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Abstract: Aiming to solve the problems of large-scale changes, the dense occlusion of ship targets,
and a low detection accuracy caused by challenges in the localization and identification of small
targets, this paper proposes a ship target-detection algorithm based on the improved YOLOv5s
model. First, in the neck part, a weighted bidirectional feature pyramid network is used from top
to bottom and from bottom to top to solve the problem of a large target scale variation. Second, the
CNeB2 module is designed to enhance the correlation of coded spatial space, reduce interference
from redundant information, and enhance the model’s ability to distinguish dense targets. Finally,
the Separated and Enhancement Attention Module attention mechanism is introduced to enhance
the proposed model’s ability to identify and locate small targets. The proposed model is verified by
extensive experiments on the sea trial dataset. The experimental results show that compared to the
YOLOv5 algorithm, the accuracy, recall rate, and mean average precision of the proposed algorithm
are increased by 1.3%, 1.2%, and 2%, respectively; meanwhile, the average precision value of the
proposed algorithm for the dense occlusion category is increased by 4.5%. In addition, the average
precision value of the proposed algorithm for the small target category is increased by 5% compared
to the original YOLOv5 algorithm. Moreover, the detection speed of the proposed algorithm is
66.23 f/s, which can meet the requirements for detection speed and ensure high detection accuracy
and, thus, realize high-speed and high-precision ship detection.

Keywords: object detection; YOLOv5; small target; crowded detection; attention mechanism

1. Introduction

With the development of artificial intelligence and other emerging technologies, the
research on intelligent and unmanned boats has been highly valued. As a developing
country, China has also experienced an inevitable trend of using intelligent and unmanned
boats in the development of national strategies. Intelligent boats denote a new type of boat,
with their capabilities of autonomous environmental perception, autonomous planning,
and autonomous navigation having a broad application scope in both military and civilian
fields. Intelligent boats can complete military tasks in different types of dangerous waters
and have an important role in various marine-related tasks, including surface cleaning,
maritime transport, maritime patrol, and maritime monitoring. However, with the increase
in the demand for intelligent vessels to complete target-detection tasks in different water
types, vision-detection methods have been constantly evolving.

Traditional vision-detection methods are mostly based on machine learning, where
features are extracted by image algorithms, such as LBP (Local Binary Patterns) [1], and
then fed to classifiers, such as SVM (Support Vector Machine) [2–4] and KNN (K–Nearest
Neighbor) [5], to classify candidate targets. Traditional visual-detection methods have
many drawbacks; for instance, machine-learning-based visual-detection methods rely
greatly on the design of manual features and are susceptible to interference from the exter-
nal environment. However, since the sea surface is a complex and volatile environment,
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traditional target-detection methods are not robust enough and have an effective real-time
performance in this environment. Therefore, to perform the maritime target-detection task
efficiently and accurately, a more efficient, accurate, and robust method is necessary to
complete image feature extraction and target recognition. Currently, deep-learning-based
target-detection algorithms have been a hot spot and a challenging research area in the field
of vision detection. Compared to the traditional machine-learning-based vision-detection
methods, deep-learning-based target-detection methods can learn features from a large
amount of data and achieve high accuracy in both prediction and classification. By continu-
ously learning features and adjusting a model’s parameters to handle nonlinear problems,
self-adaptability can be achieved. Deep-learning-based target-detection algorithms mainly
include one-stage algorithms, such as the YOLO (You Only Look Once) [6–8] series of algo-
rithms, and two-stage detection algorithms, such as the Faster R-CNN (Region-CNN) [9].
It should be noted that the YOLO series of algorithms have been widely used due to their
simple network structure and high real-time performance.

In recent years, target-detection algorithms have been widely studied in the fields
of pedestrian detection [10–14], object tracking [15–17], face detection [18,19], stereo im-
ages [20–22], car detection [23–25], defect detection [26,27], semantic detection [28,29], and
hyperspectral-anomaly detection [30,31]. However, there are certain limitations in their
practical application, particularly due to the problems of poor small-target-detection per-
formance and target occlusion. Namely, in small-target detection, small low-resolution
targets with little visualization information make it challenging to extract features with
discriminative power; the detection performance is highly susceptible to interference from
environmental factors, which can easily cause items in the background to be identified as
targets, resulting in false detection. To address the problems of low resolution and little vi-
sual information on small targets, Lim et al. [32] proposed a context-based target-detection
method; this method can solve the problem of little visual information on small targets; but,
its detection accuracy and speed are still low. Deng et al. [33] proposed an extended feature
pyramid network (EFPN) with additional high-resolution pyramid layers; the EFPN has
been designed particularly for small-target detection; but, the feature coupling still affects
the detection performance of this method for small objects.

