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Abstract: The Generative Adversarial Network (GAN) has recently experienced great progress in
compositional image synthesis. Unfortunately, the models proposed in the literature usually require a
set of pre-defined local generators and use a separate generator to model each part object. This makes
the model inflexible and also limits its scalability. Inspired by humans’ structured memory system,
we propose MemoryGAN to eliminate these disadvantages. MemoryGAN uses a single generator as
a shared memory to hold the heterogeneous information of the parts, and it uses a recurrent neural
network to model the dependency between the parts and provide the query code for the memory. The
shared memory structure and the query and feedback mechanism make MemoryGAN flexible and
scalable. Our experiment shows that although MemoryGAN only uses a single generator for all the
parts, it achieves comparable performance with the state-of-the-art, which uses multiple generators,
in terms of synthesized image quality, compositional ability and disentanglement property. We
believe that our result of using the generator of the GAN as a memory model will inspire future work
of both bio-friendly models and memory-augmented models.

Keywords: Generative Adversarial Network; compositional image synthesis; memory; disentanglement

1. Introduction

In recent years, deep learning has made significant progress in image processing [1–3].
Particularly, generative models [4–7] have achieved remarkable success in image generation
and manipulation. A more recent trend in image generation is compositional image
synthesis. Compositional image synthesis aims to capture the inherent compositional nature
of our world, where complex objects are formed by combining simpler components [8].
By incorporating this prior into the generation process, compositional image synthesis
allows for the semantic control of its components, enabling the localized manipulation
of the image, increasing the interpretability of the generation process, and improving the
reusability and efficiency of the model. It has numerous applications, including content
creation and design, image editing, virtual reality, and gaming. Despite these important
characteristics and potential applications, compositional image synthesis has received
relatively little attention from the research community until recently.

Most previous works have primarily focused on generating visually appealing images.
One notable approach in this context is the style-based GAN known as StyleGAN [9].
While it is capable of producing high-fidelity images and achieving some extent of disen-
tanglement between coarse and fine features, it lacks the ability to represent the semantic
parts of the object and cannot effectively control the attributes of these parts accordingly.
Additionally, the achieved disentanglement is limited, since editing one attribute often
affects other attributes. These limitations arise from the usage of a single latent vector to
govern the generation of the entire image. In this study, we propose the utilization of a set
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of latent codes to control the generation process, where each latent code corresponds to a
specific semantic part of the object.

Other researchers focus on mapping segmentation masks to realistic images. A no-
table work in this field is SEAN [10], which encodes the mask as a modulation vector to
control the semantic meaning of each region and employs a per-region style to control the
appearance of each semantic region. While this approach achieves semantic generation
and control, it requires the segmentation mask as input, thus limiting its ability to generate
images from scratch. Additionally, since the generation is conditioned on the segmentation
mask, it can only manipulate the appearance of the region and necessitates manual effort to
change the shape of the region. In contrast, our method can generate images from scratch
and automatically control both the shape and appearance of each semantic part.

A recently proposed work called SemanticStyleGAN [11] achieves compositional syn-
thesis. While it demonstrates high-quality image generation and composition, it requires
a set of pre-defined generators and uses a separate generator for each component. This
structure has several disadvantages. First, the parameter count increases linearly with the
semantic part count, rendering it non-scalable. Second, the representation is inefficient
because each part is individually modeled without parameter sharing. Third, it lacks
flexibility as the generators are designed for specific tasks, making it challenging to transfer
the learned representations to new tasks. Manual decisions regarding the choice of gen-
erator are necessary for new tasks, introducing subjective bias and potentially leading to
suboptimal training. Thus, the question arises: How can we achieve compositional image
synthesis without encountering these limitations?

We draw inspiration from the human memory system, which exhibits compositional-
ity as a key feature of human intelligence. Evidence suggests that humans store, retrieve,
and manipulate information through a structured memory system. Knowledge is accumu-
lated in long-term memory, which is then retrieved and manipulated in working memory,
which is also known as short-term memory [12]. This memory system enables human
beings to demonstrate flexible out-of-distribution and systematic generalization abilities,
highlighting a significant gap between state-of-the-art machine learning models and hu-
man intelligence [8,13]. In terms of compositional learning, this memory system offers
efficiency and flexibility. This raises the question: Can we enhance compositional learning
in machine learning by introducing a similar memory system? Our work demonstrates
that this possibility is indeed achievable.

Interestingly, recent work has shown that the hidden features generated by the gen-
erators of GANs posses several important properties, such as disentanglement [14,15]
and out-of-domain generalization [16,17]. These results indicate that the generator of
GANs could potentially be a suitable memory model. It turns out GANs, especially Style-
GANs [9,14,18] can be naturally viewed as a memory system. A random vector z is sampled
from a Gaussian distribution, which is mapped to a latent code w by Multi-Layer Percep-
trons (MLPs). The latent code is used to modulate the generator and produce the final
image. We may simply treat z or w as the query code and the output of the generator as
the corresponding retrieved result. Unfortunately, as a memory model, a basic function is
to store heterogeneous information. It is well known that it is hard for GANs to generate
heterogeneous objects, and it tends to suffer mode collapse. Most GAN models in the
literature are designed to model homogeneous objects sampled from a single distribution,
which makes them less useful as a memory model.

In this work, we propose MemoryGAN as a solution to overcome these limitations.
MemoryGAN employs a memory system consisting of a long-term memory and a working
memory. The long-term memory is a GAN generator, serving as a centralized memory to
store information about all the parts. To address the mode collapse issue mentioned earlier,
we introduce the working memory, which comprises an auto-regressive model that captures
the dependencies between parts and generates the query code for the long-term memory.
Consequently, the query vector fed into the long-term memory is conditionally sampled
based on previous samples. This enables our model to avoid sampling at non-smooth
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boundaries between parts, effectively mitigating mode collapse issue. Despite using a
single generator for all parts, our experiments demonstrate that MemoryGAN achieves
comparable performance to state-of-the-art models that employ multiple generators, both
in terms of image quality and compositional ability.

MemoryGAN offers three key advantages. First, the parameter count required for
parts remains constant, ensuring scalability. Second, all parts are modeled within a sin-
gle generator, facilitating the interaction between parts and enabling parameter sharing.
This aspect is crucial for out-of-distribution generalization. Third, as a memory system,
MemoryGAN features a flexible query and feedback mechanism, making it convenient to
transfer learned representations to new tasks. We believe that our approach of utilizing
the GAN generator as a memory model will pave the way for future research on both
biologically inspired models and memory-augmented models. Our contributions in this
work are summarized as follows:

1. We propose a compositional image synthesis model that explicitly models each com-
ponent of the object. Our model is more interpretable and enables individual control
over the attributes of each semantic part with minimal impact on other components.

2. We propose a method that utilizes a single generator for all semantic parts, making
our model scalable. We extensively conduct experiments to evaluate the performance
of our model and demonstrate that it achieves comparable results in terms of image
quality and compositional ability to state-of-the-art approaches that employ multi-
ple generators.

3. We demonstrate that the generator of a GAN can serve as a heterogeneous mem-
ory model and present MemoryGAN that mimics humans’ long-term memory and
working memory system. Our work has the potential to inspire future research in the
development of bio-friendly models and memory-augmented models.

2. Related Work

There are three features of our model: compositional image synthesis; iteratively
generating images; and using a memory model to store and retrieve information. In this
section, we will review related works from these three aspects.

