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Abstract: When using mobile communication, the voice output from the device is already relatively
clear, but in a noisy environment, it is difficult for the listener to obtain the information expressed by
the speaker with clarity. Consequently, speech intelligibility enhancement technology has emerged to
help alleviate this problem. Speech intelligibility enhancement (IENH) is a technique that enhances
speech intelligibility during the reception phase. Previous research has focused on IENH through
normal versus different levels of Lombardic speech conversion, inspired by a well-known acoustic
mechanism called the Lombard effect. However, these methods often lead to speech distortion and
impair the overall speech quality. To address the speech quality degradation problem, we propose
an improved (StarGAN)-based IENH framework by combining StarGAN networks with the dual
discriminator idea to construct the conversion framework. This approach offers two main advantages:
(1) Addition of a speech metric discriminator on top of StarGAN to optimize multiple intelligibility
and quality-related metrics simultaneously; (2) a framework that is adaptive to different distal and
proximal noise levels with different noise types. Experimental results from objective experiments and
subjective preference tests show that our approach outperforms the baseline approach, and these
enable IENH to be more widely used.

Keywords: speech intelligibility enhancement; Lombard effect; StarGAN; speech conversion

1. Introduction

Owing to the rapid development of mobile communication and artificial intelligence
technology, telephone conversation has become a common avenue of voice communication.
People can also interact with various mobile devices anytime and anywhere, but this
type of communication often occurs in noisy environments. These complex and variable
noise environments bring great interference to communication. As shown in Figure 1,
the interference of environmental noise in mobile communication mainly comes from
two stages: the “talking stage” (in the far-end) and the “listening stage” (in the near-
end) [1]. The noise in the “speaking phase” has been relatively well suppressed by the
development of hardware and software for a long time, which is represented by speech
enhancement (SE) [2,3]. However, the speech intelligibility enhancement (IENH) technology
in the “listening stage” is relatively lagging behind. The problem where listeners have
difficulty in obtaining information in a noisy environment has not yet been solved. Finding
ways to improve speech intelligibility enhancement has become an urgent problem in
speech dialogue.

In mobile communication, noise in both the “speaking phase” and the “listening
phase” causes significant interference. In the “speaking phase”, the microphone picks up
the speaker’s voice and also picks up the noise in the speaker’s environment. The cell phone
then encodes the voice signal to form a code stream, which is sent to the receiver by the
communication channel. In the “listening stage”, the cell phone receives the speech signal
and plays it back to the listener, during which the noise of the environment is inevitably
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heard. Speech intelligibility enhancement (IENH) is a technology that targets the near-end
of the receiver, and is thus called near-end listening enhancement (NELE) technology [4].

Far-End Near-End 

Random
Noise

Source Speech

Speech 
intelligibility 

enhancement Target Speech

Figure 1. Diagram of telephone communication with environmental noise. Both source and target
speech are clean speech with noise removed.

The perceptual efficiency of a speech signal is usually measured on the basis of
speech intelligibility and speech quality. Speech intelligibility indicates the extent to which
information can be understood by the listener and depends on the proportion of speech
subunits that are correctly recognized (e.g., syllables, phonemes, phrases). Speech quality,
on the other hand, is a multidimensional measure of the listener’s subjective goodness or
badness of a speech sample and encompasses the perceived quality, naturalness, and clarity
of speech.

In real-time communication, the near-end listener is sometimes in an environment
containing noise that can not be avoided and can not be avoided in advance of the near-end
of the background noise, the near-end of the noise of the degree of noise, the noise is sharp,
etc., which are difficult to control. Therefore, a solution considered by some is to enhance
the source speech coming from the far end to reduce the effect of near-end noise on the
reception of information, and to enable the near-end listener to receive effective information.
Enhancement here consists of one of the simplest ways to increase the output power of the
communication device, i.e., to increase the volume. However, there is an upper limit to the
volume of a mobile communication device, and also excessive volume reduces the comfort
of communication and may cause damage to the auditory nerves of the listener, tinnitus
and other serious irreversible consequences.

Speech signals are produced by vibrations of the vocal cords, arising from a periodic
excitation flow, and have many acoustic characteristics themselves, some of which have
been shown to improve the robustness of speech information in noisy environments by
changing these (e.g., Mel cepstrum, fundamental frequency, etc.). Therefore, without
changing the output power of the mobile device, the acoustic features of the source speech
signal can be changed through the IENH algorithm, so that the enhanced speech has higher
intelligibility in the same noise environment. This plays a crucial role in improving the
efficiency of speech communication.

Traditional SE methods are based on signal-processing methods, modeled spectral
estimation methods [5–8]. Recently, deep learning (DL) models have become popular in
the SE domain. Several network architectures, such as deep denoising autoencoders [9],
fully connected networks [10], convolutional neural networks (CNNs) [11], recurrent
neural networks (RNNs), and long-term short-term memory networks (LSTMs) [12], have
demonstrated remarkable improvements in SE capabilities compared to traditional SE
methods. With the development of speech enhancement (SE) technology [13,14], the noise
in the remote voice signal has been suppressed to a greater extent during transmission to
the listener through the device, and the audio played by the listener’s cell phone is clear
enough. However, it remains difficult to obtain the information from the audio played in
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the cell phone clearly due to the influence of the surrounding environmental noise, so the
attention of many scholars has slowly turned to speech intelligibility enhancement (IENH)
technology.

