieve better accuracies in
angle estimation.

Finally, Zhao et al. [28] propose a robust orientation detector (OrtDet) to solve the object
angle problem, since convolutional neural networks do not explicitly model orientation
variation. For this purpose, the authors use the token concatenation layer (TCL) strategy,
which generates a pyramidal hierarchy of features to address different scales of objects and
define the mean rotational precision (mRP) as a performance metric.

Electronics 2023, 12, 3980 4 of 19

The mentioned studies demonstrate the potential for DL approaches in the analysis of
road markings and road signs, but they tend to focus on the identification of individual
elements in very favourable remote sensing scenes. Therefore, the closest identified studies
(described in this section) generally use YOLO-based networks to identify the orientation
of the enveloping rectangle of the objects (and allow the recovery of the object), but not the
arrow direction. This also implies that these systems are not capable of differentiating the
direction of arrows found in parallel highway lanes oriented in opposite directions.

It is important to note that no methodological proposal was found in the literature
to identify the orientation of a traffic direction arrow in roadways and no studies that
analyse the angle of arrow signs on road pavement were identified (although this source
of information is important for the identification, construction, and updating maps of
the road transport network and road intelligence systems). For these reasons, this study
presents a novel approach for the analysis of directional arrow signs on road pavement
using orthophotography and DL techniques.

3. Method Proposal

The process can be divided into two phases: the dataset generation step and the
comparative study of methods for the model selection step.

The first part of the process is described in Sections 3.1 and 4.1 and concerns the
creation of a custom dataset for the considered task (the detection of arrow orientation in
orthophotos). To obtain the data, a fine-tuned YOLOv5 algorithm (introduced by Redmon
et al. [11] and modified by Jocher et al. [29]) is first used to detect and extract arrows from
the original orthoimages. Afterwards, for each arrow, the rotation angle is identified with
the process explained in Section 3.1. However, it was observed that the arrow recognition
and orientation processes may produce inaccuracies that can be categorised into two
types: (1) arrows with correct angles but opposite directions (rotated by 180 degrees) and
(2) arrows that are undetectable due to potential shortcoming of the YOLO process. For the
first type of error, manual corrections are applied to adjust the rotation angle, while for the
second type of error, the indetectable arrows are removed from the dataset.

The second part of the process begins with the proposal of a learning structure that
enables convolutional neural networks to be used in regression tasks (where the goal is the
prediction of continuous values instead of class probabilities—as described in Section 3.2).
Afterwards, the generated arrow signs dataset is used to train a range of popular CNN
models that were modified with the proposed adaptation for regression tasks, along with an
ad hoc model (described in Sections 3.2 and 4.2). For training, a cross-validation approach is
applied by creating ten random partitions of the dataset. Each combination of partition and
model architecture is trained independently, and the performance metrics are calculated
for each partition and recorded for further analysis (as described in Sections 3.3 and 4.3).

To provide a robust assessment of model performance, a statistical analysis is per-
formed using the bootstrap method. This enables the calculation of mean and confidence
intervals for each metric, providing a comprehensive view of the model’s performance.
Finally, a comparative study on the performance of the considered models is carried out
to identify and select the most suitable one for the task. The process described above is
presented in Figure 1.

Electronics 2023, 12, 3980 5 of 19
Electronics 2023, 12, x FOR PEER REVIEW 5 of 20

Figure 1. Process diagram showing the workflow applied in this study that includes the generation
of an arrow dataset from orthophotography and the evaluation method to determine the final se-
lected model.

3.1. Data Generation Procedure: Traffic Lane Arrow Direction and Heading Detection
The procedure for inferring the angles is based on arrow data labelled at the pixel

level and includes an algorithm created to obtain the coordinates of the vertices of the
polygon and perform a clustering of the points into two groups based on proximity. Dur-
ing labelling, each arrow was represented as a polygon and features two points at the
origin and five points in the part that marks the orientation.

In the first part of the procedure, these points were processed to perform a clustering
operation based on the distance between points, in such a way that from these, two clus-
ters, ݈ܥଵ and ݈ܥଶ, that contain two and five points, respectively, were generated. The re-
sult of applying the clustering was two classes of points, one with more points (the part
of the arrow) and another with only two points (the centroids of the clusters). Afterwards,
the centroid of both clusters was calculated using the K-means algorithm [30], allowing
for two labelled centroid points, where one was the origin of the vector while the other
was the end. The orientation angle was calculated as the azimuth between ݈ܥଵ (the arrow
origin) and ݈ܥଶ (the arrow end). The azimuth of the vector formed between the origin
and the tip, i.e., the angle with respect to the Y-axis, was calculated and afterwards used
to label the images. Finally, a sub-image centred on the arrow was extracted from the tile
to work with images that only contain one arrow while maintaining the angle label.

The procedure applied for generating the dataset is presented in Figure 2 and de-
scribed as follows.
1. From the input consisting of RGB (red, green, blue) orthoimages, manually labelled

with arrow sign information, create a JSON (JavaScript Object Notation) file
containing the arrow polygon using the capabilities of software specialised in image
tagging.

2. Extract the vertices of the generated arrow-shaped polygon.

Figure 1. Process diagram showing the workflow applied in this study that includes the generation
of an arrow dataset from orthophotography and the evaluation method to determine the final
selected model.

3.1. Data Generation Procedure: Traffic Lane Arrow Direction and Heading Detection

The procedure for inferring the angles is based on arrow data labelled at the pixel
level and includes an algorithm created to obtain the coordinates of the vertices of the
polygon and perform a clustering of the points into two groups based on proximity. During
labelling, each arrow was represented as a polygon and features two points at the origin
and five points in the part that marks the orientation.

In the first part of the procedure, these points were processed to perform a clustering
operation based on the distance between points, in such a way that from these, two clusters,
Cl1 and Cl2, that contain two and five points, respectively, were generated. The result of
applying the clustering was two classes of points, one with more points (the part of the
arrow) and another with only two points (the centroids of the clusters). Afterwards, the
centroid of both clusters was calculated using the K-means algorithm [30], allowing for
two labelled centroid points, where one was the origin of the vector while the other was the
end. The orientation angle was calculated as the azimuth between Cl1 (the arrow origin)
and Cl2 (the arrow end). The azimuth of the vector formed between the origin and the tip,
i.e., the angle with respect to the Y-axis, was calculated and afterwards used to label the
images. Finally, a sub-image centred on the arrow was extracted from the tile to work with
images that only contain one arrow while maintaining the angle label.

The procedure applied for generating the dataset is presented in Figure 2 and described
as follows.

1. From the input consisting of RGB (red, green, blue) orthoimages, manually labelled
with arrow sign information, create a JSON (JavaScript Object Notation) file containing
the arrow polygon using the capabilities of software specialised in image tagging.

2. Extract the vertices of the generated arrow-shaped polygon.
3. Generate two clusters of nearby vertices, with a minimum cluster size of two ver-

tices, so the origin cluster (Cl1, containing fewer vertices) and the arrow cluster (Cl2,
containing five vertices) are identified.

Electronics 2023, 12, 3980 6 of 19

4. For the two generated clusters, obtain their centroid (Ce1 and Ce2, respectively),
preserving the information on the number of vertices that define the cluster.

5. Afterwards, generate the vector with origin in Ce1 (of the cluster with fewer vertices)
and with the end in the Ce2 centroid (of the cluster with the higher number of vertices).

6. Next, calculate the azimuth of this vector with respect to the ordinate axis. For
the output, automatically crop the orthoimage with a constant size (for example,
64 × 64 pixels) by taking an extension slightly larger than the area occupied by the
arrow in the scene.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 20

3. Generate two clusters of nearby vertices, with a minimum cluster size of two vertices,
so the origin cluster (݈ܥଵ , containing fewer vertices) and the arrow cluster (݈ܥଶ ,
containing five vertices) are identified.