Compositional Image Synthesis Composition can occur at different levels depending
on how the underlying generative factors are disentangled. One approach is to disentangle
the generation factors into a background, a foreground shape and a foreground appear-
ance [19,20]. This line of work is usually performed under an unsupervised manner or with
the bounding box information to disentangle the foreground object with the background.
Different from these models, we are interested in fine-grained disentanglement and compo-
sition under supervision. Another line of work tries to decompose scenes or objects into
meaningful parts [11,21], with [11] or without [21] supervision. Unfortunately, the work
in [21] can only disentangle large parts on the face dataset, such as background, skin and
hair. Their disentanglement quality is low and needs to carefully chose the total part
count to match the ground truth. Although SemanticStyleGAN [11] achieves high quality
part level disentanglement and composition, they use a separate local generator for the
generation of each part, while our MemoryGAN uses a single generator for the generation
of all the parts, which makes the generator flexible and suitable as a memory model.

The world is intrinsically three-dimensional. Many researchers have recently taken
this fact into account for image generation [22–24]. The work in [22], known as NeRF,
achieves impressive 3D scene rendering. There, given enough 2D images of one scene
taken from various viewpoints, the 3D scene is molded as a neural radiance field, which
maps the point location and the camera view direction into a volume density and a color
value. Images with novel viewpoints can be generated by volume rendering along a
novel camera view direction. GRAF [23] extends NeRF to generate novel objects by
conditioning the generator with a set of random codes for the camera view direction
and the object shape and appearance. GIRAFFE [24] further extends the model to handle
multiple objects and achieves better control of rotation and translation. The work in these
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papers is promising, but their disentanglement is at the object level, while we are interested
in disentanglement at the semantic part level and emphasize the usefulness of the GAN
generator as a memory model.

Iteratively Generate Images Iteratively generating images has a long history in the
literature [25–31]. Auto-regressive models [6,32] generate images pixel by pixel, where the
sampling for current step is conditioned on the previous sampling. The work of [25] pro-
vides a recurrent attention model (RAM) to mimic a human’s glimpse process, in which in-
formation is accumulated piece by piece through a sequence of attention steps. DRAW [26]
and its follow-up convolutional version [27] extend this idea to a generative model. Their
work can be viewed as an extension of a variational auto-encoder [5], where the encoder
and the decoder are recurrent neural networks. They use a differentiable read and write
head to determine where to read, where to write and what to write; as a result, images
are drawn on a canvas matrix step by step. Instead of iteratively generating the images,
a recently proposed work, PEGANs [33], adopts evolutionary computing techniques to
iteratively refine a set of generators. The main difference between these works and ours is
that there is no disentanglement in the generation process of these works.

Another line of work considers the fact that a scene usually composes multiple objects.
AIR [28] and its follow-up work [29] represent the object with a what code, a where code
and a scalar value that represents the presence probability. One object is generated at each
step until all the objects are generated. MONet [31] uses an attention network to generate a
mask for each object. They use this mask to control what object to generate and where the
object is located. IODINE [30] uses a spatial Gaussian mixing model to encode the “where”
and “what” information of the object. The parameters of the spatial Gaussian mixing model
are updated using iterative amortization [34], which is helpful to disentangle ambiguous
objects by leveraging both bottom–up and top–down signals.

These models differ from ours presented in this paper in the following three aspects.
First, they are all built upon VAE models, which needs an encoder network to encode the
distribution of the statistic layer. Our model is mainly built upon a GAN; thus, there is no
encoder network in our model. Second, although these models achieve disentanglement
during image generation, their disentanglement is at the object level, while our model is
concerned with disentanglement at the semantic part level. Third, these models consider
the “where” information of objects: although an important factor to consider and definitely
worth exploring, it inevitably complicates the model. Thus, they are only feasible on
simple datasets, and there is no evidence that their model can scale to real-world and
high-resolution image generation.

Memory Models There are a large number of memory models published in the litera-
ture. Early work dates back to the associative memory models, such as the hopfield neural
network [35] and sparse distributed memory model [36]. The notion of association there
means that given a part of the query information, the whole information can be retrieved
from the memory. Those works only focus on memory itself and do not consider how to
use the memory to perform compositional learning. With the rise of deep learning, several
memory-augmented neural network models are developed [37–40]. NTM [39], and the
follow-up work DNC [40] maintains an external memory with differentiable read and
write heads. These read and write heads are controlled by a recurrent neural network
(RNN) [41,42]. Their work shows that the model can learn to use the memory to solve
tasks that need reasoning, such as copy, sorting and shortest path search. Different from
these models, our memory model is actually a GAN generator. Compared with these
deterministic memory models, the generative memory model has several advantages. First,
it does not passively store information but is able to generate novel information that have
never been seen. Second, it embeds the entities in a smooth manifold. This property is
evidenced by style-based GAN models [9]. Given two images, we can generate smoothly
changing images by linearly interpolating the latent codes, which means the latent space
representing the images is smooth. This property is beneficial for out-of-distribution gener-
alization and association since, given a latent representation, it is possible to find a similar
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but different latent representation near it. Recent work also treats the generator of GAN as a
memory model [43,44], but these models focus on lifelong learning [45]. They leverage the
generative nature of GAN to perform pseudo-rehearsal to solve a catastrophic forgetting
problem [46], which is not our focus in this paper.

3. Methods

Our work is built upon SemanticStyleGAN [11]. In this section, we first overview
the main logic of MemoryGAN in Section 3.1. Then, we review SemanticStyleGAN in
Section 3.2, and the details of our MemoryGAN are given in Section 3.3.

3.1. Overview of MemoryGAN

MemoryGAN is inspired by the human memory system, especially the long-term
memory and the working memory theory [12,47]. Its structure is illustrated in Figure 1.
There are three parts in MemoryGAN: a working memory Mw which is modeled by a
Controller module and a Compositional module; a long-term memory Ml which is the
generator of GAN; and as we use adversarial loss to train the whole model, we also need a
discriminator D.

re
al

 / 
fa

ke

Figure 1. Overview of MemoryGAN. The working memory Mw consists of a Controller module
and a Composition module. The Controller provides the query keys (q1, q2, · · · , qT) to the long-term
memory Ml , which returns the values (v1, v2, · · · , vT). The Composition module composites the
retrieved values into the final output x̃. The discriminator D tries to distinguish the fake input x̃ with
the real input x.

Formally, there are two goals for the working memory Mw. The first goal is to model
the joint distribution P(q1, q2, · · · , qT), where qt, t = 1, · · · , T, is a random variable,
representing the query code at time step t, and T is the maximum step. In practice, we
usually set T to semantic part count K. In other words, we query one semantic part in each
step. Inspired by the auto-regressive model [6], we factorize the joint distribution as the
production of the conditional distributions over query codes:

P(q1, q2, · · · , qT) =
T

∏
t=1

P(qt|q1, · · · , qt−1) (1)
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The other goal of Mw is to composite the retrieved values (v1, v2, · · · , vT), which are
returned from Ml , into the final output x̃:

x̃ = Composition(v1, v2, · · · , vT) (2)

where Composition is defined by a neural network.
The role of long-term memory Ml is to respond to the query of working memory Mw:

vt = Ml(qt), t = 1, 2, · · · , T (3)

where qt ∼ P(qt|q1, · · · , qt−1).
The training of MemoryGAN follows a normal GAN training procedure with adver-

sarial loss.

3.2. Review of SemanticStyleGAN

In this work, we chose SemanticStyleGAN [11] as our base GAN model. Its local
generator and render net design make the memory lightweight and thus computationally
efficient. For clarity, we now briefly review SemanticStyleGAN.