In early IENH research, frequency domain energy redistribution and digital-signal-
processing algorithms based on acoustic masking principles [15] were a common approach.
However, this approach lacked the preservation of the naturalness of speech [16]. So
researchers began to explore new data-driven methods. This new approach was inspired
by the Lombard reflex [17,18] (or referred to as the Lombard effect) in human voice mecha-
nisms. The Lombard effect suggests that a speaker’s speaking style involuntarily changes
in response to noise levels. The Lombard effect is also more pronounced when the noise
level increases and the speaker’s voice becomes clearer and more pronounced. And the
change in spectral tilt is believed to be a key factor in the Lombard reflex to improve speech
intelligibility. The data-driven approach uses a large amount of speech data and builds a
model through deep learning algorithms, which enables the model to adaptively adjust
the Melody Cepstrum of speech (MFCC) to achieve a more natural IENH. this approach
has achieved good results in practical applications and has become an important research
direction in the field of IENH [19].

A prerequisite for achieving accurate conversion of Lombard speech features to normal
speech features is that the feature conversion model in the feature conversion framework
is effective and efficient. Many previous studies (e.g., [19,20]) have relied on parallel
datasets, relying on parallel speech pairs of source (normal) and target (Lombard) speech.
However, under the Lombard effect, speakers usually speak at a slower rate. Parallel
speech style conversion (SSC) requires a temporal alignment operation to pre-process the
training data, which is performed by lossy algorithms (e.g., dynamic time warping (DTW))
and can lead to feature distortion. This encourages the use of non-parallel SCC to avoid
time-aligned operations. In recent years, there has been much successful research in neural
networks for mapping near-frequency cepstral coefficients (MFCCs). Some recent studies
have combined variants of generative adversarial networks (GAN) [21–23], demonstrating
promising results. These methods are used to train speech synthesizers without the need
for parallel speech, transcribed or time-aligned data. They offer better intelligibility and
naturalness than traditional methods.

However, these methods still face some limitations:

(1) In real life, the speaker cannot be in a completely noise-free environment, the far-
end speaker may itself be speaking Lombard speech, and there are limitations to the
method of simply converting normal speech to Lombard speech.

(2) Although the StarGAN-based approach is an improvement over the CycleGAN-based
approach, the adequacy of feature mapping is still significantly deficient, and there
remains an insurmountable gap between real speech and transformed speech even
with StarGAN. Speech intelligibility enhancement methods with only the Lombard
effect still do not work well under strong noise interference with very low signal-to-
noise ratios.

As shown in Figure 2, to address the challenges of complex communication scenar-
ios, our previous work proposed a system called AdaSAStarGAN [24], which performs
Lombard speech conversion based on different levels of near-end and far-end noise, for
enhancing the intelligibility of near-end speech. The system consists of a generator based
on the StarGAN framework and a discriminator, where the generator improves the intelligi-
bility of the input speech and the discriminator evaluates the authenticity of the generated
samples to guide the training of the generator. This approach is effective in optimizing
intelligibility metrics. However, when we compare the waveform and spectrum of the
source audio signal with those of the converted audio signal from the existing StarGAN-
based model, we find that there is a sudden increase in amplitude and a shift of energy to
the high-frequency region in the converted waveform. Since these high-amplitude frames
represent important words, these frames should not be given excessive amplitude values
in IENH, otherwise the speech quality will be severely degraded. This suggests that the
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existing StarGAN framework is prone to artifacts; we believe this is because it does not
focus on the transformation style as expected. This transformation style often leads to
distortion of speech features, such as breakup or jitter, which compromises the overall
audio quality.

Far-End Near-End

Source
Speech

Target
Speech

machinery street

babbl

car

equiet
Figure 2. Diagram of Noise-adaptive feature conversion. The waveforms in the graph are clean
speech with noise removed. The darker the waveform’s color, the higher the decibel level of the noise.
In addition, the lightest color is normal speech with 0dB of noise.

In this paper, we propose a StarGAN-based system called D2StarGAN as an extension
of our earlier system to overcome the previously mentioned drawbacks. We employed a
StarGAN-based optimization scheme that jointly maximizes multiple intelligibility metrics
and quality metrics to improve speech quality and intelligibility. We performed a com-
prehensive evaluation of the performance of the system under different conditions. The
experimental results show that the improved system significantly improves speech intelligi-
bility and quality compared to the comparison method, outperforming the state-of-the-art
baseline in objective and subjective assessments.

2. Related Work

According to different speech feature tuning strategies, IENH algorithms can be
broadly classified into two main categories: rule-based IENH algorithms and data-driven
IENH algorithms.

Rule-based algorithms [15,25–27] have been developed over decades in the field of
speech processing and have accumulated a large number of models and techniques. These
algorithms have the advantage of being fast to run, require no data training and are better
able to account for variations in speech features. This makes them still advantageous
in certain specific scenarios. However, the rule-based approach also has limitations in
terms of speech intelligibility enhancement. Speech intelligibility enhancement involves a
large number of interacting speech features, and it is difficult to fully capture and model
the complex relationships between these features through a fixed set of rules. Therefore,
a rule-based approach will always have its limitations. In addition, fixed-rule-based
speech enhancement is often problematic in terms of speech quality and naturalness. As
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the judgment of the model is based on predefined rules, the enhanced speech may lose
some naturalness and not sound natural enough. In addition, speech quality may also
deteriorate, producing noise, distortion or other undesirable effects. To overcome these
problems, modern speech enhancement methods tend to use data-driven approaches such
as deep learning to better model and improve the complexity of speech features.