4. For the two generated clusters, obtain their centroid (݁ܥଵ and ݁ܥଶ , respectively),
preserving the information on the number of vertices that define the cluster.

5. Afterwards, generate the vector with origin in ݁ܥଵ (of the cluster with fewer
vertices) and with the end in the ݁ܥଶ centroid (of the cluster with the higher number
of vertices).

6. Next, calculate the azimuth of this vector with respect to the ordinate axis. For the
output, automatically crop the orthoimage with a constant size (for example, 64 × 64
pixels) by taking an extension slightly larger than the area occupied by the arrow in
the scene.

Figure 2. Proposed procedure for generating the dataset containing arrow signs found on pavement
and their corresponding orientation label.

3.2. Proposed CNN Adaptation for Regression Tasks and Ad Hoc Model Architecture
As stated in the Introduction, and described in Section 3, this work aims at imple-

menting a deep learning-based approach to predict the orientation of straight arrows on
marked road pavement.

At its core, a CNN is formed by a feature learning part (or convolutional base), where
convolutional and pooling layers are used to learn and extract characteristics from the
available data that enable correct predictions. Afterwards, the classifier part (generally
formed by fully connected, or FC, layers) is found, where the filters containing the repre-
sentations learned are used for class prediction. It is important to mention that the classi-
fier part of convolutional neural networks features fully connected layers with thousands
of units and is generally prepared for image recognition challenges on large datasets (for
example, many of the popular CNNs were developed to participate in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [31], where the proposal of better learning

Figure 2. Proposed procedure for generating the dataset containing arrow signs found on pavement
and their corresponding orientation label.

3.2. Proposed CNN Adaptation for Regression Tasks and Ad Hoc Model Architecture

As stated in the Introduction, and described in Section 3, this work aims at implement-
ing a deep learning-based approach to predict the orientation of straight arrows on marked
road pavement.

At its core, a CNN is formed by a feature learning part (or convolutional base), where
convolutional and pooling layers are used to learn and extract characteristics from the avail-
able data that enable correct predictions. Afterwards, the classifier part (generally formed
by fully connected, or FC, layers) is found, where the filters containing the representations
learned are used for class prediction. It is important to mention that the classifier part of
convolutional neural networks features fully connected layers with thousands of units and
is generally prepared for image recognition challenges on large datasets (for example, many
of the popular CNNs were developed to participate in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [31], where the proposal of better learning structures was
incentivised to better predict the 1000 classes featured in the ImageNet dataset that contains
more than 1.2 million images).

The adaptation of CNNs for the regression task (presented in Figure 3) involves
removing the classifier part of a CNN architecture and replacing it with a flatten layer and
four different dense layers with 512, 64, 32, and 1 unit, respectively. It is important to note

Electronics 2023, 12, 3980 7 of 19

that the final layer features a sigmoid activation function to make it suitable for regression
problems. In addition, to strongly reduce the overfitting behaviour, the regression structure
also features a dropout layer between the flatten and FC layers, with a rate of 0.5 (to
randomly set 50% of the units to zero in each training iteration). This distribution of layers
represents the inference block of the orientation angle and enables the CNN architectures,
originally designed for image classification tasks, to be used in regression tasks (i.e., in this
study, the target value is the angle in degrees relative to the azimuth). This architecture
pivot enables the CNNs, initially architected for image classification, to be repurposed for
regression problems.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 20

structures was incentivised to better predict the 1000 classes featured in the ImageNet
dataset that contains more than 1.2 million images).

The adaptation of CNNs for the regression task (presented in Figure 3) involves re-
moving the classifier part of a CNN architecture and replacing it with a flatten layer and
four different dense layers with 512, 64, 32, and 1 unit, respectively. It is important to note
that the final layer features a sigmoid activation function to make it suitable for regression
problems. In addition, to strongly reduce the overfitting behaviour, the regression struc-
ture also features a dropout layer between the flatten and FC layers, with a rate of 0.5 (to
randomly set 50% of the units to zero in each training iteration). This distribution of layers
represents the inference block of the orientation angle and enables the CNN architectures,
originally designed for image classification tasks, to be used in regression tasks (i.e., in
this study, the target value is the angle in degrees relative to the azimuth). This architec-
ture pivot enables the CNNs, initially architected for image classification, to be repur-
posed for regression problems.

Figure 3. The proposed ad hoc architecture is based on CNN learning structures together with the
proposed CNN adaptation for regression tasks.

Unlike expansive CNN architectures common in the literature, the ad hoc model
champions simplicity without sacrificing performance. The design intent was two-fold:
(a) efficiently predict arrow orientations and (b) ensure compatibility with real-time ap-
plications. The novel ad hoc architecture described in Figure 3 is designed to balance the
need for feature extraction with computational efficiency and is intended to be used in a
real-time application.

The ad hoc model can be seen as a CNN-based architecture with a simpler disposition
of layers when compared with popular models existent in the literature (as described in
Section 4.2). The architecture consists of four convolutional blocks featuring a kernel size
of 3 × 3 with ReLU [32] activation (chosen for its computational efficiency and adeptness
at introducing non-linearity, which is used after each convolution) to process the 64 × 64
× 3 RGB image tensor. The four distinct blocks act as the backbone of this model and pro-
cess the input image tensor, extracting intricate patterns essential for the regression task.
Each convolutional block ends with a max pooling layer over a 2 × 2 window, ensuring a
dimensionality reduction without information loss. Starting with the second convolu-
tional block, the ad hoc model features normalisation layers to standardise the input val-
ues across the learned features within the same range to ensure more stable training and
a maintain consistent data distribution across learnt features.

In the convolutional blocks, the ad hoc model applied the escalating filter count strat-
egy, and the number of filters per convolution increases (from 64 to 128, 256, and 512)
across blocks to ensure an optimal balance between basic and advanced feature extraction.
The progression of these blocks—from basic to advanced feature extraction—is deliberate,
mirroring the complexity of the features they are designed to capture.

Figure 3. The proposed ad hoc architecture is based on CNN learning structures together with the
proposed CNN adaptation for regression tasks.

Unlike expansive CNN architectures common in the literature, the ad hoc model
champions simplicity without sacrificing performance. The design intent was two-fold:
(a) efficiently predict arrow orientations and (b) ensure compatibility with real-time ap-
plications. The novel ad hoc architecture described in Figure 3 is designed to balance the
need for feature extraction with computational efficiency and is intended to be used in a
real-time application.

The ad hoc model can be seen as a CNN-based architecture with a simpler disposition
of layers when compared with popular models existent in the literature (as described
in Section 4.2). The architecture consists of four convolutional blocks featuring a ker-
nel size of 3 × 3 with ReLU [32] activation (chosen for its computational efficiency and
adeptness at introducing non-linearity, which is used after each convolution) to process
the 64 × 64 × 3 RGB image tensor. The four distinct blocks act as the backbone of this
model and process the input image tensor, extracting intricate patterns essential for the
regression task. Each convolutional block ends with a max pooling layer over a 2 × 2
window, ensuring a dimensionality reduction without information loss. Starting with the
second convolutional block, the ad hoc model features normalisation layers to standardise
the input values across the learned features within the same range to ensure more stable
training and a maintain consistent data distribution across learnt features.

In the convolutional blocks, the ad hoc model applied the escalating filter count
strategy, and the number of filters per convolution increases (from 64 to 128, 256, and 512)
across blocks to ensure an optimal balance between basic and advanced feature extraction.
The progression of these blocks—from basic to advanced feature extraction—is deliberate,
mirroring the complexity of the features they are designed to capture.

