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Abstract: In a complex electromagnetic environment, any noise present generally exhibits strong
impulsive characteristics. The performance of existing parameter estimation methods carried out in
Gaussian white noise for the linear frequency modulation (LFM) signal degrades or even fails under
impulsive noise. This paper proposes a novel parameter estimation method to address this problem.
Firstly, the properties of the piecewise nonlinear amplitude transform (PNAT) are derived. This
manuscript verifies that the PNAT can retain phase information of the LFM signal while suppressing
the impulsive noise. Subsequently, a new concept known as piecewise nonlinear amplitude transform
parametric symmetric instantaneous autocorrelation function (PNAT-PSIAF) is proposed. Based
on this concept, a novel method called piecewise nonlinear amplitude transform Lv’s distribution
(PNAT-LVD) is proposed to estimate the centroid frequency and chirp rate of the LFM signal. The
simulations show that the proposed algorithm can effectively suppress the impulsive noise without
prior knowledge of the noise for both the single-component and double-component LFM signal. In
addition, two parameters of the LFM signal can be precisely estimated by the proposed method
under low generalized signal-to-noise ratios (GSNR). The stronger the impulsive characteristics of
the noise, the better the performance of the algorithm.

Keywords: parameter estimation; the LFM signal; piecewise nonlinear amplitude transform;
Lv’s distribution; impulsive noise

1. Introduction

The LFM signal is frequently utilized in sonar, communication, biomedical, and radar
applications [1–5]. As a non-stationary signal with strong low probability of intercept (LPI)
characteristics, the LFM signal is frequently used in radars of different systems. In radar
countermeasures, accurate parameter estimation is critical for subsequent radar jamming,
radar electronic defense, and adjustment of combat strategies. The centroid frequency and
the chirp rate are two significant parameters characterizing the LFM signal.

Many methods have been proposed to estimate the LFM signal’s parameters, such as
maximum likelihood estimator (MLE) [6–8] and time-frequency (TF) analysis methods [9–17].
Among the proposed methods, MLE exhibits the best estimation of the parameters theo-
retically, and its performance approximates the Cramer-Rao Lower Bound (CRLB). Nev-
ertheless, the parameter estimation process of MLE requires a multi-dimensional search,
which requires extensive computational resources and is not conducive to engineering
implementation. When processing non-stationary signals, particularly when estimating the
parameters of the LFM signal, the T-F analysis method is quite effective. The short-time

Electronics 2023, 12, 2530. https://doi.org/10.3390/electronics12112530 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112530
https://doi.org/10.3390/electronics12112530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5742-5902
https://orcid.org/0000-0001-5108-8784
https://orcid.org/0000-0002-7608-8884
https://doi.org/10.3390/electronics12112530
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112530?type=check_update&version=2


Electronics 2023, 12, 2530 2 of 19

Fourier transform (STFT) [9,10] is the earliest time-frequency analysis method. The T-F
distribution established by this method is simple and intuitive, but the time-frequency
resolution of this method cannot be flexibly changed when analyzing non-stationary signals.
The Wigner–Ville distribution (WVD) [11–13] achieves the highest energy accumulation in
the TF plane. To achieve parameter estimation of the LFM signal, the WVD is usually com-
bined with the Hough transform to form Wigner-Hough transform(WHT). However, this
method will produce serious cross-term interference when processing the multi-component
LFM signal, and is also computationally intensive. The Fractional Fourier transform
(FRFT) [14–17] is extended from the traditional Fourier transform, and it obtains a new
FRFT domain by rotating the signal in the TF plane. The signal’s energy will accumulate to
form a peak in the FRFT domain once the rotation angle is suitable. Parameter estimation
of the signal can be achieved by searching for the peak. Nevertheless, this method requires
a two-dimensional search, and the computational demand is relatively great when high
accuracy is required for parameter estimation.

Most of the above parameter estimation methods are carried out in the environment
of Gaussian white noise. However, in real-world electromagnetic environments, hydroa-
coustic noise, atmospheric noise, and radar clutter are non-Gaussian noise. These types of
noise exhibit prominent impulsive characteristics and can be described as impulsive noise.
The performance of all the parameter estimation methods mentioned above will experience
significant degradation in conditions of strong impulsive noise. To solve this problem, the
authors in [18] combined the concept of fractional low-order (FLO) covariance with WHT
and Lv’s distribution (LVD) [19] and proposed the methods of FLO-WHT and FLO-LVD.
Although the methods concerned with fractional low-order can effectively suppress the
impulse noise, the methods require specific prior information of the noise. Moreover,
the performance of the methods degrades rapidly when the order of fractional low-order
methods is not appropriate. In the work of [20,21], a parameter estimation method based
on the Sigmoid function and FRFT (Sigmoid-FRFT) is proposed, which does not require
a priori information of the noise and suppresses the impulsive noise well. However, this
method may fail when processing the plural signal. In general, the existing methods used
to suppress impulsive noise face the following problems: (1) a priori knowledge of the noise
is required; (2) they may fail when processing complex signals; and (3) the suppression
capability of strong impulsive noise is limited.