Occlusion includes the mutual occlusion between both the targets to be detected and
the targets to be detected being occluded by interferers [34]. The first type of occlusion
makes the target location difficult to determine because the features between targets are
similar; meanwhile, the second type of occlusion causes a large loss of target information
due to the occlusion caused by interfering objects and can easily lead to missed detection.
Under the condition of self-obscuration between targets [35], the locating capability of a
model and the sensitivity to the NMS threshold [36,37] can be enhanced to improve detec-
tion accuracy. Moreover, when targets are obscured by interferers, the missed-detection
rate can be reduced by improving the ability of a model to learn target features.

Aiming to address the problems of the large-scale changes, density, and occlusion of
ship targets, and a low detection accuracy caused by difficulties in locating and identifying
small targets, the existing mainstream target-detection algorithms have been tested on
sea test data. The results have shown that the YOLOv5 algorithm’s mAP (mean average
precision) and detection FPS are higher than those of the one-stage detection algorithms,
such as the YOLOv4 and YOLOv7 algorithms, and two-stage detection algorithms, such as
the Faster R-CNN algorithm. In view of that, the YOLOv5 algorithm [38–40] was used as a
basic algorithm for ship target detection.

This paper introduces a ship target-detection algorithm based on the improved
YOLOv5 algorithm. In the neck part, the BiFPN (Bidirectional Feature Pyramid Net-
work) [41] is used as a weighted bidirectional feature pyramid network from top to bottom
and from bottom to top. During the feature-fusion process, the importance of different
features is learned by performing channel-stitching operations on the shallow and deep in-
formation; different weights are applied to features according to their importance to solving
the problem of large changes in the target scale. The CNeB2 module is designed to enhance
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the correlation of the coded airspace so that all pixels in a k × k square area centered on the
center point of the spatial position in each spatial position are interrelated, thus allowing
the extraction of independent information on different targets, reducing the interference
of redundant information and strengthening the recognition and differentiation abilities
to block dense targets. Further, the SEAM [42] (Separated and Enhancement Attention
Module) attention mechanism is added before an image is input to the detector to focus
on important information needed in the current task, which reduces the attention to other
miscellaneous information and enhances the ability to identify and locate small targets.

2. Materials and Methods
2.1. YOLOv5 Model

The YOLOv5 algorithm is a one-stage target-detection algorithm that can perform three
tasks: target detection, semantic segmentation, and image classification. The structures
of the YOLOv5 network models are the same; the only difference relates to the depth
and width of the network model. The structure of the YOLOv5 network model is shown
in Figure 1, where it can be seen that this model consists of three main parts: backbone,
neck, and head. The backbone performs the main feature extraction of an image using
three modules, namely, the CBS module, consisting of the Conv module, a subsumed
layer, and an activation function; the C3 module; and the SPPF module. In the neck part,
multiple Upsample modules, C3 modules, CBS modules, and channel-stitching operations
are used to fuse the feature maps of different receptor fields and enhance the multiscale
feature extraction capability of the model. The head part consists of three detectors. In
addition, adaptive anchor frames are used to perform target detection on feature maps of
different scales.
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2.2. BiFPN Model

When processing the features extracted by the backbone network, the YOLOv5 algo-
rithm adopts a separate top-down and bottom-up PANet (Path–Aggregation Network) for
feature-fusion processing; meanwhile, the weighted bidirectional feature pyramid network
(the BiFPN, see Figure 2) regards each top-down and bottom-up path as a feature network
layer. Repeated operations can be carried out in the feature layer. The features extracted
on different levels are fully integrated. In addition, the BiFPN learns the importance of
different features through feature fusion and applies different weights to features accord-
ing to their importance. In this way, all extracted features can be fully integrated while
distinguishing different features, and the problem of the large-scale changes of ship targets,
can be effectively solved.
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2.3. CNeB2 Module

The CNeB2 module introduces the idea of convolutional modulation [43], based on
the C3 module, and its structure is presented in Figure 3. For an input of X ∈ RH ×W × C,
where H represents the height of an input image, W is the width of the input image, and C
is the number of channels in the image input, a simple depth convolution with a kernel
size of k × k and the Hadamard product are used to calculate the output of Z as follows:

Z = A�V (1)

A = DWConvk×k(W1X) (2)

V = W2X (3)

where W1 and W2 are the weight matrices of the two linear layers and DWConvk × k denotes
a depth convolution with a kernel size of k × k.