The data-driven approach uses a large amount of speech data to build a feature map-
ping model from normal speech to Lombard speech by machine learning algorithms to
achieve speech style conversion (SSC). In recent years, Bayesian–Gaussian mixture models
(BGMM) [20,28], deep neural networks (DNNs) [29,30], recurrent neural networks (RNNs)
and their variants such as long–short-term memory (LSTM) [31] networks have been widely
used for mapping acoustic features. However, current parallel SSC methods require a paral-
lel corpus of source and target speech and usually require a temporal alignment operation
on the training data, an operation that may lead to some feature distortions. In addition,
speakers usually speak slowly under the effect of the Lombard reflex, which further in-
creases the difficulty of parallel SSC. Therefore, some more sophisticated algorithms are
needed to implement the alignment operation when dealing with a non-parallel corpus
to avoid the feature distortion problem. Therefore, researchers have started to explore
non-parallel SSC approaches, i.e., parallel corpora that do not depend on source and target
speech. In recent studies, the use of non-parallel speech style conversion methods has been
encouraged in order to avoid temporal alignment operations. Some of these studies [21,22]
combine variants of generative adversarial networks (GANs), such as cycle consistent gen-
erative adversarial networks (CycleGAN) [32–34] and StarGAN [35], to perform mapping
of MFCC features without parallel speech and temporal alignment procedures. Compared
with parallel speech style conversion methods, they have better intelligibility and natural-
ness and are able to learn many-to-many mappings. Among them, CycleGAN [36] can only
learn one-to-one mappings, while StarGAN [37] can handle many-to-many mappings with
different gender and attribute domains simultaneously. The use of CycleGAN allows for
IENH augmentation, while the use of StarGAN allows for simultaneous consideration of
the effect of gender differences on Lombard language features.

3. Baseline
3.1. Traditional NELE System Structure

Figure 3 shows the non-parallel SSC framework used by the latest method [32,33,35].
The system aims to convert the normal style input speech to the same Lombard style output
speech. In the conversion process, a normal-to-Lombard speech conversion module is
used. It comprises three key components: vocoder analysis, feature mapping and vocoder
synthesis. First, the input speech signal is subjected to vocoder analysis to extract speech
features. Then, the extracted speech features that are closely associated with the Lombard-
style speech are transformed using a mapping model. Finally, the mapped features, along
with the unmodified features, are then fed into the vocoder for synthesis. The vocoder
takes these modified and unmodified features as input and combines them to generate the
final output speech.

Vocoder
Analysis

Vocoder
SynthesisSource

Speech
Target

Speech

Feature
Mapping

Source

MCEPs

F0

Target

MCEPs

F0

Unmodified MCEPs
APs

Figure 3. Schematic diagram of non-parallel SSC.
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In this framework, there are various choices of vocoders. Commonly used paramet-
ric vocoders are STRAIGHT [38] and WORLD [39]. They extract three main features:
(1) spectral envelope, which is usually expressed using mel-cepstral coefficients (MCEP);
(2) fundamental frequency (F0) and clear and turbid tone determination thresholds; and
(3) non-periodic parameters (APs). In general, the non-periodic parameters are not modi-
fied, and the MCEPs as the main features can be partially or fully modified, depending on
the system design.

The core module of the SSC framework is the mapping model, which needs to be
pre-trained using the training data. In non-parallel SSC, the original data can be directly
used for training without the need for temporal alignment operations for normal and
Lombard speech with different durations. However, all baseline systems rely only on the
Lombard effect, without differential mapping for proximal noise. These SOTA systems are
not resistant to unstable interference from strong noise.

3.2. AdaSAStarGAN

Since the present method is an extension of our previously proposed AdaSAStarGAN,
we first briefly review its formulation. The model diagram of AdaSAStarGAN is shown in
Figure 4.

attribute c’

attribute c’

�’

attribute c’

� D Real/Fake

   （a）Generator Training （b）Real/Fake discrimination Training

attribute c,c’

attribute c

�

attribute c’

�’

attribute c’

�’

attribute c,c’

attribute c

�

  （c）Cycle consistency Training

G

G

Figure 4. Feature Mapping of the AdaSAStarGAN: (a) generator training: receiving source speech x
and label code c, c′, generating enhanced speech y′ = G(x, c, c′); (b) real/fake discriminator training:
receiving enhanced speech y′ or real speech y and label code c′, discriminating the truthfulness
of speech belonging to c′; (c) cycle consistency training: encouraging the D2StarGAN to retain in
content-related features such that G(y′, c, c′) is as close to x as possible.

The goal of training AdaSAStarGAN is to acquire a unified generator G that learns
a mapping between multiple domains. More precisely, AdaSAStarGAN learns a genera-
tor G that converts the input acoustic features x into output features y′, i.e., G(x, c′)→y′,
conditional on the target domain label c’, and let y’ in y′ ∈ RQ×T be a sequence of acoustic
features, where Q denotes the feature dimension and T represents the length of the se-
quence. The domain label code c ∈ {1, . . . , C} belongs to a set of possible labels, where C
denotes the total number of domains. The purpose of AdaSAStarGAN is to make the gen-
erator G learn many-to-many mappings between different domains. Inspired by StarGAN,
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AdaSAStarGAN converges the generator G and the discriminator D in a mutual adversarial
process by combining adversarial loss, cycle consistency loss and identity mapping loss.