To solve these problems, a new parameter estimation method known as PNAT-LVD is
proposed in this manuscript. First, the properties of the PNAT are derived to confirm that
the phase information of the LFM signal remains unchanged after PNAT while suppressing
the impulsive noise. The parametric symmetric instantaneous autocorrelation function
(PSIAF) [22] of the signal after PNAT is then calculated to obtain the PNAT-PSIAF. Next,
the PNAT-PSIAF is scaled–transformed to achieve the decoupling relationship between
time and delay. Finally, a two-dimensional Fourier transform is performed to obtain
the PNAT-LVD. By searching for the peak coordinates of the PNAT-LVD, the centroid
frequency and the chirp rate of the LFM signal can be estimated. The simulations show
that the proposed algorithm can successfully reduce the influence of impulsive noise and
does not require knowledge of the noise beforehand. Meanwhile, the two parameters can
still be precisely estimated under strong impulsive noise.

The remainder of this paper is structured as follows. In Section 2, the models of the
signal and noise are developed. In Section 3, the Lv’s distribution algorithm is introduced,
and the shortcomings of this algorithm under impulsive noise are analyzed. In Section 4,
an improved algorithm known as PNAT-LVD is proposed, and two important properties
of PNAT are proposed and proved. Furthermore, the optimal scale parameter used in
PNAT-LVD is discussed. In Section 5, several sets of simulations are conducted to confirm
the efficacy of the proposed method. Lastly, concluding remarks are provided in Section 6.
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2. The Models of the Signal and the Impulsive Noise
2.1. The LFM Signal Model

Typically, a continuous multi-component LFM signal is defined as follows [23]:

x(t) =
l

∑
i=1

Ai exp
[

j2π

(
f0it +

1
2

kit2
)]

− T
2
≤ t ≤ T

2
(1)

where l is the number of signal components, when l equals 1, x(t) depicts the single-
component LFM signal. Ai depicts the amplitude of the ith signal component, f0i depicts
the centroid frequency of the ith signal component, ki depicts the chirp rate of the ith signal
component, and T depicts the signal’s pulse width. Assume that the LFM signal in the
impulsive noise is s(t), then

s(t) = x(t) + n(t) (2)

where x(t) is the LFM signal and n(t) is the impulsive noise.

2.2. The Impulsive Noise Model

For noise with strong randomness and impulsiveness in complex electromagnetic
environments, the symmetric α-stable (SαS) distribution noise model can be used to de-
scribe accurately [24,25]. Therefore, the impulsive noise model used in this paper is the
SαS distribution noise model. Since the probability density function (PDF) of the random
variable that obeys the SαS distribution does not have a closed form, the characteristic
function is generally used to represent [26]:

ϕ(t) = expjbt− γ|t|α[1 + jβsgn(t)w(t, α)] (3)

where

w(t, α) =

{
2
π lg |t| α = 1
tan απ

2 α 6= 1
(4)

sgn(t) =


1, t > 0
0, t = 0
−1, t < 0

(5)

where sgn(t) is a symbolic function, b(−∞ < b < +∞) is the location parameter that
reflects the location of the center of the distribution. α(0 < α ≤ 2) is a characteristic
index reflecting the strength of noise impulsivity. The smaller its value, the stronger the
noise impulsivity. β(−1 ≤ β ≤ 1) is a symmetric parameter. When β = 0 , the noise
obeys SαS distribution. γ(γ > 0) is a scale parameter that measures the degree of the
sample’s departure from the mean. Since there is no finite second-order moment of the
SαS distribution noise, the conventional signal-to-noise ratio (SNR) is no longer applicable.
Therefore, the GSNR [27] is used to describe the relationship between the signal and the
SαS distribution noise.

GSNR = 10 lg(
σ2

s
γ
) (6)

where σ2
s depicts the signal’s variance, and γ depicts the noise’s scale parameter mentioned

before [28].