Regarding efficiency and efficacy, the ad hoc architecture is fine-tuned for both feature
extraction prowess and computational agility. A testament to its streamlined design, the
model boasts a mere 2,673,729 parameters—a stark contrast to traditionally bulky CNNs,
yet without a compromise in performance.

Electronics 2023, 12, 3980 8 of 19

3.3. Considerations Regarding the Training Procedure

To reliably estimate the error achieved using each model, the training is repeated
N times (in our case, N = 10) with different random partitions in the train/ test data.
This way, N estimates of the metrics (mean squared error, R2, etc.) are obtained, and the
bootstrap technique [33] is applied afterwards to determine a confidence interval for each
metric, without having to assume a normal distribution.

Once the N estimates for the metric of interest are obtained, the statistical estimator
(e.g., the mean) is calculated at a 95% confidence interval. Here, the bootstrap procedure is
applied, which roughly resamples the results obtained M times (in our case, M = 10, 000)
and calculates the estimator for each resampling. By sorting and eliminating the 2.5% of
the values (in our case, 250) at each tail of the sorted list, the confidence interval for the
estimator is obtained. Figure 4 shows the distribution of bootstrapped R2 values for one of
the trained models (a modified VGG19 network).

Electronics 2023, 12, x FOR PEER REVIEW 8 of 20

Regarding efficiency and efficacy, the ad hoc architecture is fine-tuned for both fea-
ture extraction prowess and computational agility. A testament to its streamlined design,
the model boasts a mere 2,673,729 parameters—a stark contrast to traditionally bulky
CNNs, yet without a compromise in performance.

3.3. Considerations Regarding the Training Procedure
To reliably estimate the error achieved using each model, the training is repeated ܰ

times (in our case, ܰ = 10) with different random partitions in the train/ test data. This
way, ܰ estimates of the metrics (mean squared error, R2, etc.) are obtained, and the boot-
strap technique [33] is applied afterwards to determine a confidence interval for each met-
ric, without having to assume a normal distribution.

Once the ܰ estimates for the metric of interest are obtained, the statistical estimator
(e.g., the mean) is calculated at a 95% confidence interval. Here, the bootstrap procedure
is applied, which roughly resamples the results obtained ܯ times (in our case, ܯ =
10,000) and calculates the estimator for each resampling. By sorting and eliminating the
2.5% of the values (in our case, 250) at each tail of the sorted list, the confidence interval
for the estimator is obtained. Figure 4 shows the distribution of bootstrapped R2 values
for one of the trained models (a modified VGG19 network).

Figure 4. Example showing the distribution of bootstrapped R2 values for one of the neural networks
trained in this study (the modified VGG19 model).

Another important training aspect is that, although the data augmentation technique
was proven to increase the generalisation capability of the models when the size of the
training set is reduced (features less than 10,000 samples), it is fundamental not to apply
data augmentation in the form of random height or width shifts, vertical and horizontal
shifts, or random rotations to the image tensor in similar studies. Nonetheless, data aug-
mentation parameters such as changes in brightness and contrast or shifts in gamma and
channel intensities could help in exposing the model to more aspects of the data (if small
parameter values are selected). In addition, the use of transfer learning for the convolu-
tional base of the considered CNN networks is recommended to take advantage of their
learned feature extraction capabilities.

Figure 4. Example showing the distribution of bootstrapped R2 values for one of the neural networks
trained in this study (the modified VGG19 model).

Another important training aspect is that, although the data augmentation technique
was proven to increase the generalisation capability of the models when the size of the
training set is reduced (features less than 10,000 samples), it is fundamental not to apply
data augmentation in the form of random height or width shifts, vertical and horizontal
shifts, or random rotations to the image tensor in similar studies. Nonetheless, data
augmentation parameters such as changes in brightness and contrast or shifts in gamma
and channel intensities could help in exposing the model to more aspects of the data
(if small parameter values are selected). In addition, the use of transfer learning for the
convolutional base of the considered CNN networks is recommended to take advantage of
their learned feature extraction capabilities.

4. Implementation of the Proposed Method

In this section, the implementation of the method proposed is presented. First, the
dataset is generated by applying the process presented in Section 3.1. Afterwards, the
popular convolutional neural networks considered in this study (for comparison with the
ad hoc model) are described, and the experimental design is presented.

Electronics 2023, 12, 3980 9 of 19

4.1. Data

The dataset used for training and testing the algorithmic implementations includes
6700 images containing arrow signals found on road pavement. The data were obtained
by analysing satellite orthophotos produced by the Geographical National Institute of
Spain (National Plan of Aerial Orthophotography, or PNOA product [34]) using a YOLOv5
algorithm that was fine-tuned for the task of road arrow symbol recognition.

PNOA provides digital aerial orthophotographs of the entire Spanish territory at a spa-
tial resolution of 25 cm. The images are obtained every two to four years and are typically
acquired during the summer when lighting conditions are consistent. The orthophotos used
were previously radiometrically balanced and homogenised and have corrections applied
to minimise the topographic and atmospheric effects. The images also feature geometric
corrections aimed at eliminating distortions caused by the geometry of the sensors.

Each input in the dataset consists of an aerial image of the road pavement that contains
a directional arrow. The arrow images were initially labelled as polygon-shaped arrows
using LabelMe [35]. During the labelling and revision process, the quality of each arrow
was checked and, if required, specific actions were taken, such as deletion of the sample
if no arrow existed in the image or the direction of the arrow was unclear as well as the
rotation of the arrow angle 180 degrees if the labelled angle corresponded to the opposite
direction. The resulting dataset contains 6701 images of 64 × 64 pixels (examples can be
found in Figure 5), together with their corresponding azimuth as the label (orientation
angle in sexagesimal degrees).

Electronics 2023, 12, x FOR PEER REVIEW 10 of 20

Figure 5. Examples of tiles belonging to the RoadArrowORIEN dataset (used for training and testing
the artificial neural networks), together with their corresponding angular value.

The expected output for each input image was the rotation angle of the arrow, and
the manual review process described above was essential to ensure the accuracy and con-
sistency of the dataset. This dataset is expected to provide a significant benchmark for
evaluating the performance of the different models developed for the orientation recog-
nition of road directional arrows.

4.2. Popular Convolutional Neural Network Architectures Considered
The base networks selected for this study are convolutional neural networks, as other

types of networks are not as suitable for extracting features as intended (for example, the
YOLO model extracts the rotated rectangle that best fits the object [36]).

In addition to the ad hoc architecture described in Section 3.2, we opted for imple-
menting several other architectures from the area of image recognition, namely, VGGNet
[1] (VGG16 and VGG19 variants), ResNet-50 [2], and Xception [3], proposed for its com-
putational efficiency. In this regard, VGGNet-based variants have demonstrated their ef-
ficiency in image recognition tasks and are widely used in the specialised literature,
whereas Xception and ResNet-50 feature a more complex structure that enables a better
extraction of complex features from images. It is important to mention that, for training,
all the additional neural networks presented in this section were adapted for the regres-
sion task, following the CNN adaptation for the regression task proposal from Section 3.2.

Figure 5. Examples of tiles belonging to the RoadArrowORIEN dataset (used for training and testing
the artificial neural networks), together with their corresponding angular value.

Electronics 2023, 12, 3980 10 of 19

The expected output for each input image was the rotation angle of the arrow, and
the manual review process described above was essential to ensure the accuracy and
consistency of the dataset. This dataset is expected to provide a significant benchmark
for evaluating the performance of the different models developed for the orientation
recognition of road directional arrows.