SemanticStyleGAN is an extension of StyleGAN [9], which aims to explicitly con-
trol semantic part generation and composition under supervision. Suppose we have a
dataset D = {(x1, y1), (x2, y2), · · · , (xN , yN)}, where xi ∈ RH×W×3 is the training image,
yi ∈ {0, 1}H×W×K is a pixelwise semantic mask for xi, H and W are, respectively, the
spatial height and width, K is the semantic part count (background is also treated as
a part), and N is the total data count. The generator G of SemanticStyleGAN learns a
mapping G : W+ 7→ X × Y , whereW+, which will be discussed latter, is a latent space
that controls the style of each semantic part, and X and Y are the image and semantic
mask space, respectively. There are mainly three parts in SemanticStyleGAN, which are
a set of local generators {gk}K

k=1, a render network R and a dual-branch discriminator D.
The architecture of SemanticStyleGAN is illustrated in Figure 2.

fused feature map 

Render Net

refinement

re
al

 / 
fa

ke

Fake Images

Real Images

mask 

Figure 2. The architecture of SemanticStyleGAN [11]. SemanticStyleGAN employs a set of local
generators {gk}K

k=1 to generate the features of each semantic part. These part features are then fused
together using the Fusion module to form a whole feature map f . The render net R utilizes f to
generate the image and mask. The discriminator D provides adversarial loss for training.

Noise vector z ∼ N (0, I) is mapped to a latent code w ∼ W by a stack of equal
linear layers, where N (0, I) is multi-variable Gaussian with zero mean 0 and identity
covariance matrix I, andW represents the latent space. W is further expanded to latent
spaceW+ =W base ×W1 ×W2 × · · · ×WK, whereW base is the latent space that controls
the coarse structure of the object, andW k is the latent space that controls the style of the
k-th semantic part, which is further factorized into two latent spaces W k = W k

s ×W k
t ,

whereW k
s controls the shape attribute andW k

t controls the texture attribute.



Electronics 2023, 12, 2927 7 of 26

Local generator and fusion The structure of the local generator is illustrated in
Figure 3. The local generator gk, modulated by the latent codes (wbase, wk

s , wk
t ), receives a

Fourier feature p and outputs a tuple ( fk, dk).

gk : (p, wbase, wk
s , wk

t ) 7→ ( fk, dk) (4)

where fk ∈ RH f×W f×D f and dk ∈ RH f×W f×1 are the feature map and the pseudo-depth
map for the k-th semantic part, and H f , W f and D f are the spatial height, spatial width and
channel dimension, respectively.
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Figure 3. The architecture of the local generator in SemanticStyleGAN [11]. The local generator takes
Fourier features as input. The first few layers are modulated by wbase, which represents the coarse
structure. The middle layers are modulated by wk

s , which represents the shape of a part. The last few
layers are modulated by wk

t , which represents the texture of a part. toDepth and toFeat produce the
pseudo-depth dk and the feature fk, respectively.

The generated feature maps { fk}K
k=1 need to be fused into a whole feature before

feeding into the render net R. To do this, the depth maps {dk}K
k=1 are transformed into a

segmentation mask {Mcoarse
k ∈ [0, 1]Hm×Wm×K}K

k=1 by applying the softmax activation:

Mcoarse
k (i, j) =

exp(dk(i, j))

∑K
k′ exp(dk′(i, j))

(5)

where (i, j) indexes the spatial dimension. Then, the whole feature f is fused by:

f =
K

∑
k=1

Mcoarse
k � fk (6)

where � denotes element-wise multiplication.
Render net and discriminator The render net R and the discriminator D are the

modified versions of their counterparts in StyleGAN2 [9]. There are two modifications
made in R. First, FixedStyledConv is used, where the style of the modulated convolution
layer is fixed; thus, the output only depends on the input features. Second, a ToSeg branch
is added to generate the high-resolution segmentation mask M f ine ∈ [0, 1]H×W×K. As there
is no direct gradient to Mcoarse, a mask loss Lmask is added to feedback the error signal to
Mcoarse, which is defined as

Lmask = ‖upsample(Mcoarse)−M f ine‖2 (7)

For the discriminator D, a segmentation branch and a separate R1 regularization
LR1seg [48] are used.

The final loss is:
Lall = Lstylegan2 + Lmask + LR1seg (8)
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where Lstylegan2 is the loss function used in StyleGAN2 [9].

3.3. Detailed Structure of MemoryGAN

As mentioned in Section 3.1, there are two goals for working memory Mw. The first
goal is to model the joint distribution over query codes P(q1, q2, · · · , qT) in Equation (1).
This is achieved by the Controler module depicted in Figure 4. As the background is a
special part which usually has weak dependency with other foreground parts, we treat
it separately. We start from a learnable constant Vbkg ∈ RCbkg , which is then mapped to a
tuple (µbkg, log varbkg) by a two-layer MLP, where Cbkg is the dimension of the constant
vector. The query code for the background qbkg is then sampled from a diagonal Gaussian
distribution defined by (µbkg, δbkg) using a reparameterization trick:

qbkg = εbkg � δbkg + µbkg (9)

where εbkg ∼ N (0, I), δbkg =
√varbkg. As there is usually a strong correlation between

foreground parts, we use an LSTM [42] to approximate their joint distribution. Similar with
SemanticStyleGAN, we divide the query code for a part into a base code and an appearance
code. The base code is shared for all the foreground parts which defines the coarse level
structures, such as the pose direction. The appearance code is specific for each part and
defines the fine level structure of the part, such as shapes and textures. Now, we turn to
the base query code generation. A learnable constant Vbase ∈ RCbase is mapped to a tuple
(µbase, log varbase) by a two-layer MLP, where Cbase is the dimension of the constant vector;
then, the base query code is sampled from a diagonal Gaussian defined by (µbase, δbase)
using a reparameterization trick:

qbase = εbase � δbase + µbase (10)

where εbase ∼ N (0, I) and δbase =
√

varbase. We use qbase as the initial input to the LSTM
layer. For step t, the LSTM module maintains a hidden state ht which summarizes the
sampled query codes until step t. The query code qt−1 sampled at time step t − 1 and
the base query code qbase are fed into LSTM at time step t. The role of qt−1 is to model
the conditional probability defined in Equation (1), while the role of qbase is to emphasize
the fact that all the part features should follow the same instruction of the base code.
The output layer of the LSTM module is a single linear layer that maps the hidden state
ht to a tuple (µt, log vart). Then, the query code at step t is sampled from the diagonal
Gaussian distribution defined by (µt, δt) through a reparameterization trick:

qt = εt � δt + µt (11)

where εt ∼ N (0, I) and δt =
√

vart.
The second objective of Mw is to composite the retrieved values (vbkg, v1, · · · , vT)

in order to generate the final output x̃. This compositional process is facilitated by the
Composition module, as illustrated in Figure 5. We use the original setting of SemanticStyle-
GAN, i.e., using Equations (5) and (6) to composite the part features into the whole feature,
and using the render net R to render the whole feature into the final output image x̃.

The goal of the long-term memory Ml is to respond to the query from the working
memory Mw, as shown in Figure 6. Here, we use the local generator from SemanticStyle-
GAN as our long-term memory. Instead of using a separate local generator for each part,
we only use a single local generator for all the parts. It should be noted that for both
SemanticStyleGAN and our MemoryGAN, we do not need to explicitly factorize the ap-
pearance code to a shape code and a texture code, as this factorization is defined by first,
their location in the generator as shown in Figure 3, and second, style mixing over these
two groups of styles. The final generator is defined as below:

g : (p, wbase, wk
app) 7→ ( fk, dk) (12)
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where p is the Fourier features, wbase is the base latent code and wk
app = wk

s = wk
f is the

appearance latent code.

LS
TM

LS
TM

LS
TM

Figure 4. The architecture of the Controller module. The LSTM module models dependencies among
semantic parts and generates query codes representing them.