3. The Lv’s Distribution Algorithm

The LVD is a relatively time-frequency analysis method applied to estimate the chirp
rate and the centroid frequency of the LFM signal. Compared with WVD, this method
can estimate parameters without relying on linear detection methods such as the Hough
transform and has higher energy accumulation. Meanwhile, the Lv’s distribution also
performs better than FRFT in resolution, representation, and detection. Therefore, the Lv’s
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distribution has an essential advantage in the parameter estimation of the LFM signal. Take
the signal with the form of (1) as an example. Define the PSIAF of the signal as follows [19]:

Rx(t, τ) =x
(

t +
τ + a

2

)
x∗
(

t− τ + a
2

)
=

l

∑
i=1

Rxi (t, τ) +
l−1

∑
i=1

l

∑
j=i+1

[
Rxixj(t, τ) + Rxjxi (t, τ)

]
=

l

∑
i=1

A2
i exp[j2π f0i(τ + a) + j2πki(τ + a)t]

+
l−1

∑
i=1

l

∑
j=i+1

[
Rxixj(t, τ) + Rxjxi (t, τ)

]
(7)

where * denotes complex conjugation, τ denotes the time delay, Rsi denotes the auto-term,
Rsisj denotes the cross-term, and a is the delay constant concerned with a scaling operator
whose optimal value is generally taken as 1. In order to uncouple the time variable t and
the time delay τ, a scale transformation of the time variable t is required, as shown in the
following equation.

Γ[R(t, τ)] = R(
tn

h(τ + a)
, τ) (8)

where h is a scale operator, the best performance of the scale transformation is achieved
when h equals 1 [19]. A scale transformation of Equation (7) then gives

Γ[Rx(t, τ)] =
l

∑
i=1

A2
i exp

[
j2π f0i(τ + a) + j2π

ki
h

tn

]

+
l−1

∑
i=1

l

∑
j=i+1

[
Rxixj(tn, τ) + Rxjxi (tn, τ)

] (9)

The expression of LVD is obtained by making a two-dimensional Fourier transforma-
tion of tn and τ based on Equation (9).

LVDx( f , k) = Fτ{Ftn [ Γ(Rx(t, τ))]}

=
l

∑
i=1

LVDxi ( f , k) +
l−1

∑
i=1

l

∑
j=i+1

LVDx,xj( f , k)

≈
l

∑
i=1

A2
i exp(j2πa f )δ( f − f0i)δ(k− ki/h)

(10)

Several studies [29–31] have demonstrated that the LVD algorithm has good noise
immunity and estimation performance under Gaussian white noise. However, under impul-
sive noise conditions, the LVD algorithm fails. The PSIAF and LVD of a single-component
LFM signal without noise and with SαS distribution noise are shown in Figure 1. The param-
eters of the single-component LFM signal used in this simulation are: A = 1, f0 = 20 MHz,
k = 40× 1012 Hz/s, T = 2 µs, and the sampling rate fs = 256 MHz. The results show that
LVD can accurately detect and estimate the signal parameters without noise. However,
under the SαS distribution noise, the PSIAF of the signal is completely corrupted by the
noise, leading to failure of the LVD algorithm.
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(a) (b)

(c) (d)

Figure 1. PSIAF and LVD of the LFM signal without noise and with SαS distribution noise. (a) PSIAF
(without noise). (b) LVD (without noise). (c) PSIAF (with noise). (d) LVD (with noise).

4. The Improved Lv’s Distribution Algorithm

The LVD distribution algorithm is defined in Section 3. It is shown by simulations
that LVD cannot achieve parameter estimation of the LFM signal under impulsive noise.
To solve this problem, an improved PNAT-LVD algorithm is proposed. The general idea
of the algorithm is first to process the LFM signal with impulsive noise using PNAT, then
calculate the PSIAF of the processed signal. Next, a scale transformation is performed
to decouple the time and time-delay in PNAT-PSIAF. Finally, a two-dimensional Fourier
transform is performed to obtain the PNAT-LVD. The estimated values of the parameters are
obtained by searching the peak coordinate points. Each step of the algorithm is described
in detail as follows.

4.1. Piecewise Nonlinear Amplitude Transform (PNAT)

Traditional nonlinear amplitude transform (NAT) functions have been shown to bear
the ability to suppress impulsive noise [20,28,32]. However, the traditional NAT func-
tions, such as the Sigmoid function and compression transform function, have limited
noise-suppression ability and are less effective than the FLO methods mentioned before.
Although FLO methods can effectively inhibit the impulsive noise, it requires a priori infor-
mation of the noise. In order to improve the suppression effect on impulsive noise without
a priori knowledge, a PNAT function is constructed in the work by [33] to help estimate the
multipath delay of the signal in impulsive noise. By combining the truncation function and
the PDF of the Cauchy distribution, the PNAT function is defined as Equation (11) [33].
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PNAT[s(t)] =

s(t), |s(t)| ≤ η
2η2s(t)

η2+|s(t)|2 , else
(11)

where η(η > 0) is the scale transformation parameter. When |s(t)| ≤ η, the PNAT function
directly adopts a linear function, which can retain the valuable information of the signal to
the greatest extent. When |s(t)| > η, the nonlinear part of the PNAT function is obtained
by improving the PDF of the Cauchy distribution with decay characteristics. The PNAT
can map the pulse with large amplitude to the range of function value uniformly, making
the sample more consistent with the Gaussian distribution.