4.2. Popular Convolutional Neural Network Architectures Considered

The base networks selected for this study are convolutional neural networks, as other
types of networks are not as suitable for extracting features as intended (for example, the
YOLO model extracts the rotated rectangle that best fits the object [36]).

In addition to the ad hoc architecture described in Section 3.2, we opted for implement-
ing several other architectures from the area of image recognition, namely, VGGNet [1]
(VGG16 and VGG19 variants), ResNet-50 [2], and Xception [3], proposed for its computa-
tional efficiency. In this regard, VGGNet-based variants have demonstrated their efficiency
in image recognition tasks and are widely used in the specialised literature, whereas Xcep-
tion and ResNet-50 feature a more complex structure that enables a better extraction of
complex features from images. It is important to mention that, for training, all the ad-
ditional neural networks presented in this section were adapted for the regression task,
following the CNN adaptation for the regression task proposal from Section 3.2.

4.2.1. VGGNet

The VGG16 and VGG19 variants of VGGNet [1], illustrated in Figure 6, are well-
known, popular CNN models for image classification. The feature learning part of both
networks consists of several convolutional layers containing 3 × 3 convolutional filters
with stride and padding of size one, followed by max-pooling layers with stride of size
two (for the feature learning part). The main difference between the two architectures is
the number of layers, VGG19 features 19 layers in the feature learning part, three more
than VGG16.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 20

4.2.1. VGGNet
The VGG16 and VGG19 variants of VGGNet [1], illustrated in Figure 6, are well-

known, popular CNN models for image classification. The feature learning part of both
networks consists of several convolutional layers containing 3 × 3 convolutional filters
with stride and padding of size one, followed by max-pooling layers with stride of size
two (for the feature learning part). The main difference between the two architectures is
the number of layers, VGG19 features 19 layers in the feature learning part, three more
than VGG16.

Figure 6. Illustration showing the VGG-16 and VGG-19 architectures. Note: VGG-16 is equivalent
to VGG-19 but without the “CONV_3-4”, “CONV_4-4”, and “CONV_5-4” layers. Note: for training,
the classifier part (the last three FC layers) was replaced with the inference block of the orientation
angle proposed in Section 3.2.

In the classifier part, at the end of VGGNet (and its VGG16 and VGG19 variants), two
fully connected (FC) layers with 4096 units, together with a final FC layer containing 1000
neurons, can be found (corresponding to the number of classes in the ImageNet dataset
[31]).

4.2.2. ResNet-50
ResNet-50 (shown in Figure 7) is a residual neural network that was introduced by

He et al. [2] in 2016. The main idea behind ResNet-50 is the use of residual blocks, which
allow for the training of very deep neural networks by addressing the problem of vanish-
ing gradients. This is achieved by adding skip connections that bypass one or more layers
and allow the gradient to be propagated more easily through the network.

Figure 7. The ResNet-50 architecture consists of 50 layers, including convolutional layers, pooling
layers, residual blocks, and a global average pooling layer. Note: for training, the last FC layer was
replaced with the inference block of the orientation angle proposed in Section 3.2.

4.2.3. Xception
Xception (presented in Figure 8) was introduced in 2015 by Francois Chollet [3] and

is a variant of the Inception [37] model based on separable depth-wise convolutions,
which achieves a significant reduction in computational cost while maintaining the accu-
racy of the model. Different from VGGNet, ResNet-50 (presented in Section 4.2.2.) and
Xception feature a single FC layer with 1000 units (the number of output classes of the
ImageNet challenge [31]).

Figure 6. Illustration showing the VGG-16 and VGG-19 architectures. Note: VGG-16 is equivalent to
VGG-19 but without the “CONV_3-4”, “CONV_4-4”, and “CONV_5-4” layers. Note: for training, the
classifier part (the last three FC layers) was replaced with the inference block of the orientation angle
proposed in Section 3.2.

In the classifier part, at the end of VGGNet (and its VGG16 and VGG19 variants),
two fully connected (FC) layers with 4096 units, together with a final FC layer containing
1000 neurons, can be found (corresponding to the number of classes in the ImageNet
dataset [31]).

4.2.2. ResNet-50

ResNet-50 (shown in Figure 7) is a residual neural network that was introduced by
He et al. [2] in 2016. The main idea behind ResNet-50 is the use of residual blocks, which
allow for the training of very deep neural networks by addressing the problem of vanishing
gradients. This is achieved by adding skip connections that bypass one or more layers and
allow the gradient to be propagated more easily through the network.

Electronics 2023, 12, 3980 11 of 19

Electronics 2023, 12, x FOR PEER REVIEW 11 of 20

4.2.1. VGGNet
The VGG16 and VGG19 variants of VGGNet [1], illustrated in Figure 6, are well-

known, popular CNN models for image classification. The feature learning part of both
networks consists of several convolutional layers containing 3 × 3 convolutional filters
with stride and padding of size one, followed by max-pooling layers with stride of size
two (for the feature learning part). The main difference between the two architectures is
the number of layers, VGG19 features 19 layers in the feature learning part, three more
than VGG16.

Figure 6. Illustration showing the VGG-16 and VGG-19 architectures. Note: VGG-16 is equivalent
to VGG-19 but without the “CONV_3-4”, “CONV_4-4”, and “CONV_5-4” layers. Note: for training,
the classifier part (the last three FC layers) was replaced with the inference block of the orientation
angle proposed in Section 3.2.

In the classifier part, at the end of VGGNet (and its VGG16 and VGG19 variants), two
fully connected (FC) layers with 4096 units, together with a final FC layer containing 1000
neurons, can be found (corresponding to the number of classes in the ImageNet dataset
[31]).

4.2.2. ResNet-50
ResNet-50 (shown in Figure 7) is a residual neural network that was introduced by

He et al. [2] in 2016. The main idea behind ResNet-50 is the use of residual blocks, which
allow for the training of very deep neural networks by addressing the problem of vanish-
ing gradients. This is achieved by adding skip connections that bypass one or more layers
and allow the gradient to be propagated more easily through the network.

Figure 7. The ResNet-50 architecture consists of 50 layers, including convolutional layers, pooling
layers, residual blocks, and a global average pooling layer. Note: for training, the last FC layer was
replaced with the inference block of the orientation angle proposed in Section 3.2.

4.2.3. Xception
Xception (presented in Figure 8) was introduced in 2015 by Francois Chollet [3] and

is a variant of the Inception [37] model based on separable depth-wise convolutions,
which achieves a significant reduction in computational cost while maintaining the accu-
racy of the model. Different from VGGNet, ResNet-50 (presented in Section 4.2.2.) and
Xception feature a single FC layer with 1000 units (the number of output classes of the
ImageNet challenge [31]).

Figure 7. The ResNet-50 architecture consists of 50 layers, including convolutional layers, pooling
layers, residual blocks, and a global average pooling layer. Note: for training, the last FC layer was
replaced with the inference block of the orientation angle proposed in Section 3.2.

4.2.3. Xception

Xception (presented in Figure 8) was introduced in 2015 by Francois Chollet [3] and is
a variant of the Inception [37] model based on separable depth-wise convolutions, which
achieves a significant reduction in computational cost while maintaining the accuracy of
the model. Different from VGGNet, ResNet-50 (presented in Section 4.2.2) and Xception
feature a single FC layer with 1000 units (the number of output classes of the ImageNet
challenge [31]).

Electronics 2023, 12, x FOR PEER REVIEW 12 of 20

Figure 8. The Xception architecture consists of a series of convolutional and depth-wise separable
convolutional layers, with skip connections, batch normalisation, and global average pooling. Note:
for training, the last FC layer was replaced with the inference block of the orientation angle proposed
in Section 3.2.