Adversarial loss is a loss function, also known as source–target conditional adversarial
loss. It serves to make the transformed features generated by the generator indistinguish-
able from the true target features, thus improving the performance of the generator. In
the adversarial loss, the discriminator is trained to differentiate the transformed features
from the true target features, while the generator is trained to generate increasingly realistic
transformed features in order to deceive the discriminator to the maximum extent possible.
In this process, the discriminator and the generator confront each other until the features
generated by the generator are indistinguishable from the true target features.

Lad = E(x,c)∼P(x,c),c′∼P(c′)[logD(x, c′, c)] + E(x,c)∼P(x,c),c′∼P(c′)[logD(G(x, c, c′), c, c′)] (1)

where c′∼P(c′) denotes the randomly sampled labels from the real data label distribution
P. D is a target-conditional discriminator. It attempts to learn the best decision bound-
ary between the transformed features and the true target domain acoustic features given
the source domain label code c and the target domain label code c′ by maximizing the
classification loss. In contrast, generator G tries to make the transformed features indistin-
guishable from the true target domain acoustic features labeled with c′, thus minimizing
the adversarial loss.

Domain classification loss is a distinction between the features generated by the
generator G into a source feature domain and a target feature domain. In this case, generator
G aims to generate features that are similar to the target domain in order to deceive
discriminator D. By classifying the target features with the source features, discriminator
D can better distinguish which features belong to the target domain. This approach helps
to improve the performance of the generator G by allowing it to generate more realistic
target features:

Lcls = Ex∼P(x),c′∼P(c′)[logPC(c′|G(x, c′))] (2)

Circular consistency loss is proposed to address the problem where the transformed
acoustic features may lose their input components. Although adversarial loss and clas-
sification loss can make the transformed acoustic features realistic and classifiable, they
each prompt different transformations, resulting in a highly under-constrained mapping
process. Therefore, cyclic consistency loss is introduced to ensure that the transformed
features retain their input components:

Lcyc = Ex,c,c′ [
∥∥x− G(G(x, c′), c)

∥∥
1] (3)

The role of the cyclic consistency loss is to encourage the generative model G to learn
an optimal mapping function such that the feature G(G(x, c′), n)→ x̂ after two mappings
can approximate the original feature x while retaining the input component, i.e., x̂ ≈ x.
In this process, the generative model considers both the input x, the source domain label
code c, and the target domain label code c′ while learning the mapping function to ensure
that the generated features do not lose the information of the original input.

Identity mapping loss: To further restrict the generative model from changing fea-
tures other than style during the transformation process, identity mapping loss is intro-
duced. Specifically, the identity mapping loss encourages the generative model to learn a
mapping function such that the input features can remain unchanged after mapping, i.e.,
G(x, c) ≈ x. This ensures that the generative model does not lose important information
other than style during the transformation process, thus improving the performance of the
model:

Lid = E(x,c)∼P(x,c)[‖G(x, c)− x‖] (4)

where D and G are optimized by minimizing adversarial loss, cyclic consistency loss, and
identity mapping loss, respectively.
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4. Proposed D2StarGAN
4.1. System Structure

As mentioned in Section 3.1 in previous work, we proposed a non-parallel SSC frame-
work, AdaSAStarGAN, for adaptive speech enhancement in distal and proximal complex
noisy environments. In practical scenarios, converting normal speech to Lombard speech
faces limitations as it assumes a completely noise-free environment for the speaker to produce
normal speech. However, in certain speech call situations where the speaker (far-end) and the
receiver (near-end) are located in different noisy environments, the speaker may need to resort
to Lombard speech for effective communication. In such cases, employing the conventional
normal-to-Lombard conversion method can lead to a decline in the quality and comprehen-
sibility of the converted speech. In addition, since more noise leads to a greater Lombard
effect, i.e., there are different levels of Lombard speech, conversion between different levels of
Lombard speech needs to be considered. To solve these problems, a framework is proposed
that enables the conversion between normal speech to different levels of Lombard speech in
different noise environments to improve speech quality and intelligibility.

To address the above limitations, we propose a speech intelligibility enhancement system,
D2StarGAN, which adds a proximal noise processing module to the previous framework.
This module extracts the features of the proximal noise signal and uses them as one of the
inputs to the mapping model. In this way, we can make the generator not only focus on the
features of the original speech but also flexibly adjust the enhanced speech to different noise
types or the effect of non-smooth noise according to the features of the proximal noise. The
framework diagram is shown in Figure 5. In the application scenario where both distal and
proximal noises exist, we can use the distal noise level c′ and the proximal noise level c as
conversion conditions to achieve conversion between different levels of Lombard speech and
normal speech, thus improving the intelligibility and quality of speech.

Far-End
Noise

Source Speech

Near-End
Noise

Vocoder
Analysis

Vocoder
Analysis

Far-End
Noise level c

Near-End
Noise level c

C

C

Mapping
Model

Vocoder
Synthesis

Target Speech

Converted

MCEPs C0~C31

Source MCEPs
 C0~C31

Noise MCEPs
 N0~N31

log F0 uses Lg conversion
unmodified APs

codes c,c’

Adaptive Lombard conversion
Figure 5. The overall framework of our proposed method.