In order to estimate the parameters of the LFM signal in impulsive noise subsequently,
the PNAT needs to have two properties: one is that the signal’s parameters that need to
be estimated cannot change after PNAT; the other is that the signal needs to have finite
second-order moments after PNAT. Thus, the following propositions are proposed and
proved in this manuscript.

Proposition 1. The LFM signal changes only in amplitude after PNAT, and the phase information
remains unchanged.

Proof of Proposition 1. Consider a single-component LFM signal, according to Formula (1),
the signal can be represented by x1(t) = Aexp[j2π( f0t + 1

2 kt2)], where A is the amplitude,
f0 is the centroid frequency, and k is the chirp rate. Perform PNAT on x1(t), we can obtain

When |x1(t)| ≤ η:

PNAT[x1(t)] = Aexp[j2π( f0t +
1
2

kt2)] (12)

When |x1(t)| > η:

PNAT[x1(t)] =
2η2 × Aexp[j2π( f0t + 1

2 kt2)]

η2 + |Aexp[j2π( f0t + 1
2 kt2)]|2

=
2η2 A

η2 + A2 exp[j2π( f0t +
1
2

kt2)]

(13)

From the above equation, it can be proved that x1(t) only changes in amplitude, and f0
and k remain unchanged after the PNAT.

Since the PNAT carries out a linear transformation of the signal when |s(t)| ≤ η, only
the suppression ability of impulsive noise in the nonlinear transformation region needs to
be considered in Proposition 2.

Proposition 2. Mutually independent random variables u and v are subject to SαS distribution,
and the values of the variables after PNAT are U = PNAT(u) and V = PNAT(v). Then |E(UV)|
is bounded in the impulsive noise environment.
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Proof of Proposition 2. Let the joint PDF of u and v be fu,v(u, v), and the scale parameter be
η. The nonlinear transformation region is u, v ∈ (−∞,−η) ∪ (η,+∞). From Equation (11),
we can then obtain:

|E(UV)| =|E( 2η2u
η2 + |u|2 ·

2η2v
η2 + |v|2 )|

=|
∫ −η

−∞

∫ −η

−∞

2η2u
η2 + |u|2 ·

2η2v
η2 + |v|2 · fu,v(u, v)dudv|

+|
∫ +∞

η

∫ +∞

η

2η2u
η2 + |u|2 ·

2η2v
η2 + |v|2 · fu,v(u, v)dudv|

≤
∫ −η

−∞

∫ −η

−∞
| 2η2u
η2 + |u|2 | · |

2η2v
η2 + |v|2 | · fu,v(u, v)dudv

+
∫ +∞

η

∫ +∞

η
| 2η2u
η2 + |u|2 | · |

2η2v
η2 + |v|2 | · fu,v(u, v)dudv

(14)

Since | 2η2u
η2+|u|2 | · |

2η2v
η2+|v|2 | is an even function, the aforementioned equation can be

written as:

|E(UV)| ≤2
∫ +∞

η

∫ +∞

η

2η2u
η2 + u2 ·

2η2v
η2 + v2 · fu,v(u, v)dudv

≤2
∫ +∞

η

∫ +∞

η

2η2u
η2 + u2 ·

2η2v
η2 + v2 dudv

≤8η4
∫ +∞

η

u
η2 + u2 du ·

∫ +∞

η

v
η2 + v2 dv

(15)

When η > 1, Equation (15) satisfies:

|E(UV)| ≤ 8η4
∫ +∞

η

u
1 + u

du ·
∫ +∞

η

v
1 + v

dv (16)

In the range of u ∈ (η,+∞), we have u
1+u ≤ arctanu, and arctanu > 0, then:

∫ +∞

η

u
1 + u

du ≤
∫ +∞

η
arctanudu ≤

∫ +∞

0
arctanudu =

π

2
(17)

Similarly, we can obtain
∫ +∞

η
v

1+v dv < π
2 , then Equation (12) satisfies:

|E(UV)| < 2η4π2 (18)

When η ≤ 1, the Equation (15) satisfies:

|E(UV)| ≤ 8η4(
∫ 1

η

u
η2 + u2 du +

∫ +∞

1

u
η2 + u2 du) · (

∫ 1

η

v
η2 + v2 dv +

∫ +∞

1

v
η2 + v2 dv) (19)

where ∫ 1

η

u
η2 + u2 du =

1
2

ln|η
2 + 1
2η2 | (20)

∫ +∞

1

u
η2 + u2 du =

∫ +∞

1
η

u′

1 + u′2
du′ <

∫ +∞

1
η

u′

1 + u′
du′ <

∫ +∞

0
arctanu′du′ =

π

2
(21)
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Substitute Equations (20) and (21) into Equation (19), we can obtain:

|E(UV)| < 8η4(
1
2

ln|η
2 + 1
2η2 |+

π

2
)2 (22)

The proposition is proved. Moreover, the value of |E(UV)| = |E(U2)| is bounded
when u = v. Therefore, there exist finite second-order moments for random variables that
obey the SαS distribution after PNAT.