4.2.4. DenseNet
DenseNet (presented in Figure 9) was introduced in 2016 by Huang et al. [4] and

presents a paradigm shift in the construction of CNNs. Unlike the sequential arrangement
of layers found in architectures such as VGGNet, ResNet-50, and Xception (elaborated in
Sections 4.2.1–4.2.3), DenseNet exhibits a dense connectivity feature, where each layer in
a DenseNet block receives inputs from all preceding layers and passes on its own feature-
maps to all subsequent layers. These dense connectivity patterns promote feature reuse
and significantly reduce the computational burden while maintaining or even enhancing
the accuracy of the model. DenseNet can be viewed as a CNN that densely connects layers
featuring the same size of feature maps through the dense block structure to enable the
input of additional information from previous layers while passing the learned feature
maps to subsequent layers found within the same dense block. Similar to its counterparts,
DenseNet features a single FC layer with 1000 units, corresponding to the number of out-
put classes in the ImageNet challenge.

Figure 9. A schematic representation showing the DenseNet architecture, illustrating the infor-
mation flow through the densely connected layers (based on [4]). Between the three dense blocks,
two adjacent blocks are referred to as transition layers, which change feature-map sizes via convo-
lutional and pooling layers. Note: For training, the classifier part was replaced with the inference
block of the orientation angle proposed in Section 3.2.

4.3. Training Experiments
The considered ANN architectures were trained using the dataset described in Sec-

tion 4.1. The experiments were carried out using a MacBook Pro M1 Max with a 12-core
CPU (central processing unit), a 38-core GPU (graphics processing unit) with a 16-core

Figure 8. The Xception architecture consists of a series of convolutional and depth-wise separable
convolutional layers, with skip connections, batch normalisation, and global average pooling. Note:
for training, the last FC layer was replaced with the inference block of the orientation angle proposed
in Section 3.2.

4.2.4. DenseNet

DenseNet (presented in Figure 9) was introduced in 2016 by Huang et al. [4] and
presents a paradigm shift in the construction of CNNs. Unlike the sequential arrangement
of layers found in architectures such as VGGNet, ResNet-50, and Xception (elaborated in
Sections 4.2.1–4.2.3), DenseNet exhibits a dense connectivity feature, where each layer in a
DenseNet block receives inputs from all preceding layers and passes on its own feature-
maps to all subsequent layers. These dense connectivity patterns promote feature reuse
and significantly reduce the computational burden while maintaining or even enhancing
the accuracy of the model. DenseNet can be viewed as a CNN that densely connects layers
featuring the same size of feature maps through the dense block structure to enable the
input of additional information from previous layers while passing the learned feature
maps to subsequent layers found within the same dense block. Similar to its counterparts,
DenseNet features a single FC layer with 1000 units, corresponding to the number of output
classes in the ImageNet challenge.

Electronics 2023, 12, 3980 12 of 19

Electronics 2023, 12, x FOR PEER REVIEW 12 of 20

Figure 8. The Xception architecture consists of a series of convolutional and depth-wise separable
convolutional layers, with skip connections, batch normalisation, and global average pooling. Note:
for training, the last FC layer was replaced with the inference block of the orientation angle proposed
in Section 3.2.

4.2.4. DenseNet
DenseNet (presented in Figure 9) was introduced in 2016 by Huang et al. [4] and

presents a paradigm shift in the construction of CNNs. Unlike the sequential arrangement
of layers found in architectures such as VGGNet, ResNet-50, and Xception (elaborated in
Sections 4.2.1–4.2.3), DenseNet exhibits a dense connectivity feature, where each layer in
a DenseNet block receives inputs from all preceding layers and passes on its own feature-
maps to all subsequent layers. These dense connectivity patterns promote feature reuse
and significantly reduce the computational burden while maintaining or even enhancing
the accuracy of the model. DenseNet can be viewed as a CNN that densely connects layers
featuring the same size of feature maps through the dense block structure to enable the
input of additional information from previous layers while passing the learned feature
maps to subsequent layers found within the same dense block. Similar to its counterparts,
DenseNet features a single FC layer with 1000 units, corresponding to the number of out-
put classes in the ImageNet challenge.

Figure 9. A schematic representation showing the DenseNet architecture, illustrating the infor-
mation flow through the densely connected layers (based on [4]). Between the three dense blocks,
two adjacent blocks are referred to as transition layers, which change feature-map sizes via convo-
lutional and pooling layers. Note: For training, the classifier part was replaced with the inference
block of the orientation angle proposed in Section 3.2.

4.3. Training Experiments
The considered ANN architectures were trained using the dataset described in Sec-

tion 4.1. The experiments were carried out using a MacBook Pro M1 Max with a 12-core
CPU (central processing unit), a 38-core GPU (graphics processing unit) with a 16-core

Figure 9. A schematic representation showing the DenseNet architecture, illustrating the information
flow through the densely connected layers (based on [4]). Between the three dense blocks, two
adjacent blocks are referred to as transition layers, which change feature-map sizes via convolutional
and pooling layers. Note: For training, the classifier part was replaced with the inference block of the
orientation angle proposed in Section 3.2.

4.3. Training Experiments

The considered ANN architectures were trained using the dataset described in
Section 4.1. The experiments were carried out using a MacBook Pro M1 Max with a
12-core CPU (central processing unit), a 38-core GPU (graphics processing unit) with a
16-core Neural Engine, 32 GB (gigabytes) of unified memory, and 1 TB (terabyte) of SSD
(solid-state drive) storage in TensorFlow [38], installed within a Python environment.

The dataset was randomly split into training and test sets by applying a 90:10%
division criterion. As explained in Section 3.3 (and illustrated in Figure 1), the random
division of the dataset for training and validation involved bootstrapping in the training
so that the division of the dataset and the training/validation were repeated ten times to
reduce the variance and avoid overfitting. This training approach, applied consistently to
all the considered models, involved optimising the mean squared error (MSE) loss function,
defined in Equation (1) (where each predicted value (ŷi) was subtracted from the actual
target value (yi), the differences were squared, the mean of the resulting error array was
the loss to be optimised), using Adam [39] with a learning rate of 0.0001 and a batch size
of 512.

MSE_loss =
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

The models based on popular CNNs, as described in Section 4.2, were trained with
transfer learning until convergence was achieved or until 50 epochs were completed. When
there was no improvement in the loss using the training dataset for the past ten epochs, it
was considered that the point of convergence was reached. The ad hoc model proposed
in Section 3.2 was trained for 500 epochs since it has the disadvantage of starting learning
from scratch.

5. Results and Discussion

To evaluate the effectiveness of the five trained models, a comprehensive set of evalua-
tion metrics was utilised, including the loss value, the R2 score (defined in Equation (2),
where SS represents the sum of squares, with SSres tending to a minimum, ŷi represents
the predicted y, and y is the average of the values, and n is the sample size), and the
mean angular error (defined as the sum of the angle errors divided by the total number
of samples).

R2 score = 1− SSres

SStotal
= 1− SUM(yi − ŷi)

2

SUM(yi − y)2 (2)

Electronics 2023, 12, 3980 13 of 19

Moreover, the consistency of the models in predicting the target variable was analysed
by investigating the standard deviation in the test R2 score of each model (defined in
Equation (3), where xi represents any R2 score value, x is the mean R2 score value, and n is
the total number of training sessions). The performance results obtained are presented in
Table 1.

σ =

√
∑ xi − x

n
(3)

Table 1. Mean performance results on the training and test sets using the five selected CNN architec-
tures trained for the arrow orientation prediction task.