Fake Images
mask 

fused feature map 

refinement

Figure 5. The architecture of the Composition module. It consists of the Fusion module and the render
net R of SemanticStyleGAN. This module takes the retrieved values from the long-term memory as
input and composes them together to form the image and segmentation mask.
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The training procedures are almost identical with SemanticStyleGAN except we add
a Kullback–Leibler divergence term defined as

LKL =
1
T

T

∑
t=1
−DKL(P(qt|q1, · · · , qt−1)‖N (0, I)) (13)

Hence, the final loss is

Lall = Lstylegan2 + Lmask + LR1seg + LKL (14)

The aim of LKL is two fold. First, it prevents the value of the query code from becoming
too large, which is harmful for training. Second, it encourages feature sharing between
the parts.

Long-Term Memory 

Query Codes Retrived Values

query feedback

Figure 6. The architecture of the long-term memory module. Ml is a single local generator that takes
the query codes as input and provides the corresponding features.

4. Experiments and Results
4.1. Dataset and Training Method

Our experiments are performed on the CelebAMask-HQ dataset [49], which consists
of 30,000 facial images with size 512 × 512; all images are annotated with 19 classes of
segmentation masks. Following SemanticStyleGAN [11], the first 28,000 images resized
to 256 × 256 are used for training. Thirteen segmentation masks are selected for semantic
supervision, which are background, skin, eyes, eyebrows, nose, mouth, ears, hair, neck,
cloth, eye glass, hat and ear ring. The values of the images and the segmentation masks are
normalized to range [−1, 1] before being fed into the network.

As for training, we use the identity setting with SemanticStyleGAN. Specifically, we
use an Adam optimizer [50], with β = (0, 0.99). The learning rate is 0.002 for all the modules
except for the LSTM sub-module, as we found that the learning rate of 0.002 is too large for
LSTM and it tends to cause a gradient spike. So, we reduce it to 1 × 10 −4. The path length
regularization and R1 regularization are performed every 4 and 16 iterations, respectively.
The weight factors for Lmask and LKL are set to 100 and 1 × 10 −4, respectively. The style
mixing is performed during training with a probability of 0.3. Our experiments are executed
on a single RTX3090 GPU, and we use the largest batch size that can fit our VRAM. We use
a batch size of 16 with a gradient accumulation every two steps. We train our model for
150,000 steps, and it took about 7 days.

4.2. Model Complex Comparison

As we use the same discriminator as SemanticStyleGAN, for clarity, we compare the
model complexity based on the generator for both models. Algorithm 1 and Algorithm 2
show the inference algorithm for SemanticStyleGAN and MemoryGAN, respectively.
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In both algorithms, we use the same symbols as in Sections 3.2 and 3.3, with the ex-
ception that we omit the spatial dimension in the calculation of the coarse mask for clarity
(line 6 in Algorithm 1 and line 20 in Algorithm 2).

Algorithm 1: Inference algorithm of SemanticStyleGAN

1: Input : semantic part count K, Fourier feature p, MLP that maps noise code to
latent code MLPlatent, a set of local generators {gk}K

k=1, render network R
2: Output : Generated image x̃ and mask M f ine

3: z ∼ N (0, I);
4: wapp = MLPlatent(z);
5: for k = 1 to K do
6: ( fk, dk) = gk(p, wapp);
7: end
8: for k = 1 to K do
9: Mcoarse

k = exp(dk)

∑K
k′=1 exp(dk′ )

;

10: end
11: f = ∑K

k=1 Mcoarse
k � fk;

12: (x̃, M f ine) = R( f );

13: return x̃, M f ine

The main difference between our model and SemanticStyleGAN is in line 12 and 18
of Algorithm 2. In line 12, we utilize an LSTM module to model the dependency between
the part query codes, which enables us to use a single local generator for generating all the
semantic parts, as shown in line 18. As both the LSTM module and the local generator are
shared, the complexity with respect to model size is O(1), which makes our model efficient
and scalable. In contrast, SemanticStyleGAN employs a single latent code to modulate a set
of local generators, as shown in line 4 of Algorithm 1. It is easy to see that the complexity
with respect to model parameters is O(n) for SemanticStyleGAN. This makes the model
impractical when the semantic parts count is large. Another advantage of our algorithm
is that we associate each semantic part with a query code (line 4 and line 15), and all part
information is stored in a shared memory—the local generator—which can be retrieved by
providing the query code, eliminating the need to determine which local generator should
be used for storage or retrieval of the part information (line 18). In contrast, as depicted in
Algorithm 1, SemanticStyleGAN uses a separate local generator to model each semantic
part (line 4), requiring additional effort to determine the appropriate generator for retrieval
or storage of the semantic part information, which is inflexible.

It should be noted that the computational complexity of both models is O(n). More
effort is needed to further reduce the compositional complexity. One promising direction is
to consider taxonomy and use a hierarchy of latent codes to modulate the shared generator.
We leave this topic to our future research.

Table 1 and Figure 7 show the real parameter count and Multiply–Accumulate opera-
tions (MACs) count with respect to semantic part count. It can be seen in Table 1 that for
the parameter count, MemoryGAN has a small overhead for one semantic part (2.3 M) com-
pared to SemanticStyleGAN. However, as the semantic parts count grows, the parameter
count for MemoryGAN only increases slightly, whereas for SemanticStyleGAN, it grows
dramatically. With 1000 semantic parts, the parameter count for SemanticStyleGAN is over
20 times larger than that for MemoryGAN. This trend is more clearly depicted in Figure 7.
The difference in parameter count between SemanticStyleGAN and MemoryGAN becomes
obvious when the semantic part count exceeds 10. In accordance with previous analysis,
the MACs count reveals that both models exhibit similar trends. The MACs count increases
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significantly when the semantic part count exceeds 10, indicating that it remains an open
problem that requires further exploration in future work.

Algorithm 2: Inference algorithm of MemoryGAN

1: Input : semantic part count K, constant vector for background code Vbkg,
constant vector for base code Vbase, MLP for background code MLPbkg,
MLP for base code MLPbase, LSTM module LSTM, MLP that maps query
code to latent code MLPlatent, Fourier feature p, local generator g, render
network R

2: Output : Generated image x̃ and mask M f ine

3: (µbkg, log varbkg) = MLPbkg(Vbkg);
4: εbkg ∼ N (0, I);
5: δbkg =

√varbkg;
6: qbkg = εbkg � δbkg + µbkg;
7: (µbase, log varbase) = MLPbase(Vbase);
8: εbase ∼ N (0, I);
9: δbase =

√
varbase;

10: qbase = εbase � δbase + µbase;
11: q1 = qbkg;
12: w1

app = MLPlatent(q1);
13: for k = 2 to K do
14: (µk, log vark) = LSTM(qbase, qk−1);
15: εk ∼ N (0, I);
16: δk =

√
vark;

17: qk = εk � δk + µk;
18: wk

app = MLPlatent(qk);
19: end
20: for k = 1 to K do
21: ( fk, dk) = g(p, wk

app);
22: end
23: for k = 1 to K do
24: Mcoarse

k = exp(dk)

∑K
k′=1 exp(dk′ )

;

25: end
26: f = ∑K

k=1 Mcoarse
k � fk;

27: (x̃, M f ine) = R( f );

28: return x̃, M f ine

Table 1. Model parameter and operation count comparison.

Method #Semantic Parts #Parameter (M) #MACs (G)

SemanticStyleGAN

1 15.4 103.4
10 19.0 106.5
100 55.4 136.9

1000 419.8 440.8

MemoryGAN

1 17.7 103.4
10 17.7 106.4
100 17.8 136.3

1000 19.1 435.4
# denotes the number of the corresponding items.
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Figure 7. Comparison of parameter count and MACs with respect to semantic part count.