The inputs to this framework include noisy mixed speech and the speaker’s speech
voice from the distal environment and noisy signals from the proximal environment. The
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next processing steps include speech separation, sound pressure level extraction, speech
feature extraction, preprocessing, feature mapping, and target speech synthesis. In the
speech separation step, the distal speech is divided into distal noisy speech and clean
speech as the source speech. In the sound pressure level extraction step, we measure
the sound pressure levels of the proximal and distal noisy audio and label them with
labels c and c′. In the speech feature extraction step, a WORLD [24] vocoder is used to
extract features such as mel-inverse spectral coefficients (MCEPs), logarithmic fundamental
frequencies (log F0), and acyclicity (APs) from the source speech and near-end noisy signals.
the WORLD vocoder is analyzed and synthesized at a 5 ms frame shift to represent the
spectral envelope as 32 dimensions (C0∼C31, N0∼N31 ) for feature mapping. Since F0 is
a one-dimensional feature, it is difficult to train it together with other high-dimensional
features (e.g., MCEP). Therefore, nonlinear transformation of F0 by logarithmic Gaussian
normalization transform [35] is a widely used method. In the preprocessing stage, we
normalize all features and then connect the distal and proximal noise levels, source speech
features, and proximal noise features. In the feature mapping stage, the source speech
features are mapped to the target enhanced speech features using the distal and proximal
noise levels and the distal noise features as mapping conditions. In the target speech
synthesis stage, the target-enhanced speech is synthesized using the WORLD vocoder. The
final target enhanced speech is obtained.

4.2. Mapping Model

In this section, we present our proposed speech intelligibility enhancement system
D2StarGAN, which adds a metric discriminator to previous work for optimizing speech
metrics. Partly inspired by the NELE-GAN proposed by Haoyu Li [40], a time-frequency
correlated amplification factor is obtained based on GAN for reassigning energy to the
source speech.

Figure 6 shows a diagram of the D2StarGAN model of our proposed system. It consists
of a generator G, a true–false discriminator (Dr/ f ) and an indicator discriminator (Dind).
g receives the input speech x and the proximal noise n and the distal and proximal noise
level label codes c and c′, where the domain label code of the input speech x is c. Then
the output enhanced speech y′ = G(x, n, c′). Next, Dr/f determines whether y′ is true
data belonging to the domain c′, and Dind predicts the intelligibility and quality scores
of the augmented speech. Dind’s predicted scores are close to the true scores calculated
for the target objective metric. Compared with those very complex original metrics, the
gradients of the DNN-based discriminator can be easily computed and back-propagated to
G. Therefore, under the guidance of Dr/f and Dind, G can be efficiently trained to generate
Lombard speech for the corresponding domain and optimize the learning metric of interest.

The training process can be divided into four modules: (a) Generator training, G takes
three inputs: source speech x, proximal noise n and distal and proximal noise level labeling
codes c and c′. Then G outputs the enhanced speech y′ = G(x, n, c′). When training this
part, if the target domain is normal speech in a noise-free environment, then the value of n
is 0. (b) True–false discriminator training, D requires two inputs: the enhanced speech y′ or
y, and the label code c′, and Dr/f outputs y′ or y belonging to the c′ domain truthfulness
D(y′, c′), which ranges from 0 to 1. (c) Cycle consistency training: Auxiliary D2StarGAN
retains the content in x so that G(y′, n, c) is as close as possible to x. When training this
part, we set the noise n as smooth noise because the input speech x is not noise adaptive.
(d) Metric discriminator training. To predict intelligibility and quality scores, Dind requires
three inputs: (1) augmented speech G(x, n, c′), (2) clean speech x, and (3) background
noise n. We introduce the so-called I-function to represent the target metric to be modeled
(described later). In addition, other reference algorithms (e.g., NELE-GAN) pre-enhanced
signal examples y′ are also fed into the training Dind to stabilize the training process and
improve the results. In the inference stage, we use the trained generator G for feature
mapping.
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Figure 6. Diagram of the D2StarGAN: (a) generator training: receiving source speech x, noise n
and label code c, c′, generating enhanced speech y′ = G(x, n, c′); (b) real/fake discriminator training:
receiving enhanced speech y′ or real speech y and label code c′, discriminating the truthfulness of
speech belonging to c′; (c) cycle consistency training: encouraging the D2StarGAN to retain content-
related features such that G(y′, n, c) is as close to x as possible; (d) index discriminator training:
predicting intelligibility and quality scores, receiving enhanced speech G(x, n, c′), clean speech x and
background noise n, and introducing I function to represent the target metric model.

Adversarial loss: Adversarial loss function in D2StarGAN is designed to make the
transformed features generated by the generator indistinguishable from the true target
features in the discriminator D. The expression for this loss function is as follows:

Lad = Ex,c′ [logDr/ f (x, c′)] + Ex,n,c′ [log(1− Dr/ f (G(x, n, c′), c′)] (5)

is the adversarial loss of the generator G. Lad takes a larger value when D correctly
classifies G(x, c) and y as false and true speech features, while Lad takes a smaller value
when G successfully deceives D. Thus, G(x, c) is misclassified by D as a true speech feature.
Therefore, we want to maximize Lad with respect to D and minimize Lad with respect to G.