Since f0 and k remain unchanged and have finite second-order moments after PNAT,
the methods on account of second-order moments can be subsequently used to estimate
the parameters. Moreover, the PNAT function can suppress impulsive noise effectively
without a priori information about the noise.

4.2. The Improved PNAT-LVD Algorithm

In order to estimate the parameters of the LFM in impulsive noise, an improved
PNAT-LVD is proposed. By combining PNAT and PSIAF, a new concept called PNAT-
PSIAF is proposed. After performing a scale transformation and a two-dimensional Fourier
transform on PNAT-PSIAF, an improved PNAT-LVD algorithm can be obtained. First,
the PNAT-PSIAF of the LFM signal is calculated as follows:

RPNAT
x (t, τ) =PNAT

[
x
(

t +
τ + a

2

)]
PNAT

[
x∗
(

t− τ + a
2

)]
=

l

∑
i=1

RPNAT
xi

(t, τ) +
l−1

∑
i=1

l

∑
j=i+1

[
RPNAT

xixj
(t, τ) + RPNAT

xixj
(t, τ)

]

=
l

∑
i=1

(
2η2 Ai

η2 + A2
i

)2

exp[j2π f0i(τ + a) + j2πki(τ + a)t]

+
l−1

∑
i=1

l

∑
j=i+1

[
RPNAT

xixj
(t, τ) + RPNAT

xjxi
(t, τ)

]
(23)

For the purpose of decoupling time t and time-delay τ, the scale transformation of
Equation (8) is applied to Equation (23), then we obtain

Γ
[

RPNAT
x (t, τ)

]
=

l

∑
i=1

(
2η2 Ai

η2 + A2
i

)2

exp
[

j2π f0i(τ + a) + j2π
ki
h

tn

]

+
l−1

∑
i=1

l

∑
j=i+1

[
RPNAT

xixj
(tn, τ) + RPNAT

xjxi
(tn, τ)

] (24)

The expression of PNAT-LVD is then obtained by making a two-dimensional Fourier
transformation of tn and τ based on Equation (24).

PNAT − LVDx( f , k) = Fτ

{
Ftn

[
Γ
(

RPNAT
x (t, τ)

)]}
=

l

∑
i=1

PNAT − LVDxi ( f , k) +
l−1

∑
i=1

l

∑
j=i+1

PNAT − LVDxixj( f , k)

≈
l

∑
i=1

(
2η2 Ai

η2 + A2
i

)2

exp(j2πa f )δ( f − f0i)δ(k− ki/h)

(25)

Equation (25) demonstrates that PNAT − LVDx( f , k) is non-zero only when f = f0i

and k = ki
h . By searching the peak of the PNAT-LVD, the coordinate (xi, yi) corresponding
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to the peak can be obtained. Therefore, the estimation of f0i and ki based on PNAT-LVD is
given by 

(xi, yi) = arg max
f ,k

|PNAT − LVDx( f , k)|

f̂0i = xi
k̂i = hyi

(26)

The scale parameter η in the PNAT function is used to adjust the range of the linear
interval to accommodate different kinds of signals and noise. Choosing a suitable η
not only helps retain enough helpful information about the signal for the estimation
but also suppresses the impulse noise more effectively and improves the PNAT-LVD
algorithm’s robustness.

Figures 2 and 3 show the curves of the normalized root-mean-square error (NRMSE)
versus the scaling parameter η, which is obtained from 100 Monte Carlo experiments on the
LFM signal with different GSNRs and characteristic indexes, respectively. The results show
that the NEMSE of the parameters is less than or equal to 0.01 in any case when η is in the
range of [1, 7.5). This means that the value of [1, 7.5) ensures the algorithm’s performance.
When η equals 1, the algorithm has the best estimation accuracy in all cases. Therefore,
η = 1 is the optimal scale parameter of PNAT and used in subsequent simulations.

(a) (b)

Figure 2. Estimation error of PNAT function for LFM signal with different scaling parameters
(GSNR = −4 dB). (a) NRMSE of the centroid frequency. (b) NRMSE of the chirp rate.