Performance/
Model

Training Set Test Set
Number of
Parameters

Mean Training
Time (s/Epoch)

Mean
Inference
Time (s)Loss Angular

Error R2 Score Loss Angular
Error R2 Score Stdev. of the

R2 Score

Ad hoc 0.0011 2.5162 0.9874 0.0136 6.5801 0.8440 0.0325 2,673,729 1.63 2.59
ResNet-50 0.0014 3.2250 0.9807 0.0156 8.6915 0.8045 0.0706 24,671,745 6.85 4.31

VGG16 0.0001 1.3400 0.9984 0.0137 6.6425 0.8320 0.0452 15,012,289 7.40 11.97
VGG19 0.0006 2.1564 0.9926 0.0111 5.5975 0.8683 0.0419 20,321,985 8.56 14.89

Xception 0.0006 3.0064 0.9883 0.0173 9.9843 0.7928 0.0487 21,945,513 11.05 4.87
DenseNet-121 0.0016 8.3155 0.7760 0.0163 10.1833 0.7946 0.0456 8,223,915 7.65 3.08

The results show that the VGG16 and VGG19 variants of VGGNet achieved the best
performance, with mean angular errors of 1.34 and 2.16, on the training set, respectively, and
R2 scores of 0.87 and 0.83, on the test set, respectively. ResNet-50 and Xception performed
slightly worse, with mean angular errors of 3.23 and 3.01, respectively, and lower validation
R2 scores of 0.80 and 0.79, respectively. Meanwhile, DenseNet-121 exhibited a relatively
higher mean angular error of 10.18, with a test R2 score of 0.79, and a standard deviation of
the test R2 score of 0.05.

The proposed ad hoc model displayed a high generalisation capability in predicting
the target variable, achieving a mean angular error of 2.52 degrees on the training set and a
test R2 score of 0.84. These values are remarkable when considering the model’s increased
computational efficiency (the ad hoc model processed and predicted the available infor-
mation from 4.3 times to 6.2 times faster when compared with the other NN candidates).
This indicates its appropriateness for use in similar regression tasks. In addition, the ad hoc
model was the one with the most consistent performance, as its standard deviation of the
test R2 scores reached a minimum of 0.03. Nonetheless, the standard deviations of the test
R2 scores were relatively low across all models, reaching a value of 0.05 for DenseNet-121
and a maximum of 0.07 in the case of ResNet-50.

As for the proposed ad hoc model, its training process was up to 6.2 times faster
when compared with its well-established counterparts, which indicates an advantage in
applications where the real-time detection of arrow orientation is pursued. One possible
explanation is that it features fewer layers and parameters when compared with well-
established architectures. Moreover, during inference, it consistently performed between
1.2 and 5.7 times more rapidly. This advantage can be significant in real-world applications
where real-time detection of arrow orientation is necessary. Such scenarios might include
high-speed autonomous vehicles or robotics applications where rapid decision-making
is crucial. One possible reason for this speed advantage is that the ad hoc model has
fewer layers and parameters than the more established architectures, mitigating the risk
of overfitting, which is a common issue in deep learning models with large parameter
spaces. This model, therefore, offers a promising solution for applications where speed and
efficiency are key factors. However, it is important to mention that the ad hoc model had
to learn the studied phenomenon from scratch, which may have influenced its capacity to
learn and generalise patterns in the data.

It is also important to note that the loss metric used in our models does not consider the
potential error in arrows that are near 0 degrees, causing the error measurement between
0 and 359 degrees to be much larger than it is. However, given the ability of the models

Electronics 2023, 12, 3980 14 of 19

to tolerate noise, this is not a significant concern. Nonetheless, future work could explore
alternative loss functions that account for this phenomenon to further improve accuracy.
To gain a better understanding of the values presented in Table 1 and provide a clear visual
representation of how the models compare to each other, the performance of the trained
models is also presented in Figure 10 in terms of the R2 score, MSE, and angular error.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20

(a) (b)

(c)

Figure 10. Visual representation showing the performance metrics achieved on the test set using the
trained models in terms of (a) R2 score, (b) MSE, and (c) angular error. Note: The intervals represent
the values obtained from applying the bootstrapping training procedure (described in Section 3.3).

According to these results, the first highlighted aspect is that Xception and ResNet-
50, despite generally having a higher feature extraction capability, display a relatively
worse predictive performance for this regression task. Interestingly, the results also sug-
gest that more powerful architectures, such as Xception and ResNet-50, although pre-
trained on ImageNet, may not always generalise well to other computer vision tasks. De-
spite their significant performance on ImageNet, VGG16 and VGG19 outperformed both
Xception and ResNet50 on our task, as measured using the R2 score and angular error.
This suggests that the features learned using these architectures may not be as relevant to
our task as in the case of ImageNet. Thus, while pre-trained models featuring many pa-
rameters can be a useful starting point for many computer vision tasks, they may not al-
ways be the best choice, and other architectures should be considered depending on the
specifics of the problem. Surprisingly, the VGG16 and VGG19 models, despite their
slower processing times compared with our ad hoc model, outperformed Xception, Res-
Net-50, and DenseNet-121 on the approached task. This superior performance could be
critically advantageous in applications where the slightest angular error in arrow

Figure 10. Visual representation showing the performance metrics achieved on the test set using the
trained models in terms of (a) R2 score, (b) MSE, and (c) angular error. Note: The intervals represent
the values obtained from applying the bootstrapping training procedure (described in Section 3.3).

According to these results, the first highlighted aspect is that Xception and ResNet-50,
despite generally having a higher feature extraction capability, display a relatively worse
predictive performance for this regression task. Interestingly, the results also suggest that
more powerful architectures, such as Xception and ResNet-50, although pre-trained on
ImageNet, may not always generalise well to other computer vision tasks. Despite their
significant performance on ImageNet, VGG16 and VGG19 outperformed both Xception
and ResNet50 on our task, as measured using the R2 score and angular error. This suggests
that the features learned using these architectures may not be as relevant to our task as
in the case of ImageNet. Thus, while pre-trained models featuring many parameters can
be a useful starting point for many computer vision tasks, they may not always be the

Electronics 2023, 12, 3980 15 of 19

best choice, and other architectures should be considered depending on the specifics of
the problem. Surprisingly, the VGG16 and VGG19 models, despite their slower processing
times compared with our ad hoc model, outperformed Xception, ResNet-50, and DenseNet-
121 on the approached task. This superior performance could be critically advantageous in
applications where the slightest angular error in arrow orientation prediction could lead to
significant consequences, such as misrouting in navigation systems.

As for overfitting concerns, the appropriate use of regularisation techniques (specifi-
cally, the dropout technique) prevents the model from memorising noise in the training data.
In addition, as explained in Sections 3.2 and 4.3, for higher control of overfitting behaviour,
data augmentation (changes in brightness and contrast or shifts in gamma and channel
intensities) was applied together with the bootstrapping technique for training (so that the
division of the dataset and the training / validation were repeated ten times). The results
obtained using the train and test sets display R2 scores that approach 0.9, and the boxplots
for the performance metrics do not display strong indicators of overfitting behaviour.

Despite the high feature extraction capability of models such as Xception, ResNet-
50, and DenseNet-121, the model did not perform well in the approach regression task.
The real-world implications of these displayed performances are important, especially
in critical applications such as autonomous vehicles or robotics, where even small errors
in determining the direction of an arrow could result in significant deviation. It can be
highlighted that, although VGG16 and VGG19 are slower, they are more accurate than
other models, indicating their potential usefulness in scenarios where the highest accuracy
is needed (such as in navigation systems). Explicitly put, the inference speed of the ad
hoc model may be important in real-world applications, where real-time detection of
arrow orientation is necessary (for example, in high-speed autonomous vehicles, or robotics
applications, where fast decision-making is crucial), making the ad hoc model more suitable
in cases that demand real-time detection and quick decision-making.