The loss function of Dind is represented as follows:

Lind
D = Ex,n,c,c′{[Dind(G(x, n, c′), x, n)− I(G(x, n, c′), x, n)]2

+ [Dind(ŷ, x, n)− I(ŷ, x, n)]2}
(6)

By minimizing Lind
D , Dind is encouraged to accurately predict speech intelligibility and

quality scores.
We fix the parameters of the Dind first, then we apply a back-propagated gradient to

update G to maximize the predicted scores. In order to maximize the predicted scores, we
use the following loss function:

Lind
G = Ex,n,c′ [Dind(G(x, n, c′), x, n)− t]2 (7)
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where t denote the maximum scores of the intelligibility and quality metrics.
Domain classification loss is used to generate features in the target feature domain for

the optimal discriminator D:

Lcls = Ex,n,c′ [logPC(c′|G(x, n, c′))] (8)

Cycle consistency loss is used to ensure that the transformed features will maintain
the composition of the input, as shown by the following equation:

Lcyc = Ex,c,c′ [
∥∥x− G(G(x, n, c′), n, c)

∥∥
1] (9)

The goal of generator G is to ensure, as far as possible, that the source data after
conversion to c′ still has the original features when mapped back to the original domain
c. The L1 parametrization here represents the difference between the source data before
and after the transformation, and the optimization goal of generator G is to minimize
this difference.

Optimization by minimizing Lad, Lind
G , Lcyc, Lid and Lcls. Discriminator D optimization

by minimizing Lad, Lind
G , Lcyc, Lid and Lcls. The parameters of the total loss function for

losses other than the adversarial loss are set to λcyc = 10, λid = 5,λcls = 1.
I Function: I Function in the framework is mainly composed of the following three

metrics, all of which are the most widely used speech intelligibility metrics: (1) SIIB: The
Speech Intelligibility in Bits metric calculates the amount of information shared between
clean and distorted speech signals, measured in bits per second. (2) ESTOI: Extended short-
time objective intelligibility measures intelligibility by computing the correlation between
the spectra of clean and distorted speech. (3) HASPI: Hearing-aid speech perception index
evaluates intelligibility loss by examining cepstral correlation and auditory coherence
within an auditory model.

Network Architectures: (1) Generator and Real/Fake Discriminator: The details of
the Generator architectures are given in Figure 7a. We designed the network architectures
based on our previous work. The input features for G are extracted from input speech and
near-end noise. We used a 2-1-2D CNN in G and a 2D CNN in Dr/ f . The self-attention
layer [41] is used in the 1D residual block of G to improve the fitting ability of the model. For
a GAN objective, we used the least squares GAN. IN, AdaIN, GLU and PS indicate instance
normalization, adaptive instance normalization, gated linear unit, and pixel shufflert,
respectively. The generator is fully convolutional (FC). We trained the networks using the
Adam optimizer with a batch size of 1, in which we used a randomly cropped segment
(128 frames) as one instance. During training, we normalize all metric scores to the range
[0, 1], the same range as the sigmoid activation, and set the target maximum score to the
maximum score plus 0.1 obtained by the Dind at the epoch. The number of iterations was
set to 1× 105, the learning rates of G, D, and Dind were set to 0.0002, 0.0001, and 0.0002,
respectively. G was trained once in 5 iterations and Dind was trained once in 100 iterations.
We set λcyc = 10, λid = 5, λind = 2.5.

(2) Index Discriminator: The details of the Index Discriminator architectures are given
in Figure 7b. The input to the index discriminator is the concatenated MFCCs of enhanced
speech, unenhanced speech, and noisy audio. Each convolution layer has an LReLU
activation. A global average pooling (GAPool) is added after the last CNN module. The
last FC layer with sigmoid activation predicts the scores of all metrics.



Electronics 2023, 12, 3620 12 of 18

Attribute 
c,c'

(a)Structure of Generator

X

C
on

v

IN G
LU

×2

N

C
on

v

G
LU

C
on

ca
t

R
eS

ha
pe

C
on

v

IN

Downsample
2D→1D

C
on

v

Ad
aI

N

G
LU

Se
lf-

At
te

nt
io

n

×9 Residual Blocks(1D) 

C
on

v

R
eS

ha
pe

Upsample 
1D→2D

C
on

v

PS G
LU

×2

C
on

v

y

(b)Structure of Index Discriminator   

Enhanced
MCEPs

Normal
MCEPs

Noise
MCEPs

C
on

ca
t

C
on

v

LR
eL

U
×5

G
AP

oo
l

FC
 

LR
eL

U

Si
gm

oi
d

×2

Predicted
Score

Figure 7. Network architectures of our D2StarGAN model. (a) Structure of the generator; (b) structure
of the index discriminator.

5. Experimental Section and Results
5.1. Experimental Setup
5.1.1. Dataset

Lombard speech database for German language [42] is used for evaluating the
method on the IENH task. This database consists of recordings of both normal speech in a
noiseless environment and Lombard speech in low- and high-noise environments. There
are separate subsets for training and evaluation. The training subset contains 256 sentences,
while the evaluation subset consists of 64 sentences. Both subsets include recordings
of normal speech in a noiseless environment as well as two levels of Lombard speech
recorded in low- and high-noise environments. To standardize the data, the recordings
were downsampled to a sampling rate of 16 kHz for the purpose of this study.