The convolutional modulation operation allows all pixels within a k × k square region
centered on the centroid of the spatial location in each spatial location to be mutually
correlated. Information interaction between channels is achieved through linear layers and
the output data of the depth convolution are used as weights to modulate the features after
linear projection, where the output of each spatial location represents a weighted sum of all
pixels within a square region. The CNeB2 module can enhance the coded space domain
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correlation, reduce interference from redundant information, and extract independent
information on different targets, solving the problem of mutual occlusion between targets.
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In the CNeB2 module, the data first pass through the CBS module in the first branch
and then through two convolutions, one having a kernel size of 1 × 1 and the other having
a deep convolution with a kernel size of 11 × 11. The data are then multiplied in the
convolution block with a kernel size of 1 × 1, which converts the input to the output.
Finally, this result of the channel-stitching operations is combined with the CBS module’s
output in the second branch through the convolution with a kernel size of 1 × 1.

2.4. SEAM

The SEAM is used to focus on important information needed for the task at hand and
reduce the attention to redundant information, even filtering out distracting information
to solve the problem of information overload and improve the accuracy and efficiency of
task processing. As there are many small targets in the dataset used in this study, which
are difficult to identify, the SEAM attention mechanism is used to improve the algorithm’s
ability to locate and identify small targets to enhance the algorithm’s attention to small
target features.

The structure of the SEAM attention mechanism is presented in Figure 4, where it
can be seen that the first part of the SEAM is a depth-separable convolution with resid-
ual connections. The depth-separable convolution operates on the depth-by-depth level,
where the convolution is separated on a channel-by-channel basis. Although the depth-
separable convolution can learn the importance of different channels and reduce the num-
ber of parameters, it ignores the informational relationships between channels. Therefore,
the output data of different depth convolutions are combined using the point-by-point
(1 × 1) convolution and the channel information is fused using two fully connected layers
to strengthen the connections between the channels. Then, the output of the fully connected
layer is processed using an exponential function to enhance the locating capability of the
module for small targets; finally, the output of the SEAM’s output is multiplied by the
original features.

2.5. Proposed Improved Algorithm

The overall framework of the proposed improved YOLOv5 algorithm for maritime
ship target detection is shown in Figure 5. As shown in Figure 5, the backbone part extracts
the main image features using the CBS, C3, and SPPF modules. The BiFPN is employed in
the neck part to combine the shallow semantic information extracted by the backbone part
with the deep semantic information extracted by the neck part to achieve multiscale feature
fusion. In the improved model, the C3 module in the first three layers of the neck part of
the original YOLOv5 network is changed to a CNeB2 module to enhance the coded space
relevance, reduce interference from redundant information, and enhance the recognition
of dense targets for distinction in occlusion. The backbone part is mainly used to extract
main feature information and, then, multiscale feature fusion is performed in the neck part.
However, the up-down fusion of multiple scales may cause a certain redundancy in feature
information, thus affecting the accuracy of the prediction results. The main function of the
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CNeB2 module is to enhance the coding spatial correlation and reduce interference from
redundant information, which can improve this problem. Therefore, this study replaces
the C3 module in the neck part of the original YOLOv5 model with the CNeB2 module.
Further, before an image is input into the detector, the SEAM attention mechanism is added.
This mechanism focuses on important information needed for the current task among
the massive input data, reduces the algorithm’s attention to miscellaneous information,
and even filters out interference information, thus improving both the positioning and
recognition abilities of the proposed algorithm for small targets.
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3. Experiments

The proposed algorithm was tested on a sea trial dataset. The process of constructing
the sea trial dataset used in the experiments, the experimental platform, the parameter
settings, and the experimental methodology is described in the following section.
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3.1. Experimental Dataset