In relation to the uncertainties in the models, the quantitative results listed in Table 1
(especially the standard deviation) and the graphical representation of the performance in
the form of boxplots showcasing the distribution of MSE, R2, and angular error metrics (in
Figure 10) report a robust overview of the variability and reliability in the predictions of
the models.

Regarding the interpretability of the models, the challenges associated with deep
learning models are understood. While this work did not use specific techniques for fea-
ture interpretation, the ad hoc model architecture was designed with simplicity in mind,
favouring transparency over complexity. However, six random test scenarios where the pre-
dictions feature high angular errors (more than 30 degrees) are reported in Figure 11. Higher
error rates were generally observed in complex scenes, where several linear elements (such
as lane separation lines, as illustrated in Figure 11a–c) with similar characteristics are
present. Another important source of error is represented by the complex nature of the tack-
led task, as the studied arrow elements feature reduced dimensions and the corresponding
samples display blurry, unclear arrows, even when using the highest available orthoimages
with a spatial resolution of 50 cm (as found in Figure 11d,f). Furthermore, obstructions
present in the scenes (such as scenes) also seem to have an important impact on the quality
of the predictions; considerably higher error rates are encountered in such scenarios (as
displayed in Figure 11e).

Regarding the robustness of the model in various additional scenarios, the data used
in this study are based on high-resolution orthoimages that were captured by a public
agency under optimal lighting conditions. Consequently, the training data aligns with these
favourable lighting conditions, but it is expected that the trained models display improved
robustness, due to the data augmentation techniques applied to expose the model to a
range of lighting scenarios commonly encountered in real-world settings (that include
variations in brightness and contrast).

Electronics 2023, 12, 3980 16 of 19Electronics 2023, 12, x FOR PEER REVIEW 17 of 20

Figure 11. (a–f) Random samples featuring high predicted angular error (superior to 30 degrees)
that were obtained using the ad hoc model.

Regarding the robustness of the model in various additional scenarios, the data used
in this study are based on high-resolution orthoimages that were captured by a public
agency under optimal lighting conditions. Consequently, the training data aligns with
these favourable lighting conditions, but it is expected that the trained models display
improved robustness, due to the data augmentation techniques applied to expose the
model to a range of lighting scenarios commonly encountered in real-world settings (that
include variations in brightness and contrast).

Overall, the decision over the use of a certain model should be dictated by the specific
application, the level of accuracy required, and the degree of computational efficiency
needed. Future studies should aim to improve the trade-off between these factors for more
robust and versatile computer vision tasks. For example, in a real-world setting, such as
an autonomous vehicle or robotics application, where determining the direction of an ar-
row is crucial, the increased error rate in these models could result in a significant misdi-
rection. In particular, DenseNet-121 showed a significantly higher mean angular error of
10.1833, along with a test R2 score of 0.7946, reflecting its poorer performance compared
with the other models. This suggests that the features learned using these architectures
may not be as suitable for tasks like ours as they are for ImageNet, leading to the potential
overfitting to ImageNet. Thus, while these pre-trained models can provide a strong foun-
dation for many computer vision tasks, their application should be carefully considered
based on the specifics of the problem at hand.

6. Conclusions
The proposed approach has the potential to significantly improve the accuracy and

efficiency of road sign identification and ultimately contribute to the development of safer
and more efficient transportation systems. The ad hoc model proposed was trained from
scratch and delivered a high performance, indicating that it may be possible to develop
custom models for specific applications, and it was most consistent in its predictions (low-
est standard deviation on the test set).

Figure 11. (a–f) Random samples featuring high predicted angular error (superior to 30 degrees) that
were obtained using the ad hoc model.

Overall, the decision over the use of a certain model should be dictated by the specific
application, the level of accuracy required, and the degree of computational efficiency
needed. Future studies should aim to improve the trade-off between these factors for more
robust and versatile computer vision tasks. For example, in a real-world setting, such as an
autonomous vehicle or robotics application, where determining the direction of an arrow is
crucial, the increased error rate in these models could result in a significant misdirection.
In particular, DenseNet-121 showed a significantly higher mean angular error of 10.1833,
along with a test R2 score of 0.7946, reflecting its poorer performance compared with the
other models. This suggests that the features learned using these architectures may not be
as suitable for tasks like ours as they are for ImageNet, leading to the potential overfitting
to ImageNet. Thus, while these pre-trained models can provide a strong foundation for
many computer vision tasks, their application should be carefully considered based on the
specifics of the problem at hand.

6. Conclusions

The proposed approach has the potential to significantly improve the accuracy and
efficiency of road sign identification and ultimately contribute to the development of safer
and more efficient transportation systems. The ad hoc model proposed was trained from
scratch and delivered a high performance, indicating that it may be possible to develop
custom models for specific applications, and it was most consistent in its predictions (lowest
standard deviation on the test set).

The results of this study also demonstrate the importance of carefully selecting and
evaluating CNN models for specific tasks and suggest that CNN architectures modified for
regression tasks can be effective for arrow angle estimation in images. The models based
on VGG16 and VGG19, which were pre-trained using a dataset with more than one million
images, were able to effectively learn and generalise patterns in the data, achieving the
highest performance metrics. However, the achievement of these results might have been
greatly incentivised by applying transfer learning techniques for training.

Electronics 2023, 12, 3980 17 of 19

Further research is needed to determine the optimal architecture and training method-
ology for CNN models in applications based on regression tasks. Future work could also
explore the performance of these models on larger and more diverse datasets, as well as
investigate the use of ensemble methods for achieving an improved performance.

In addition, a real-world evaluation of the model (in the form of tests to validate the
practical utility and applicability of our approach) is expected in the future, due to the
resource-intensive process that requires specialised equipment to obtain accurate testing
data (aerial orthoimages or image data collected by autonomous vehicles). In parallel,
the addition of the predicted data as a traffic direction attribute, once the road axes are
identified using semantic segmentation and the traffic direction arrow is identified, will
also be explored for real-time use in an on-board driving system.

Author Contributions: C.-I.C.: formal analysis, investigation, methodology, validation, visualisa-
tion, writing—original draft, and writing—review and editing; A.D.-Á.: conceptualisation, data
curation, investigation, methodology, software, validation, visualisation, writing—original draft,
and writing—review and editing; F.S.: conceptualisation, data curation, funding acquisition, in-
vestigation, methodology, project administration, resources, software, supervision, validation, and
writing—review and editing; M.-Á.M.-C.: conceptualisation, data curation, funding acquisition,
investigation, methodology, project administration, resources, software, supervision, validation,
visualisation, writing—original draft, and writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is part of the “Deep learning applied to the recognition, semantic segmentation,
post-processing, and extraction of the geometry of main roads, secondary roads and paths (SROADEX)”
project (PID2020-116448GB-I00) funded by the AEI (MCIN/AEI/10.13039/501100011033).

Data Availability Statement: The RoadArrowORIEN dataset (approximately 6700 images) used for
training and testing the model required in the methodology proposed in this manuscript is openly
available under a CC-BY 4.0 licence and can be downloaded from the Zenodo data repository using
the link: 10.5281/zenodo.7840642.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of this study; in the collection, analyses, or interpretation of data; in the writing of this manuscript; or
in the decision to publish the results.

References
1. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

3. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

4. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

5. Manso Callejo, M.Á.; García, F.S.; Cira, C.-I. RoadArrowORIEN: Dataset of 6701 Images (64 × 64 Pixels) of Straight Arrow-Type
Road Markings and Their Azimuths. 2023. Available online: https://zenodo.org/record/7840642 (accessed on 9 July 2023).

6. Danescu, R.; Nedevschi, S. Detection and Classification of Painted Road Objects for Intersection Assistance Applications. In
Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September
2010; pp. 433–438.