NOISEX-92: [43] We used five background noises from the NOISEX-92 dataset, in-
cluding station, canteen, white, babble and restaurant noise. Of these, station, canteen
and white noise were chosen for the training and validation data, while white noise was
only used in the loop consistent training. The remaining two noises were used for the test
data. We produce low-SNR versions of babble and restaurant noise and high-SNR versions
as low noise and high noise.

Specifically, the training set contained a corpus of 1536 sentences (256 sentences ×
3 levels × 2 noises), while the test set contained a corpus of 384 sentences (64 sentences
× 3 levels × 2 noises). The corpus in the test set covered 10 different auditory conditions,
including two ends, three levels and two noise types. In the near-end noise-free condition,
the noise type was not considered. We use a mixture of recordings from the noise dataset
as well as the speech dataset to simulate the far and near end of the conversation

5.1.2. Comparison with Existing Approaches

Three latest non-parallel SSC methods were involved in the experiments. They in-
cluded a CycleGAN-based method (CGAN) [4], a StarGAN-based method (SGAN) [15]
and an AdaSAStarGAN-based method (ASSGAN) [32]. UN indicates speech without any
modification.

5.2. Objective Evaluations

In our study, we used five target metrics (SIIB, HASPI, ESTOI, SRMR, NCM) to
assess the intelligibility of the system. Notably, two advanced metrics, SRMR [44] and
NCM [45], were incorporated into the evaluation, which was not utilized during the
model’s pre-training phase. Speech-to-reverberation modulation energy ratio (SRMR) is a
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metric that evaluates speech quality and intelligibility based on the modulation spectral
representation of the speech signal, while normalized-covariance measure (NCM) is based
on the modulation spectral representation of the speech signal and the corresponding
reverberant signal. Higher scores in these metrics indicate better system performance in
terms of intelligibility. The three metrics (SIIB, HASPI, and ESTOI) involved in pre-training
were complemented by the two new metrics (SRMR and NCM) during evaluation.

In Tables 1 and 2, we present the average objective scores for each system in Babble
and Restaurant noise conditions. Furthermore, Table 3 ranks the scores of each system at
various noise levels, ranging from lowest to highest. The results from these tables highlight
that the D2StarGAN system clearly outperforms the state-of-the-art baseline system in
terms of intelligibility, achieving higher scores. This improvement can be attributed to the
incorporation of new target metrics and the utilization of an advanced network structure.
Specifically, D2StarGAN demonstrated superior performance on previously unseen SRMR
and NCM scores, providing further evidence that employing multi-metric optimization
strategies can effectively enhance intelligibility.

Table 1. Average objective scores of the compared systems under different noise types under noise
Babble noise. Noiseless, low noise and high noise represent environmental noise levels. The noise
level in front of the symbol “→” indicates the far-end noise level, and the noise level after it indicates
the near-end noise level.

Noiseless → Low Noise Noiseless → High Noise
System

SIIB HASPI ESTOI SRMR NCM SIIB HASPI ESTOI SRMR NCM

UN 18.71 1.92 0.24 3.76 0.31 13.08 1.58 0.20 2.17 0.20
CGAN 36.21 2.58 0.32 4.13 0.40 23.86 2.08 0.24 4.39 0.33
SGAN 40.49 2.64 0.37 6.42 0.44 32.17 2.29 0.25 5.42 0.34

ASSGAN 47.25 2.66 0.37 6.63 0.43 30.38 2.25 0.25 5.33 0.33
D2StarGAN 49.56 2.70 0.39 7.43 0.48 31.57 2.31 0.27 6.16 0.37

Table 2. Average objective scores of the compared systems under different near-end noise conditions
under Restaurant noise.

Noiseless → Low Noise Noiseless → High Noise
System

SIIB HASPI ESTOI SRMR NCM SIIB HASPI ESTOI SRMR NCM

UN 15.86 1.66 0.21 2.23 0.28 10.94 1.49 0.13 1.42 0.19
CGAN 25.12 2.13 0.28 4.59 0.36 16.84 1.83 0.19 2.68 0.28
SGAN 31.58 2.47 0.30 5.20 0.44 20.83 2.00 0.19 3.32 0.32

ASSGAN 36.82 2.34 0.29 5.39 0.45 21.28 1.97 0.20 3.37 0.33
D2StarGAN 39.90 2.53 0.31 5.83 0.47 23.13 2.01 0.21 3.77 0.36

Table 3. Average objective scores of the compared systems under different noise types under noise
Low noise→ High noise condition. Tests were conducted using Babble and Restaurant with low as
well as high SNR, respectively.

Babble Restaurant
System

SIIB HASPI ESTOI SRMR NCM SIIB HASPI ESTOI SRMR NCM

UN 14.31 1.61 0.21 2.23 0.24 9.37 1.43 0.14 1.43 0.19
SGAN 33.30 2.37 0.26 5.33 0.37 20.66 2.05 0.20 3.30 0.35

ASSGAN 32.59 2.38 0.26 5.59 0.37 21.37 2.03 0.20 3.31 0.35
D2StarGAN 33.31 2.42 0.28 6.14 0.39 22.37 2.05 0.21 3.64 0.37

5.3. Subjective Listening Tests

In the conducted subjective listening evaluation, participants used the Comparative
Mean Opinion Score (CMOS) standard to compare the speech quality of different ap-
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proaches. They rated the approaches on a scale from −3 to 3, ranging from “much worse”
to “much better”, with 0 indicating no significant difference (“about the same”).