(a) (b)

Figure 3. Estimation error of PNAT function for LFM signal with different GSNR (α = 0.8).
(a) NRMSE of the centroid frequency. (b) NRMSE of the chirp rate.

Figure 4 represents the PNAT-PSIAF and PNAT-LVD of the LFM signal with the
SαS distribution noise. The parameters of the signal and noise are the same as that used
in Section 3. After applying PNAT, the SαS distribution noise is effectively suppressed,
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the PNAT-PSIAF of the signal is no longer completely covered by impulsive noise and the
PNAT-LVD exists with a prominent peak accumulated by the LFM signal’s energy.

(a) (b)

Figure 4. PNAT-PSIAF and PNAT-LVD of the LFM signal with the SαS distribution noise. (a) PNAT-
PSIAF. (b) PNAT-LVD.

5. Simulations and Complexity Analysis
5.1. Simulations

We conduct four different types of simulations to assess the performance of the
LVD [15], the FLO-LVD [18], the Sigmoid-FRFT [20], and the PNAT-LVD under the SαS
distribution noise. The parameters of the single-component LFM signal used in the fol-
lowing simulations are the same as the parameters of the signal component 1 in Table 1.
Furthermore, the parameters of the double-component LFM signal used in the following
simulations are shown in Table 1. Since the fractional low-order theory has a suppression
effect on the SαS distribution noise only when p is in the range of [0, α

2 ), the order of
FLO-LVD used in the following simulations is chosen as 0.3.

Table 1. The parameters of the double-component LFM signal.

The Signal
Components

The
Normalized
Amplitude

The Pulse
Width (µs)

The
Centroid

Frequency
(MHz)

The Chirp
Rate

(×1012 Hz/s)

The Sample
Frequency

(MHz)

Component 1 1 2 20 40 256
Component 2 1 2 40 −20 256

Simulation 1: A single-component LFM signal’s estimation with different GSNR and α.
Figures 5–7 show the LVD, FLO-LVD, Sigmoid-FRFT, and PNAT-LVD of the LFM

signal with SαS distribution noise of different GSNR and α. According to Figure 5, when
GSNR = 0 dB and α = 1.5, all the methods can detect that the signal and the signal’s
energy form a distinct peak in a specific domain. The coordinates of the peak correspond to
the parameters of the signal. When GSNR = −6 dB and α = 1.5, Figure 6b,d still show one
noticeable peak in the three-dimensional map, while the other methods have failed to detect
the LFM signal. When GSNR = −6 dB and α = 0.8, all methods except for PNAT-LVD
fail to detect the signal in Figure 7. Comparing Figure 7d with Figure 6d, PNAT-LVD in
Figure 7d suppresses the noise more effectively and estimates the signal parameters more
accurately. Since the smaller α is, the stronger the impulsive characteristics of the noise, we
can conclude that the PNAT-LVD method performs better than several other methods in a
strong impulsive noise environment.
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(a) (b)

(c) (d)

Figure 5. Three-dimensional maps of LVD, FLO-LVD, Sigmoid-FRFT, and PNAT-LVD of the LFM
with SαS distribution noise (GSNR = 0 dB, α = 1.5). (a) LVD. (b) FLO-LVD. (c) Sigmoid-FRFT.
(d) PNAT-LVD.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Three-dimensional maps of LVD, FLO-LVD, Sigmoid-FRFT, and PNAT-LVD of the LFM
with SαS distribution noise (GSNR = −6dB, α = 1.5). (a) LVD. (b) FLO-LVD. (c) Sigmoid-FRFT.
(d) PNAT-LVD.

(a) (b)

(c) (d)

Figure 7. Three-dimensional maps of LVD, FLO-LVD, Sigmoid-FRFT, and PNAT-LVD of the LFM
with SαS distribution noise (GSNR = −6 dB, α = 0.8). (a) LVD. (b) FLO-LVD. (c) Sigmoid-FRFT.
(d) PNAT-LVD.

Simulation 2: A double-component LFM signal’s estimation with different GSNR and α.
In order to verify the detection capability of the proposed algorithm for the multi-

component LFM signal, simulations are performed with the a double-component LFM
signal. In total, three backgrounds with different SαS distribution noise are set with
the following parameters: (1) GSNR = 0 dB, α = 1.5; (2) GSNR = −5 dB, α = 1.5;
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(3) GSNR = −5 dB, α = 0.8. Figure 8 depicts the detection of the double-component LFM
signal using different methods.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Estimation results of double-component LFM signals using different methods. (a) FLO-LVD
(GSNR = 0 dB, α = 1.5). (b) Sigmoid-FRFT (GSNR = 0 dB, α = 1.5). (c) PNAT-LVD (GSNR = 0 dB,
α = 1.5). (d) FLO-LVD (GSNR = −5 dB, α = 1.5). (e) Sigmoid-FRFT (GSNR = −5 dB, α = 1.5).
(f) PNAT-LVD (GSNR = −5 dB, α = 1.5). (g) FLO-LVD (GSNR = −5 dB, α = 0.8). (h) Sigmoid-FRFT
(GSNR = −5 dB, α = 0.8). (i) PNAT-LVD (GSNR = −5 dB, α = 0.8).