4.3. Image Quality Evaluation

We first evaluate the image quality generated by MemoryGAN. Figure 8 shows the
generated images and semantic masks by our model. We can see that MemoryGAN
is able to generate perceptually high-quality images and correct segmentation masks.
To quantitatively measure the quality of the generated images, we calculate the Fréchet
Inception Distance [51] and Inception Score [52]. We compare our results with that reported
in SemanticStyleGAN [11]. Table 2 shows that compared with SemanticStyleGAN and
SemanticGAN [17], our model achieves comparable FID (the lower the better) and slightly
lower IS (the higher the better) values, indicating that our model is able to generate
comparable fidelity images.

Figure 8. Examples of the generated images and segmentation masks by MemoryGAN. The model is
trained on CelebAMask-HQ with a resolution of 256× 256. A truncation of 0.7 is used for the generation.

Table 2. Synthesis image quality evaluation.

Method Data Compositional FID↓ IS↑

SemanticGAN 1 img&seg 7 7.50 3.51
SemanticStyleGAN 1 img&seg 3 6.42 3.21
MemoryGAN img&seg 3 6.41 3.07

1 These data are referenced from [11]. ↓ denotes lower values are better, ↑ denotes higher values are better,
7 denotes the model is not compositional, and 3 denotes the model is compositional.
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For the CelebAMask-HQ task, SemanticStyleGAN uses 13 local generators, and each
controls one semantic part generation. On the contrary, our model only uses a single local
generator (the long-term memory in our architecture). One insight of our result is that it
is possible to hold all the heterogeneous parts information in a single generator and then
recall and composite them together to form high-fidelity images. So, it is unnecessary to
use a separate generator for each part object. An interesting consequence of this result is
that the single generator can be reasonably treated as a shared memory. Heterogeneous
information can be stored in and retrieved from it. We believe this will lead to future work
on both bio-friendly models and memory augmented models.

4.4. Sequential Composition

SemanticStyleGAN [11] exhibits an impressive sequential composition property. Start-
ing from the background, each part is sequentially added for composition. This method
intuitively demonstrates both the compositional property and the disentanglement property
of the model. It is interesting to see to what extent MemoryGAN preserves this desirable
property using only a single generator. Our evaluation results are shown in Figure 9.
Figure 9a displays the results of SemanticStyleGAN, while Figure 9b shows the results of
MemoryGAN. In each sample of the figure, the composed images are shown in the top row,
which is followed by the depth maps in the middle row and the segmentation masks in the
bottom row. It can be observed that for both models, new parts are sequentially added with
minimal disturbance to the previously added parts. The depth maps largely correspond
to their respective semantic parts, and the segmentation masks align well with the added
semantic parts. These results indicate that MemoryGAN achieves comparable performance
to SemanticStyleGAN. It is worth noting that there is no depth map supervision in the
training data, yet both models are able to learn the depth maps automatically. We believe
this phenomenon provides evidence of the advantages of compositional-aware models.
The key to a compositional model is to express the whole object as a composition of its parts.
This prior encourages the reuse of learned features by recombining them with different
configurations to form new objects. Driven by this reusability prior, the models tend to
learn the complete part from occluded parts images, as the complete part is more general
and reusable compared to the occluded part. Additionally, guided by the recombination
prior, the models tend to learn a configuration strategy to express the occlusions of the
parts. The depth maps simply represent the learned configuration strategy.

(a) SemanticStyleGAN

(b) MemoryGAN
Figure 9. Examples of the sequential part composition of (a) SemanticStyleGAN and (b) MemoryGAN.
Starting from the background feature, each part feature is sequentially added for composition.
For each sample, the first row is the synthesized image, the second row is the pseudo-depth map and
the third row is the segmentation mask.

Although it is difficult to see the change of the previous part when a new part is added
with the human eyes, a closer inspection reveals that there is still interference between
them. For example, the jaw is slightly changed when a neck is added in both, as shown in
Figure 9a,b. This indicates that there is still an entanglement between parts. To quantify the
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entanglement strength, we provide a metric called Sequential Mean Square Error (SMSE),
which is defined in Equation (15).

SMSEi =

H
∑

h=1

W
∑

w=1

[(
i−1
∑

j=1
Mi

j,h,w

)(
Ii
h,w − Ii−1

h,w

)]2

H
∑

h=1

W
∑

w=1

i−1
∑

j=1
Mi

j,h,w

(15)

where i is the sequence index, h, w are the spatial height and width index, respectively, Ii
h,w

is the image pixel value at location (h, w) at step i, and Mi
j,h,w ∈ {0, 1} is the mask value

at location (h, w) of the j-th part at step i. Intuitively, it describes the varying intensity of
the original image when the i-th part is added. A lower value of SMSE indicates a smaller
entanglement between current part with the parts previously added.

The SMSE results are shown in Figure 10 and Table 3. It can be seen that both Seman-
ticStyleGAN and MemoryGAN have a relatively larger SMSE value when the skin and hair
are added, indicating that there is entanglement in both models, especially for the larger
parts. The SMSE value of MemoryGAN is slightly higher than that of SemanticStyleGAN,
which is expected. As MemoryGAN uses a single generator for all the parts, there should
be stronger interaction between the parts than its multi-generator counterpart.

skin eyes eyebrows mouth nose ears hair neck cloth
Part Sequence

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SM
SE

SemanticStyleGAN
MemoryGAN

Figure 10. Quartiles of SMSE. The order of the parts corresponds to the order in which they are
combined. The statistical calculation is taken over 10,000 samples.

Table 3. Mean and standard deviation of SMSE for SemanticStyleGAN and MemoryGAN.
The stochastic calculation is taken over 10,000 samples.

Method Skin Eyes Eyebrows Mouth Nose

SemanticStyleGAN 0.079 ± 0.105 0.022 ± 0.009 0.004 ± 0.002 0.009 ± 0.006 0.004 ± 0.003
MemoryGAN 0.123 ± 0.126 0.018 ± 0.008 0.005 ± 0.002 0.010 ± 0.010 0.011 ± 0.006

Method Ears Hair Neck Cloth

SemanticStyleGAN 0.008 ± 0.012 0.053 ± 0.051 0.011 ± 0.012 0.004 ± 0.007
MemoryGAN 0.010 ± 0.012 0.107 ± 0.120 0.015 ± 0.021 0.005 ± 0.010

4.5. Latent Space Property

In this section, we study the latent space property of MemoryGAN through style
mixing, interpolation, low-dimensional embedding and correlation.
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Style Mixing Style mixing means the information encoded in the latent code of one
sample can be transferred to another sample by swapping the latent code on certain layers
of the generator. Meaningful style mixing requires the latent codes to be disentangled, so
that when swapping the latent code, only certain property is changed. As MemoryGAN is
able to control the composition at a semantic part level, we also evaluate its style-mixing
property at this level. The results are shown in Figure 11. It can be seen that MemoryGAN is
able to mix the styles for most of the parts. However, there are some disadvantages of using
MemoryGAN on this task. One disadvantage is that we found it is not enough to swap the
latent code for the layers of shape and texture in Ml to transfer the style information for
smaller parts, such as the eyebrows, the mouth and the nose. We have empirically found
that we have to swap the latent code for the base layer in Ml , too. Here, we additionally
swap the latent code for the last base layer for the small parts. This is probably due to the
fact that the smaller part occupies fewer spatial regions. Hence, fewer neurons are involved
to encode their information. MemoryGAN learns to compensate for this disadvantage by
encoding the information of the smaller part in more layers in Ml . Another disadvantage
is that there is entanglement for the face parts, especially for the eyes. It can be seen from
Figure 11 that the eye color is not affected if we only swap the eye latent code. On the
other hand, the eye color is affected by the skin or the hair. This indicates that the eye
color is entangled with the colors of the skin and hair. It is actually well known that the
colors of the eyes, skin and hair of the human are strongly correlated [53]. Their colors are
determined by the same thing: that is, the amount of pigment in the body. We conjecture
that both the design of using a single generator and the explicit dependency modeling in
the Controller module make MemoryGAN sensitive to these dependence and bias in the
dataset. MemoryGAN captures this dependency and uses the hair and skin latent code to
model the color of the eyes to save memory resources. This conjecture is supported by the
results in Section 4.6.1. Considering the result that MemoryGAN is able to disentangle and
mix styles for most smaller parts, we believe it is possible to achieve full disentanglement
and style mixing with further development. We leave this problem for our further research.