The evaluation focused on two key aspects: intelligibility and naturalness. To ensure
reliable results, utterances that did not achieve an average word accuracy of at least 60%
were excluded from the assessment. A total of 20 participants, aged between 20 and 40, took
part in the evaluation, each listening and evaluating 64 recordings, which consisted of four
methods per utterance with two female and two male voices, leading to four comparison
groups. The evaluation was conducted in an anechoic chamber using high-quality Audio-
Technica ATH-M50x headphones. Speech signals were processed and mixed with noise
to simulate various scenarios. A total of four different noise scenarios were included
in the evaluation, and separate tests were performed for normal speech, low Lombard
speech, and high Lombard speech. The average values of these tests were used in the final
results. The comparison method involved using the model of normal speech converted to
high Lombard speech.

The results presented in Figure 8 show the average CMOS scores of the D2StarGAN
approach compared to the baselines. Notably, all scores were above 0, indicating that the
D2StarGAN consistently outperformed the baselines. When compared to unprocessed
speech, the D2StarGAN approach received scores around 2, indicating a significant im-
provement in speech intelligibility and naturalness (IENH). Moreover, when compared to
the CGAN, SGAN, and ASSGAN approaches, the D2StarGAN scores ranged from 0.6 to
0.9, corresponding to “slightly better” ratings.

Figure 8. CMOS results with 95% confidence intervals.

5.4. Acoustic Analysis

The acoustic properties of the enhanced speech were analyzed in detail and studied
in comparison with AdaSAStarGAN. In Figure 9, examples of the waveforms and spec-
trograms of the different signals are shown. By looking at the spectrograms, we can see
that both AdaSAStarGAN and D2StarGAN modify the characteristics of the speech signal
by redistributing the energy. Comparing Figure 9a,b, we can see that D2StarGAN tends
to allocate more energy in the mid-frequency region of the voiced segment (inside the
orange dashed box), while AdaSAStarGAN focuses more on the high-frequency region of
the unvoiced segment (inside the blue dashed box). Furthermore, we observed that the
D2StarGAN-enhanced speech waveform envelope was similar to the original unmodified
speech, while the AdaSAStarGAN-modified waveform changed significantly, resulting in
more acoustic artifacts.
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(a)Ground Truth

1K

2K

8K

(b)AdaSAStarGAN (c) D2StarGAN

Figure 9. Waveforms and their spectrograms on one utterance in level 55 of Lombard: (a) Ground
Truth, (b) enhanced speech from AdaSAStarGAN, and (c) enhanced speech from Proposed (All). The
utterance used is notated as “f1_s34”.

5.5. Analysis of System Robustness

We further analyzed the robustness of the system in the absence of visible speakers
and languages. We used the Lombard Grid dataset [46] of English speakers to test our
proposed system to verify its effectiveness under the mismatched speaker and language
conditions. The Lombard Grid is an audiovisual Lombard speech corpus. The corpus
comprises 54 speakers with 100 discourses each, including 50 Lombard and 50 normal
discourses. In this experiment, we used our model trained on the German Lombard speech
dataset and evaluated it on the Lombard Grid dataset with the same noise conditions as
the original test set.

In this study, we conducted tests on a dataset that differs from the training set in terms
of both language and speakers. As shown in Table 4, comparing our method to previous
approaches, we consistently achieved favorable results, demonstrating the effectiveness of
our approach in cross-lingual and cross-speaker scenarios.

Despite the differences in language and speaker characteristics between the training
and test datasets, the performance of our system remains stable. This demonstrates the
adaptability and versatility of our approach as it is able to handle a wide range of languages
and speakers efficiently.

Table 4. Average Objective Scores On Lombard Grid Test Set.

System SIIB HASPI ESTOI SRMR NCM

UN 13.64 1.60 0.21 2.22 0.23
SGAN 27.12 2.24 0.23 5.01 0.32

D2StarGAN 29.85 2.29 0.26 5.83 0.35

6. Conclusions

In this paper, aiming at solving the problem where the relatively smooth Lombard
speech generated by existing speech intelligibility transformation frameworks is insufficient
to meet real-life complex communication requirements, a metric-optimized near-end noise
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adaptive speech intelligibility enhancement method is proposed, called D2StarGAN. This
approach combines the concepts of StarGAN and a dual non-parallel SSC discriminator
with a data-based strategy while taking into account the differences in complex telephonic
speech environments. A dual non-parallel SSC discriminator is introduced to optimize
the solvability metric in the D2StarGAN architecture. This discriminator can accurately
distinguish the difference features between the converted speech and the target speech,
resulting in more accurate conversion. We conducted a comprehensive objective and sub-
jective evaluation of the proposed D2StarGAN approach. For the objective evaluation, we
used a series of objective metrics to measure the quality of speech conversion, including
speech intelligibility, sound quality retention, and speech similarity. For the subjective
evaluation, we conducted a manual auditory assessment, inviting reviewers to rate the
perception of the converted speech and provide feedback on their subjective opinions.
The results show that our D2StarGAN method exhibits superior performance in both
objective and subjective evaluations. Compared to traditional methods, D2StarGAN can
achieve differential conversion more accurately in complex telephone speech environments,
improving the interpretability and quality of speech. However, the current speech intel-
ligibility enhancement technology remains far from the high comfort levels of practical
applications. Future work will see further research conducted on the comfort and stability
of practical applications.
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