The detection results of FLO-LVD, Sigmoid-FRFT, and PNAT-LVD of the double-
component LFM signal at GSNR = 0 dB and α = 1.5 are shown in Figure 8a–c. The energy
of the signal components accumulates to form two peaks under the three algorithms, and the
signal’s parameters can be accurately estimated by searching for the peak coordinates.

Figure 8d–f indicate the results of FLO-LVD, Sigmoid-FRFT, and PNAT-LVD for the
signal at GSNR = −5 dB and α = 1.5. It can be seen that FLO-LVD and Sigmoid-FRFT
have failed at this time, and peaks formed by the energy accumulation of the signal
components are covered by the energy of noise. In such situations, the detection and
parameter estimation cannot be performed.

To further confirm that the stronger the impulsive characteristics of the noise, the better
the suppression effect of PNAT-LVD, Figure 8g–i indicate the results of FLO-LVD, Sigmoid-
FRFT, and PNAT-LVD of the signal at GSNR = −5 dB and α = 0.8. The results show that
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only PNAT-LVD is still capable of parameter estimation of the signal. Moreover, comparing
Figure 8f with Figure 8i, PNAT-LVD is more effective in suppressing the noise with stronger
impulsive characteristics.

Simulation 3: Estimation accuracy with regard to GSNR.
To evaluate the estimation accuracy of several methods for the two parameters of

the noisy LFM signal under different GSNR, the NRMSE is used as a criterion to evaluate
whether the performance of the method is satisfactory. A total of 100 Monte Carlo experi-
ments are conducted to calculate the variation in NRMSEs of f0 and k with GSNR, where
α = 1.5 or α = 0.8, and the variation of GSNR is in the range of [−9 : 10] dB with a step
size of 1dB. The results are depicted in Figures 9 and 10.

(a) (b)

Figure 9. NRMSE of parameters versus GSNR (α = 1.5). (a) NRMSE of the centroid frequency.
(b) NRMSE of the chirp rate.

(a) (b)

Figure 10. NRMSE of parameters versus GSNR (α = 0.8). (a) NRMSE of the centroid frequency.
(b) NRMSE of the chirp rate.

Take the NEMSE of the parameter less than 0.02 as the criterion for the algorithm to
estimate effectively. Then according to Figures 9 and 10, the estimation accuracy of the
centroid frequency using the algorithms concerned with LVD is almost the same when they
can achieve effective estimations. However, for the chirp rate, the estimation accuracy of the
PNAT-LVD algorithm is much higher than that of the other methods when α = 0.8. Table 2
summarizes the minimum GSNR for which different algorithms can achieve effective
parameter estimation. As shown in Table 2, PNAT-LVD has the same noise immunity as
the FLO-LVD when α = 1.5. However, as the α decreases, the performance of all methods
degrades except for PNAT-LVD, the noise immunity of PNAT-LVD even improves.
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Table 2. The lowest GSNR for which different algorithms can achieve effective parameter estimation.

Characteristic Index Parameters LVD FLO-LVD Sigmoid-FRFT PNAT-LVD

α = 1.5 f0 1 dB –5 dB –2 dB –5 dB
k 1 dB –5 dB –2 dB –5 dB

α = 0.8 f0 - –2 dB –1 dB –6 dB
k - –2 dB –1 dB –6 dB

To further compare the estimation performance of various algorithms for the two-
component LFM signal, we used different algorithms to perform 100 Monte Carlo experi-
ments for parameter estimation of the double-component LFM signal in the SαS distribu-
tion noise with different α. The NRMSE curves of parameters with GSNR are shown in
Figures 11 and 12.

(a) (b)

Figure 11. NRMSE of parameters versus GSNR (α = 1.5, the double-component LFM signal).
(a) NRMSE of the centroid frequency. (b) NRMSE of the chirp rate.

(a) (b)

Figure 12. NRMSE of parameters versus GSNR (α = 0.8, the double-component LFM signal).
(a) NRMSE of the centroid frequency. (b) NRMSE of the chirp rate.