7. You, C.; Wen, C.; Wang, C.; Li, J.; Habib, A. Joint 2-D–3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile
Laser Scanning Data. IEEE Trans. Intell. Transport. Syst. 2019, 20, 2550–2565. [CrossRef]

8. Tepljakov, A.; Riid, A.; Pihlak, R.; Vassiljeva, K.; Petlenkov, E. Deep Learning for Detection of Pavement Distress Using Nonideal
Photographic Images. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing
(TSP), Budapest, Hungary, 1–3 July 2019; pp. 195–200.

9. Soilán, M.; Riveiro, B.; Martínez-Sánchez, J.; Arias, P. Segmentation and Classification of Road Markings Using MLS Data. ISPRS
J. Photogramm. Remote Sens. 2017, 123, 94–103. [CrossRef]

10. Ansarnia, M.S.; Tisserand, E.; Schweitzer, P.; Zidane, M.A.; Berviller, Y. Contextual Detection of Pedestrians and Vehicles in
Orthophotography by Fusion of Deep Learning Algorithms. Sensors 2022, 22, 1381. [CrossRef] [PubMed]

https://zenodo.org/record/7840642
https://doi.org/10.1109/TITS.2018.2868168
https://doi.org/10.1016/j.isprsjprs.2016.11.011
https://doi.org/10.3390/s22041381
https://www.ncbi.nlm.nih.gov/pubmed/35214281

Electronics 2023, 12, 3980 18 of 19

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

12. Pritt, M.; Chern, G. Satellite Image Classification with Deep Learning. In Proceedings of the 2017 IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), Washington, DC, USA, 10–12 October 2017; pp. 1–7.

13. Malik, Z.; Siddiqi, I. Detection and Recognition of Traffic Signs from Road Scene Images. In Proceedings of the 2014 12th
International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2014; pp. 330–335.

14. Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157.

15. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Computer Vision–ECCV 2006; Leonardis, A., Bischof,
H., Pinz, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3951, pp. 404–417,
ISBN 978-3-540-33832-1.

16. Li, L.; Yue, Q.; Luo, R. Road Traffic Sign Recognition Based on Lightweight Neural Network. In Proceedings of the AOPC 2021:
Optical Sensing and Imaging Technology, Beijing, China, 24 November 2021; p. 89.

17. Zhou, S.; Liang, W.; Li, J.; Kim, J.-U. Improved VGG Model for Road Traffic Sign Recognition. Comput. Mater. Contin. 2018, 57,
11–24. [CrossRef]

18. Sanyal, B.; Mohapatra, R.K.; Dash, R. Traffic Sign Recognition: A Survey. In Proceedings of the 2020 International Conference on
Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 10–12 January 2020; pp. 1–6.

19. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
20. Rybski, P.E.; Huber, D.; Morris, D.D.; Hoffman, R. Visual Classification of Coarse Vehicle Orientation Using Histogram of

Oriented Gradients Features. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June
2010; pp. 921–928.

21. Asad, M.; Slabaugh, G. Hand Orientation Regression Using Random Forest for Augmented Reality. In Augmented and Virtual
Reality; De Paolis, L.T., Mongelli, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham,
Switzerland, 2014; Volume 8853, pp. 159–174. ISBN 978-3-319-13968-5.

22. Ho, T.K. Random Decision Forests. In Proceedings of the Third International Conference on Document Analysis and Recognition,
ICDAR 1995, Montreal, QC, Canada, 14–15 August 1995; Volume I, pp. 278–282.

23. Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship
Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [CrossRef]

24. Shi, P.; Jiang, Q.; Shi, C.; Xi, J.; Tao, G.; Zhang, S.; Zhang, Z.; Liu, B.; Gao, X.; Wu, Q. Oil Well Detection via Large-Scale and
High-Resolution Remote Sensing Images Based on Improved YOLO V4. Remote Sens. 2021, 13, 3243. [CrossRef]

25. Zhao, J.; Liu, L.; Chen, Z.; Ji, Y.; Feng, H. A New Orientation Detection Method for Tilting Insulators Incorporating Angle
Regression and Priori Constraints. Sensors 2022, 22, 9773. [CrossRef] [PubMed]

26. Yang, X.; Yan, J. On the Arbitrary-Oriented Object Detection: Classification Based Approaches Revisited. Int. J. Comput. Vis. 2022,
130, 1340–1365. [CrossRef]

27. Wang, J.; Li, F.; Bi, H. Gaussian Focal Loss: Learning Distribution Polarized Angle Prediction for Rotated Object Detection in
Aerial Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4707013. [CrossRef]

28. Zhao, L.; Liu, T.; Xie, S.; Huang, H.; Qi, J. OrtDet: An Orientation Robust Detector via Transformer for Object Detection in Aerial
Images. Remote Sens. 2022, 14, 6329. [CrossRef]

29. Jocher, G.; Stoken, A.; Borovec, J.; NanoCode012; Chaurasia, A.; Xie, T.; Liu, C.; Abhiram, V.; Laughing; tkianai; et al. Ul-
tralytics/Yolov5: V5.0–YOLOv5-P6 1280 Models, AWS, Supervise.Ly and YouTube Integrations. 2021. Available online:
https://zenodo.org/record/4679653 (accessed on 14 April 2023).

30. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Statistics; University of California Press: Berkeley, CA, USA, 1967;
Volume 5.1, pp. 281–298.

31. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

32. Agarap, A.F. Deep Learning Using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375.
33. Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Statist. 1979, 7, 1–26. [CrossRef]
34. Instituto Geográfico Nacional Plan Nacional de Ortofotografía Aérea. Available online: https://pnoa.ign.es/caracteristicas-

tecnicas (accessed on 25 November 2019).
35. Torralba, A.; Russell, B.C.; Yuen, J. LabelMe: Online Image Annotation and Applications. Proc. IEEE 2010, 98, 1467–1484.

[CrossRef]
36. Hou, Y.; Shi, G.; Zhao, Y.; Wang, F.; Jiang, X.; Zhuang, R.; Mei, Y.; Ma, X. R-YOLO: A YOLO-Based Method for Arbitrary-Oriented

Target Detection in High-Resolution Remote Sensing Images. Sensors 2022, 22, 5716. [CrossRef] [PubMed]
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

https://doi.org/10.32604/cmc.2018.02617
https://doi.org/10.1007/BF00994018
https://doi.org/10.3390/rs13214209
https://doi.org/10.3390/rs13163243
https://doi.org/10.3390/s22249773
https://www.ncbi.nlm.nih.gov/pubmed/36560146
https://doi.org/10.1007/s11263-022-01593-w
https://doi.org/10.1109/TGRS.2022.3175520
https://doi.org/10.3390/rs14246329
https://zenodo.org/record/4679653
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1214/aos/1176344552
https://pnoa.ign.es/caracteristicas-tecnicas
https://pnoa.ign.es/caracteristicas-tecnicas
https://doi.org/10.1109/JPROC.2010.2050290
https://doi.org/10.3390/s22155716
https://www.ncbi.nlm.nih.gov/pubmed/35957272

Electronics 2023, 12, 3980 19 of 19

38. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16), Savannah, GA, USA, 2 November 2016; p. 21.

39. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning
Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Method Proposal
	Data Generation Procedure: Traffic Lane Arrow Direction and Heading Detection
	Proposed CNN Adaptation for Regression Tasks and Ad Hoc Model Architecture
	Considerations Regarding the Training Procedure

	Implementation of the Proposed Method
	Data
	Popular Convolutional Neural Network Architectures Considered
	VGGNet
	ResNet-50
	Xception
	DenseNet

	Training Experiments

	Results and Discussion
	Conclusions
	References