background skin eyes eyebrows mouth nose hair

Figure 11. The result of style mixing performed at the semantic part level using MemoryGAN. Here,
“skin” means the skin of the face. For the background, we swap the latent code for all the layers in Ml .
For the eyes, eyebrows, mouth and nose, we swap the latent code for the last base layer, the shape
layers and the texture layers in Ml . For hair and skin, we swap the latent code for the shape and the
texture layers in Ml .

Interpolation Latent code interpolation reflects both the smoothness and disentan-
glement property of the latent space. We interpolated the main parts of the face image,
and the results are shown in Figure 12. Similar to the results of style mixing, we have
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empirically found that only interpolating the shape and the texture latent code for the small
parts usually results in tiny changes to the image. To enhance the impact of the small part’s
latent code, we additionally interpolate the latent code on the last base layer. It can be seen
from the result that for both the whole image and the semantic part, the interpolated image
changes smoothly. This indicates that both the whole latent space and the sub-space for
each part are smooth in MemoryGAN. Similar to the style-mixing result, we also found
that (a) there is an entanglement between parts, such as hair, eyebrows and eyes and (b)
the latent code for the eyes seems to mainly control the shape and is unable to control the
color. The color is mainly controlled by larger parts such as the skin and the hair.
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Figure 12. Latent code interpolation for MemoryGAN. Here “skin” means the skin of the face. For the
background, we swap the latent code for all the layers in Ml . For skin and hair, we swap the latent
code for the shape and the texture layers in Ml . For the eyes, eyebrows, mouth and nose, we swap
the latent code for the last base layer, the shape layers and the texture layers in Ml .
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Low-Dimensional Embedding As MemoryGAN uses a single generator for all the
parts, the latent codes lie in the same semantic space. This allows us to analyze the
relationship between the parts directly through the latent codes themselves. On the contrary,
we cannot directly analyze the latent codes for SemanticStyleGAN, because each latent code
is designed for a specific local generator. Therefore, the latent codes have to be analyzed
with the generators together. For example, the same latent code can be applied to different
local generators in SemanticStyleGAN, and this produces different semantic parts.

A straightforward analysis is to visualize the latent codes in a two-dimensional space.
We use the t-SNE [54] algorithm for dimension reduction. The results are shown in Figure 13.
It can be seen that in the query space, parts are already pretty well grouped. We can also
observe that the parts generated in succession are more closely grouped, such as the skin
and the eyes, the eyebrows, and the mouth. This reflects the fact that the LSTM module in
Mw captures the dependence between successive parts. On the contrary, all the parts are
well separately grouped in the latent space. This indicates that the latent space is flatter
than the query space, and it is also more disentangled than the query space.

query space latent space

background
skin

eyes
eyebrows

mouth
nose

ears
hair

neck
cloth

Figure 13. Two-dimensional embedding of the query and latent codes using the t-SNE [54] algorithm.

Correlation between Parts t-SNE is particularly suitable for encoding the local struc-
ture of data points. In other words, if two codes are similar enough, they should be grouped
together. It tells less about two codes, which are not similar but may be correlated. So,
we also calculate the correlation between parts by pairwise cosine similarity. The results
are shown in Figure 14. We can see that the correlation between parts is much weaker in
the query space than in the latent space. We hypnosize that this is because the roles of
the query code and the latent code are different in MemoryGAN. The role of the query
code is to tell the long-term memory what information is needed. So, the codes should be
distinguishable, and thus, weaker correlation is helpful. On the other hand, the latent code
is used to modulate the generator to produce the features. It is critical for the latent code
to be informative. As correlation reflects the structure of the data, it is beneficial for the
latent codes to be more strongly correlated. Now, we focus on the details of the correlation
matrix. We can see from Figure 14 that in the query space, there is a relatively stronger
correlation in the nearby parts. The order of the parts in the correlation matrix matches
the order in which they are generated in the working memory. The result shows that our
working memory captures the dependency of the consecutive parts successfully. Compared
with the query space, there is a much stronger correlation in the latent space between facial
parts, such as the correlation between the eyes, eyebrows, mouth and ears. As mentioned
above, we believe this result indicates that the latent code encodes the structure of the face
much better than the query codes.
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Figure 14. Correlation matrix between the parts. The top row includes the mean value of the
correlation matrix; the left is for the query vector, and the right is for the latent code. The bottom row
is the standard deviation of the correlation matrix; the left is for the query code, and the right is for
the latent code. The value of the correlation matrix is calculated using cosine similarity. A total of
10,000 samples are used for the stochastic calculation.

4.6. Controlled Image Editing
4.6.1. Text Driving Image Editing

One advantage of the semantic part compositional model is that we can edit the
attribute of one part individually with no or little affect on the attribute of other parts.
Figure 15 shows the results of part attribute editing using the StyleCLIP [55] optimization
method. Given a description of the image using natural language, StyleCLIP is able to
modify the image to match the description. StyleCLIP uses three losses defined below
for optimization:

LCLIP = DCLIP(G(w)img, t) + λL2‖w− ws‖2 + λIDLID(w) (16)

where w is the latent code for optimization, t is the text prompt, ws is the source latent code,
and G is the generator. As MemoryGAN generates both the image and segmentation mask,
we use subscript img and seg to distinguish them. DCLIP is the CLIP loss [56]. It measures
the cosine distance between the CLIP embedding of the image and the text prompt. LID
represents identity loss [57] and is defined below:

LID = 1− 〈F(G(ws)img), F(G(w)img)〉 (17)
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where F is a pre-trained ArcFace [58] network and 〈·, ·〉 represents the cosine similarity
between its arguments. In MemoryGAN, the parts are usually spatially separated. It is,
therefore, possible that the optimized latent code for a part may change too much and thus
affect nearby parts. To control this interference, we add a segmentation loss term, so that
the final loss is:

L = LCLIP + λseg‖G(w)seg − G(ws)seg‖2 (18)

The result of attribute editing using StyleCLIP is shown in Figure 15. For skin, eye-
brows, mouth, nose and hair, we only allow optimizing the corresponding part latent code,
while the latent codes of other parts are fixed. The results show that StyleCLIP is able to
edit the attribute of these parts individually with little effect on other parts. Similar to the
results in Section 4.5, we find that we are unable to control the color of the eyes through the
latent code of the eyes. To verify the previous conjecture that the color of the eyes may be
strongly entangled with the colors of the skin and the hair, we only allow optimizing the
latent code of the skin and hair for a text prompt that aims to change the color of eyes, such
as “a person with blue eyes”. The results show that we can achieve the desired eye color
editing, and the colors of the skin and the hair change correspondingly. For “blue eyes”,
the skin tends to be “white” and the hair color tends to be “red” or “blonde”. This results is
consistent with our conjecture.