The experimental dataset was obtained from the video data on marine vessels collected
during the sea trial of the “Shipborne Unmanned Underwater Vehicle Retract System,”
which is a key, special project of “Deep–sea Key Technologies and Equipment” under
the national key research and development plan led by Jiangsu University of Science
and Technology. The dataset included 740 images obtained through frame extraction
and deweighting; the VOC format annotation was performed on the acquired images
through LabelImg. The marked images were enhanced with offline data to improve the
robustness of the proposed algorithm. By performing a random combination of operations
of flip transformation, brightness adjustment, Gaussian blur, and Gaussian noise addition,
2960 experimental images were obtained after offline data enhancement of the existing
dataset. The data were divided into training and validation sets according to the ratio of
8:2. Further, the sea trial dataset was divided into five categories: unmanned surface vessel;
kayak boat; the experimental mother ship; autonomous underwater vehicle; and other
ships, which were labeled as USV, kayak boat, muchuan, AUV, and ship, respectively. The
categories and their numbers of labels are shown in Figure 6.
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3.2. Experimental Platform and Parameter Settings

The operating system of the experimental platform was Windows 11; the deep learning
framework was Pytorch1.8.1; the CUDA version was 11.1; the cuDNN version was 8.0.4;
the GPU was RTX 3060 Ti; and the memory size was 32 GB. The 640 × 640 RGB images
were used as an input; the batch size was set to four; and the maximum number of training
epochs was set to 300. The initial learning rate was 0.01; the function-optimization method
was SGD; the warmup epochs were 3.0; and the box loss gain and class loss gain were 0.05
and 0.5, respectively. The IoU training threshold was set to 0.2 and the anchor-multiple
threshold was 4.0. Mosaic was not used for data enhancement.

3.3. Experimental Design
3.3.1. Evaluation Indexes

To verify the accuracy of the proposed model, the mAP and detection speed values
obtained by precision and recall were used as evaluation metrics in this study. In this study,
the AP (average precision) indicated the detection accuracy of a single category. The P–R
curve denoted a curve drawn based on the precision and recall values, using them as the
vertical and horizontal axes, respectively. The AP indicated the area under the P–R curve of
a certain category and the mAP value represented the average of the area under the P–R
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curve of all categories; the larger the mAP was, the higher the algorithm’s accuracy was.
The mAP was calculated by:

mAP =
1
n

n

∑
i=1

APi (4)

where n denotes the total number of categories and i is the category index.
Further, the precision and recall values were, respectively, calculated by:

P =
TP

(TP + FP)
(5)

R =
TP

(TP + FN)
R =

TP
(TP + FN)

(6)

where TP, TN, FP, and FN are defined as follows:
TP (True Positive): the original sample represented a positive class, as well as the

prediction result;
TN (True Negative): the original sample was a negative class, as well as the predic-

tion result;
FP (False Positive): the original sample denoted a negative class but the prediction

result was a positive class;
FN (False Negative): the original sample was a positive class but the prediction result

was a negative class.
The detection speed FPS was calculated as follows:

FPS =
1000

t
(7)

where t is the inference time, expressed in ms.

3.3.2. Experimental Results

The trained YOLOv5 algorithm and the proposed improved algorithm were tested on
the same dataset, in turn, and the test results are displayed in Figure 7. Since the ship class
coincidence rate in the figure exceeded 50%, it was defined as an obscured target. As shown
in the first image in Figure 7a, the ship category was a dense target. The ratio between the
width and height of the boundary box for the AUV class in the figure and the width and
height of the image was less than 0.1; it was defined as a small target. As shown in Figure 7,
compared to the detection result of the original YOLOv5 algorithm, the detection box of
the proposed algorithm fitted the target to be detected more closely and could detect dense
and occluding targets better. Meanwhile, the detection accuracy of the proposed algorithm
for small targets was higher than that of the original YOLOv5 algorithm, which indicated
that the proposed algorithm reduced the false detection and missed detection rates of the
original YOLOv5 algorithm and improved the detection of ships at sea.