Table 3 summarizes the minimum GSNR of different algorithms that can achieve
effective parameter estimation. From the results, when α is equal to 1.5, the noise immunity
of the algorithm proposed in this manuscript is slightly worse than that of FLO-LVD.
However, when α is equal to 0.8, the noise immunity of PNAT-LVD is much greater than
that of the other algorithms, and demonstrates good estimation accuracy. The results once
again verify that the stronger the impulsivity of the noise, the more advantageous the
PNAT-LVD algorithm is.
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Table 3. The lowest GSNR for which different algorithms can achieve effective parameter estimation
for the double-component LFM signal.

Characteristic
Index Parameters The Signal

Components LVD FLO-LVD Sigmoid-FRFT PNAT-LVD

α = 1.5
f0

component 1 5dB –2 dB 2 dB –1 dB
component 2 6 dB –2 dB 2 dB –1 dB

k component 1 4 dB –2 dB 2 dB –1 dB
component 2 5 dB –2 dB 2 dB –1 dB

α = 0.8
f0

component 1 - 2 dB 2 dB –3 dB
component 2 - 1 dB 2 dB –4 dB

k component 1 - 2 dB 2 dB –3 dB
component 2 - 1 dB 2 dB –3 dB

Simulation 4: Estimation accuracy with regard to the characteristic index α of the noise.
Figure 13a,b show the curves of the NRMSE of the centroid frequency and the chirp

rate at different characteristic indexes when GSNR = −2 dB. The values of characteristic
index of the impulsive noise are taken in the range of [0.5, 2.0] with a step size of 0.1,
and 100 Monte Carlo experiments are performed at each characteristic index. In Figure 13,
the performance of the FLO-LVD rapidly degrades when α is below 0.8. The performance
of Sigmoid-FRFT for estimating the centroid frequency degrades when α is less than 0.7,
while the performance of Sigmoid-FRFT for estimating the chirp rate degrades when α is
less than 0.9. However, the NRMSE of two parameters estimated by PNAT-LVD remains
less than 0.01 within the range of the set characteristic index. It can be concluded that the
PNAT-LVD algorithm can exhibit excellent estimation performance irrespective of how
strong the impulsive characteristics of the noise are. Moreover, the stronger the impulsive
characteristics of the noise, the more advantageous PNAT-LVD is compared with the
other methods.

(a) (b)

Figure 13. Parameter estimation performance curves of four algorithms for the LFM signal versus
characteristic index α. (a) NRMSE of the centroid frequency. (b) NRMSE of the chirp rate.

5.2. Complexity Analysis

Assume the number of time samples is N and the number of searching order required
to perform an FRFT is M. The computational cost of LVD and FRFT is in the order of
O(N2 log N) and O(MN log N) [19]. The NAT and FLO are mainly for multiplication
and division operations, and the computational cost of FLO, Sigmoid transformation
and PNAT transformation lies in the order of O(2N), O(2N), and O(3N), respectively.
The computational costs of LVD, FLO-LVD, Sigmoid-FRFT and PNAT-LVD are shown in
Table 4.
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Table 4 shows that the complexity of PNAT-LVD is slightly higher than FLO-LVD
and LVD. Since the searching step of the Sigmoid-FRFT used in this manuscript is 0.001,
the number of searching order M is 2000. The complexity of PNAT-LVD is much lower
than the Sigmoid-FRFT. Therefore, PNAT-LVD improves noise immunity and estimation
accuracy compared to the other methods without introducing excessive computational cost.

Table 4. Computational cost.

Algorithm Computational Cost

LVD O(N2 log N)
FLO-LVD O(2N + N2 log N)

Sigmoid-FRFT O(2N + MN log N)
PNAT-LVD O(3N + N2 log N)

6. Conclusions

In conclusion, a novel method referred to as PNAT-LVD is proposed for parameter
estimation of the LFM signal in impulsive noise. The impulsive noise-suppression ability of
the PNAT is analyzed, and the optimal scale parameter when implementing PNAT-LVD is
discussed. Results from the simulations verify that the proposed algorithm can effectively
suppress the impulsive noise without prior knowledge of the noise for both the single-
component and double-component LFM signal. Furthermore, the proposed algorithm
exhibits greater precision in estimation accuracy and stronger robustness compared with
existing methods.
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Abbreviations
The following abbreviations are used in this manuscript:

LFM Linear frequency modulation
PNAT Piecewise nonlinear amplitude transform
PSIAF Parametric symmetric instantaneous autocorrelation function
LVD Lv’s distribution
PNAT-PSIAF Piecewise nonlinear amplitude transform parametric symmetric

instantaneous autocorrelation function
PNAT-LVD Piecewise nonlinear amplitude transform Lv’s distribution
GSNR Generalized signal-to-noise ratios
LPI Low probability of intercept
MLE Maximum likelihood estimator
CRLB Cramer–Rao Lower bound
FRFT Fractional Fourier Transform
FLO Fractional low-order
SαS symmetric α-stable
PDF Probability density function
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