"a person with brown skin"original image "a person with blue eyes" "a person with thick eyebrows"

"a person with red lip" "a person with big nose" "a person with short blonde hair"original image

Figure 15. Edit the attribute of parts using StyleCLIP [55] on MemoryGAN. For skin, eyebrows,
mouth, nose and hair, we only allow modifying the latent code of the corresponding part. For eyes,
we only allow modifying the latent codes of hair and skin (see the text for the reason).

4.6.2. Localized Attribute Editing

One advantage of compositional image synthesis models is their ability to offer a
higher level of control and editing over images. In this section, we compare our model
with the seminal work of StyleGAN2 [9] in the context of localized attribute editing.
We first invert the original image into the latent space of StyleGAN2 and MemoryGAN
using e4e [59], and then, we utilize the optimization method of StyleCLIP [55] to edit
the attributes. Each attribute uses the same text for editing, and we showcase the results
after 300 optimization steps. Specifically, we use “a man with a beard” for beard attribute
editing, “a man with gray hair” for hair attribute editing, “a smiling woman” for mouth
attribute editing, and “a woman with a big nose” for nose attribute editing. The results are
displayed in Figure 16. It is evident that our model achieves significantly better localization
for all attributes, particularly for small parts such as the nose and mouth, in comparison
to StyleGAN2. Our model demonstrates precise control over attribute editing, wherein
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modifying one attribute of a semantic part has a small impact on other parts. These results
highlight the fine-grained control that our model provides.

We have observed that StyleGAN2 tends to generate darker images when used in
conjunction with StyleCLIP. We conjecture that this behavior can be attributed to the
fact that StyleGAN2 employs a single latent code to generate the entire image, which
makes it challenging for StyleCLIP to accurately identify the corresponding semantic
meaning of a word (e.g., hair) in the latent space. The blind search in the latent space
may lead to an erroneous penalization of image appearance, resulting in darker outputs.
In contrast, our model utilizes a set of latent codes to modulate the generator, with each
latent code corresponding to a specific semantic meaning. Consequently, it becomes much
easier for StyleCLIP to identify the corresponding latent code for a given word, leading to
improved results.

One way to quantitatively assess the localization property is by calculating the percent-
age of preserved pixels required to achieve a certain amount of reduction in CLIP loss [56].
In this evaluation, we utilize L1 loss between the inverted image and the edited image
to measure the difference between the images. Additionally, we use the complement of
the L1 loss to determine the percentage of preserved pixels after editing. The results are
displayed in Figure 17, where the term “score gain” refers to the reduction in CLIP loss.
Notably, our model consistently achieves a significantly higher percentage of preserved
pixels, particularly for editing small semantic parts, which aligns with previous findings.
Although StyleGAN2 tends to yield lower CLIP loss, it does so at the expense of affecting
unrelated areas in the images, as demonstrated in Figure 16.

Beard

Original Image

Invert Edit Difference Map

StyleGAN2 Ours

Invert Edit Difference Map

Hair

Mouth

Nose

Figure 16. Results of localized attribute editing for StyleGAN2 [9] and our model. We first invert the
input image into latent space using e4e [59]; then, we edit the attribute using StyleCLIP [55]. For each
attribute, we show the original image, the inverted image, the edited image and the difference map.
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Figure 17. Quantitative comparison of localized attribute editing between StyleGAN2 and our model.

4.6.3. Comparison with Layout-to-Image Model

Another research direction that explores semantic control is layout-to-image generative
models, which map layouts to corresponding images. In this section, we have chosen the
representative model SEAN [10] for comparison. As discussed in Section 1, the primary
limitation of these models is their reliance on input layouts and inability to generate
images from scratch. Another consequence of this limitation is that these models can only
automatically transfer the texture of the image and require manual intervention to modify
the shape. To validate this observation, we conducted style-mixing experiments for both
SEAN and our model, and the results are presented in Figure 18. We selected six images
with diverse hair styles as source images and aimed to transfer these styles to a target image.
With SEAN, style mixing can be constrained to a specific region (such as the hair region),
allowing the transfer of hair texture to the target image. However, due to the shape being
controlled by the input layout, SEAN cannot transfer the hair shape of the source image to
the target image. In contrast, our model offers the flexibility to transfer hair styles either for
the texture only or incorporate both shape and texture. By enabling the swapping of either
just the texture code or both the shape and texture codes, we can achieve texture-level or
shape-and-texture-level hair style transfers. These results clearly highlight the advantages
of compositional-aware models.
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Figure 18. Comparison between SEAN and our model regarding controllability of attribute editing.

5. Conclusions

Inspired by humans’ structured memory system, we present MemoryGAN, which is
a compositional generative model for image synthesis. MemoryGAN consists of a long-term
memory and a working memory. The long-term memory is a shared generator responsible
for storing heterogeneous information about the parts. The working memory utilizes LSTM
to model the dependency between the parts and generate query codes for the long-term
memory. The retrieved part features are then combined in the working memory to produce
the complete image. Despite employing a single generator for all parts, MemoryGAN
achieves comparable image synthesis performance and compositional ability to state-of-the-
art models that utilize multiple generators. The advantages of MemoryGAN are as follows:
First, as a compositional model, it provides a higher level of control over the generation and
image editing processes. Second, MemoryGAN utilizes a shared generator for all semantic
parts, making the representation efficient and the model scalable. Third, as a memory
system, its information retrieval mechanism is general, making it a suitable base framework
for knowledge transformation. We believe that our approach, utilizing the generator of
GAN as a memory model, will lead to future advancements in bio-friendly models and
memory-augmented models. Furthermore, we anticipate that this memory framework will
pave the way for addressing challenges in large-scale compositional image generation.

While our model achieves promising results in compositional image synthesis, there
are still several challenges that need to be addressed in future work. First, MemoryGAN
only reduces the parameter requirements for the semantic parts, while the computational
complexity remains the same as SemanticStyleGAN. A promising solution to this issue is
to consider taxonomy and use a hierarchy of latent codes to modulate the shared generator,
thereby significantly reducing both the parameters and computational complexity. Second,
MemoryGAN does not take into account the scale of the semantic parts, resulting in the
need to process with the entire image resolution to generate a small part feature, which leads
to unnecessary computation. This issue could potentially be resolved by introducing a hard
attention mechanism. Last, MemoryGAN requires full supervision for the semantic parts.
A valuable direction for future research would be to explore semi-supervised approaches.



Electronics 2023, 12, 2927 24 of 26

Author Contributions: Conceptualization, Z.W., J.P. and Z.L.; methodology, Z.W.; software, Z.W.;
validation, Z.W., J.P. and Z.L.; formal analysis, Z.W.; investigation, Z.W. and J.P.; resources, Z.L.; data
curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, Z.W., J.P. and
Z.L.; visualization, Z.W.; supervision, J.P. and Z.L.; project administration, Z.L.; funding acquisition,
Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
grant number 62032019 and 61732019.

Data Availability Statement: The code is available at https://gitee.com/swu-wzt/memgan-pytorch
(accessed on 29 June 2023).