The P–R curves of the original YOLOv5 algorithm and the proposed algorithm trained
on the same sea trial dataset are shown in Figure 8; Figure 8a displays the P–R curve of the
YOLOv5 algorithm and Figure 8b presents the P–R curve of the proposed algorithm. In
Figure 8, it can be seen that the AP of the dense occlusion category (ship) was improved by
4.5%, the AP of the small target category (AUV) was improved by 5%, and the APs of the
other categories were unchanged.
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The loss curve can reflect the dynamic trend of network training; so, the loss curve
was selected in this study to measure the difference between the predicted results and the
corresponding real values. The loss curve of the proposed algorithm is shown in Figure 9,
where it can be seen that both training loss and validation loss converged and the two
curves basically coincided, thus achieving a good fit.
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4. Discussion
4.1. Ablation Experiments

The effectiveness of the modules in the improved algorithm was verified through
ablation experiments. The results of the ablation experiments are shown in Table 1.

Table 1. The results of the ablation experiments.

Algorithm mAP (%) FPS (Frame/s)

YOLOv5s 94.0 67.56
YOLOv5s + BiFPN 94.8 65.36
YOLOv5s + SEAM 94.3 66.67
YOLOv5s + CNeB2 94.4 72.46

YOLOv5s + BiFPN + SEAM 95 64.12
YOLOv5s + BiFPN + CNeB2 95.5 71.42
YOLOv5s + CNeB2 + SEAM 94.6 70.92

YOLOv5s + BiFPN + CNeB2 + SEAM 96 66.23

In Table 1, it can be seen that adding the BiFPN, SEAM attention mechanism, and
CNeB2 module to the original YOLOv5 algorithm, separately, improved the mAP value by
0.8%, 0.4%, and 0.3%, respectively. However, adding the BiFPN and the SEAM attention
mechanism reduced the detection speed by 2.20 f/s and 0.89 f/s, respectively. In contrast,
the addition of the CNeB2 module to the original YOLOv5 algorithm increased the detection
speed by 4.90 f/s. Further, the addition of two lots of the BiFPN, CNeB2 module, and SEAM
attention mechanism to the original YOLOv5 algorithm, separately, improved the mAP by
1.0%, 1.5%, and 0.6%, respectively. However, adding two lots of the BiFPN reduced the
speed by 3.44 f/s; meanwhile, adding two lots of the CNeB2 module and SEAM attention
mechanism increased the speed by 3.86 f/s and 3.36 f/s, respectively. Finally, adding all of
the modules to the original YOLOv5 model at the same time increased the mAP to 96%,
which improved the overall mAP by 2%; the speed decreased by 1.33 f/s but still had a
high real-time performance.
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4.2. Comparative Experiments

On the sea trial dataset, the proposed Yolov5 model was compared with five main-
stream algorithms, including the Faster R-CNN, SSD, YOLOv4, YOLOv5, and YOLOv7
algorithms, using the evaluation metrics presented in Section 3.3.1. The comparison results
are shown in Table 2. To conduct a fair comparison, the training parameters of the YOLOv4
and YOLOv7 algorithms, such as input shape, epoch, and batch size, were the same.

Table 2. Comparison of the proposed algorithm and several mainstream algorithms.

Algorithm USV (%) Kayak Boat (%) Muchuan (%) Ship (%) AUV (%) mAP (%) FPS (Frame/s)

Faster R-CNN 70.4 94.2 97.8 43.1 59.2 72.9 19.84
SSD 90.8 95.6 92.4 81.2 74.1 86.8 30.64

YOLOv4 88.2 99.8 100.0 85.4 79.6 90.6 28.11
YOLOv5 99.3 99.5 99.5 91.2 80.7 94.0 67.56
YOLOv7 95.8 99.5 97.5 91.2 79.4 92.7 61.35

Ours 99.3 99.5 99.5 95.7 85.7 96.0 66.23

As shown in Table 2, compared to the two-stage Faster R-CNN algorithm, the proposed
algorithm improved the mAP and detection speed by 23.1% and 46.39 f/s, respectively;
compared to the one-stage algorithms, SSD, YOLOv4, YOLOv5, and YOLOv7, the mAP of
the proposed algorithm was improved by 9.2%, 5.4%, 2%, and 3.3%, respectively. Further,
compared to the one-stage algorithms, SSD, YOLOv4, and YOLOv7, the detection speed of
the proposed algorithm was improved by 35.59 f/s, 38.12 f/s, and 4.88 f/s, respectively.
However, compared to the YOLOv5 algorithm, the detection speed of the proposed al-
gorithm decreased by 1.33 f/s; but, it could still ensure high real-time performance. The
APs of the proposed algorithm in all categories were the highest, except for the categories
muchuan and kayak boat, for which the performances of the proposed algorithm were 0.5%
and 0.3% below the maximum value, respectively.