Acknowledgments: We sincerely thank the anonymous reviewers for their insightful comments and
suggestions, which greatly enhanced the quality of this research. We would also like to acknowledge
the GPU support from the Center for Research and Innovation in Software Engineering (RISE).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IS Inception Score
FID Fréchet Inception Distance
MLP Multi-Layer Perceptron
SMSE Sequential Mean Square Error
LSTM Long Short-Term Memory
GAN Generative Adversarial Network
MACs Multiply–Accumulate operations

References
1. Tian, C.; Zheng, M.; Zuo, W.; Zhang, B.; Zhang, Y.; Zhang, D. Multi-Stage Image Denoising with the Wavelet Transform. Pattern

Recognit. 2023, 134, 109050. [CrossRef]
2. Tian, C.; Zhang, Y.; Zuo, W.; Lin, C.W.; Zhang, D.; Yuan, Y. A Heterogeneous Group CNN for Image Super-Resolution. IEEE

Trans. Neural Networks Learn. Syst. 2022, 1–13. [CrossRef] [PubMed]
3. Zhang, Q.; Xiao, J.; Tian, C.; Lin, J.C.-W.; Zhang, S. A Robust Deformed Convolutional Neural Network (CNN) for Image

Denoising. CAAI Trans. Intell. Technol. 2022, 8, 331–342. [CrossRef]
4. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In NIPS; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.
5. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022, arXiv:1312.6114.
6. van den Oord, A.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel Recurrent Neural Networks. In Proceedings of the International

Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1747–1756.
7. Tian, C.; Zhang, X.; Lin, J.C.W.; Zuo, W.; Zhang, Y.; Lin, C.W. Generative Adversarial Networks for Image Super-Resolution: A

Survey. arXiv 2022, arXiv:2204.13620.
8. Goyal, A.; Bengio, Y. Inductive biases for deep learning of higher-level cognition. Proc. R. Soc. A Math. Phys. Eng. Sci. 2022,

478, 20210068. [CrossRef]
9. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In

Proceedings of the Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8110–8119.
10. Zhu, P.; Abdal, R.; Qin, Y.; Wonka, P. SEAN: Image Synthesis With Semantic Region-Adaptive Normalization. In Proceedings of

the Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5104–5113.
11. Shi, Y.; Yang, X.; Wan, Y.; Shen, X. SemanticStyleGAN: Learning Compositional Generative Priors for Controllable Image

Synthesis and Editing. In Proceedings of the Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 11254–11264.

12. Atkinson, R.C.; Shiffrin, R.M. Human memory: A proposed system and its control processes. In Psychology of Learning and
Motivation; Elsevier: Amsterdam, The Netherlands, 1968; Volume 2, pp. 89–195.

13. Lake, B.M.; Ullman, T.D.; Tenenbaum, J.B.; Gershman, S.J. Building Machines That Learn and Think Like People. Behav. Brain Sci.
2017, 40, e253. [CrossRef]

14. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

https://gitee.com/swu-wzt/memgan-pytorch
http://doi.org/10.1016/j.patcog.2022.109050
http://dx.doi.org/10.1109/TNNLS.2022.3210433
http://www.ncbi.nlm.nih.gov/pubmed/36227812
http://dx.doi.org/10.1049/cit2.12110
http://dx.doi.org/10.1098/rspa.2021.0068
http://dx.doi.org/10.1017/S0140525X16001837


Electronics 2023, 12, 2927 25 of 26

15. Shen, Y.; Gu, J.; Tang, X.; Zhou, B. Interpreting the Latent Space of GANs for Semantic Face Editing. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9243–9252.

16. Tritrong, N.; Rewatbowornwong, P.; Suwajanakorn, S. Repurposing GANs for One-Shot Semantic Part Segmentation. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4475–4485.

17. Li, D.; Yang, J.; Kreis, K.; Torralba, A.; Fidler, S. Semantic Segmentation With Generative Models: Semi-Supervised Learning and
Strong Out-of-Domain Generalization. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 20–25 June 2021; pp. 8300–8311.

18. Karras, T.; Aittala, M.; Laine, S.; Härkönen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-Free Generative Adversarial Networks. Adv.
Neural Inf. Process. Syst. 2021, 34, 852–863.

19. Singh, K.K.; Ojha, U.; Lee, Y.J. FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and
Discovery. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 6490–6499.

20. Ojha, U.; Singh, K.K.; Lee, Y.J. Generating Furry Cars: Disentangling Object Shape and Appearance across Multiple Domains. In
Proceedings of the International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021.

21. Kwak, H.; Zhang, B.T. Generating Images Part by Part with Composite Generative Adversarial Networks. arXiv 2016,
arXiv:1607.05387.

22. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020;
pp. 405–421. [CrossRef]

23. Schwarz, K.; Liao, Y.; Niemeyer, M.; Geiger, A. GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. In Proceedings
of the Thirty-Fourth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December
2020; Volume 33, pp. 20154–20166.

24. Niemeyer, M.; Geiger, A. GIRAFFE: Representing Scenes As Compositional Generative Neural Feature Fields. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11453–11464.

25. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. In Proceedings of the Twenty-Eighth
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.

26. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; Wierstra, D. DRAW: A Recurrent Neural Network For Image Generation. In
Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 1462–1471.

27. Gregor, K.; Besse, F.; Jimenez Rezende, D.; Danihelka, I.; Wierstra, D. Towards Conceptual Compression. In Proceedings of
the Thirtieth Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran
Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

28. Eslami, S.M.A.; Heess, N.; Weber, T.; Tassa, Y.; Szepesvari, D.; Kavukcuoglu, K.; Hinton, G.E. Attend, Infer, Repeat: Fast Scene
Understanding with Generative Models. In Proceedings of the Thirtieth Annual Conference on Neural Information Processing
Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

29. Kosiorek, A.; Kim, H.; Teh, Y.W.; Posner, I. Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects. In
Proceedings of the Thirty-Second Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December
2018; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

30. Greff, K.; Kaufman, R.L.; Kabra, R.; Watters, N.; Burgess, C.; Zoran, D.; Matthey, L.; Botvinick, M.; Lerchner, A. Multi-Object
Representation Learning with Iterative Variational Inference. In Proceedings of the International Conference on Machine Learning,
Long Beach, CA, USA, 9–15 June 2019; pp. 2424–2433.

31. Burgess, C.P.; Matthey, L.; Watters, N.; Kabra, R.; Higgins, I.; Botvinick, M.; Lerchner, A. MONet: Unsupervised Scene
Decomposition and Representation. arXiv 2019, arXiv:1901.11390.

32. Salimans, T.; Karpathy, A.; Chen, X.; Kingma, D.P. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
Likelihood and Other Modifications. arXiv 2017, arXiv:1701.05517.

33. Xue, Y.; Tong, W.; Neri, F.; Zhang, Y. PEGANs: Phased Evolutionary Generative Adversarial Networks with Self-Attention
Module. Mathematics 2022, 10, 2792. [CrossRef]

34. Marino, J.; Yue, Y.; Mandt, S. Iterative Amortized Inference. In Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018; pp. 3403–3412.

35. Hopfield, J.J. Neural Networks and Physical Systems With Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci.
USA 1982, 79, 2554–2558. [CrossRef]

36. Kanerva, P. Sparse Distributed Memory; MIT Press: Cambridge, MA, USA, 1988.
37. Weston, J.; Chopra, S.; Bordes, A. Memory Networks. arXiv 2015, arXiv:1410.3916.
38. Sukhbaatar, S.; szlam, a.; Weston, J.; Fergus, R. End-To-End Memory Networks. In Proceedings of the Conference on Neural

Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 2440–2448.

39. Graves, A.; Wayne, G.; Danihelka, I. Neural Turing Machines. arXiv 2014, arXiv:1410.5401.

http://dx.doi.org/10.1007/978-3-030-58452-8_24
http://dx.doi.org/10.3390/math10152792
http://dx.doi.org/10.1073/pnas.79.8.2554


Electronics 2023, 12, 2927 26 of 26

40. Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwińska, A.; Gómez, S.; Grefenstette, E.; Ramalho, T.;
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