The closer the value of precision was to one, the more targets the algorithm could
detect. As shown in Table 3, compared to the two-stage Faster R-CNN algorithm, the
proposed algorithm improved the total precision by 43.7%; for all types of targets, the
precision values of the proposed algorithm were higher than those of the two-stage Faster
R-CNN algorithm. Further, the precision values of the proposed algorithm for the kayak
boat, muchuan, and AUV targets were 1%, 0.2%, and 0.5% lower than the maximum
values of the one-stage algorithms, the SSD, YOLOv4, and YOLOv5 algorithms; but, the
total precision values were improved by 0.9%, 4.3%, and 1.6%, respectively. Meanwhile,
for the USV and ship, the proposed algorithm had the highest precision values among
all algorithms.

Table 3. Comparison results of the precision of different algorithms.

Algorithm USV (%) Kayak Boat (%) Muchuan (%) Ship (%) AUV (%) All (%)

Faster R-CNN 41.4 51.9 59.2 59.7 60.2 54.5
SSD 92.9 100.0 100.0 96.1 97.3 97.3

YOLOv4 95.4 100.0 100.0 88.5 85.7 93.9
YOLOv5 98.8 99.1 100.0 91.3 94.0 96.6
YOLOv7 91.2 95.4 95.3 67.7 87.5 90.9

Ours 99.0 99.0 99.8 96.4 96.8 98.2

Finally, the closer the value of recall was to one, the higher the accuracy of the tar-
get detection of the algorithm was. As shown in Table 4, compared with the one-stage
algorithms, the SSD and YOLOv7, the total recalls of the proposed algorithm increased by
31.6% and 14.9%, respectively. The results indicated that the recall values of the proposed
algorithm for the USV and muchuan classes were 0.1% and 0.8% lower than those of the
one-stage algorithm YOLOv5 and the two-stage algorithm Faster R-CNN; but, the total
recall values were improved by 1.2% and 17.8%, respectively. Further, the recall values
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of the proposed algorithm for the kayak boat, ship, and AUV were the highest among
all algorithms.

Table 4. Comparison results of the recall of different algorithms.

Algorithm USV (%) Kayak Boat (%) Muchuan (%) Ship (%) AUV (%) All (%)

Faster R-CNN 74.0 97.6 100.0 45.3 58.4 75.0
SSD 62.8 92.6 64.0 50.9 35.6 61.2

YOLOv4 84.6 95.2 97.6 81.8 71.3 86.1
YOLOv5 99.0 100.0 99.2 85.6 74.1 91.6
YOLOv7 80.6 98.3 95.3 75.4 47.5 77.9

Ours 98.9 100.0 99.2 89.9 76.0 92.8

5. Conclusions

This paper proposes an improved YOLOv5-based ship target-detection algorithm to
address the problems in the existing maritime ship target-detection methods. The proposed
algorithm uses top-down and bottom-up weighted bidirectional feature pyramid networks
for multiscale feature fusion in the neck part. In addition, the CNeB2 module and SEAM
attention mechanism are used to optimize the model structure to solve the problems of
obscured dense targets, which are difficult to distinguish and identify, and small targets
that are difficult to locate. The performance of the proposed algorithm is verified by a large
number of experiments on a sea trial dataset. The experimental results show that compared
to the original YOLOv5 algorithm, the proposed algorithm can improve the accuracy,
recall, and mAP values by 1.3%, 1.2%, and 2%, respectively; the AP of the occlusion
intensive category (ship) is improved by 4.5%, and the AP of the small target category
(AUV) is improved by 5%. The proposed algorithm can achieve better detection accuracy
while meeting the detection speed requirements, thus effectively realizing high-speed and
high-precision ship detection.

However, there is still room for improvement in the detection accuracy of the proposed
algorithm for AUV small targets. In view of that, future research will aim to optimize
the network structure of the proposed algorithm and enhance its feature-learning ability
and recognition and locating capabilities for small targets, which will further improve its
overall detection accuracy.
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