
Citation: Li, H.; Qi, S.; Zhang, J.;

Zhang, D.; Yao, L.; Wang, X.; Li, Q.;

Xiao, J. NFSP-PLT: Solving Games

with a Weighted NFSP-PER-Based

Method. Electronics 2023, 12, 2396.

https://doi.org/10.3390/

electronics12112396

Academic Editor: Yoichi Hayashi

Received: 17 April 2023

Revised: 12 May 2023

Accepted: 22 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

NFSP-PLT: Solving Games with a Weighted
NFSP-PER-Based Method
Huale Li 1,2,3,4 , Shuhan Qi 3,4,*, Jiajia Zhang 3, Dandan Zhang 3, Lin Yao 3, Xuan Wang 3, Qi Li 5 and Jing Xiao 6

1 School of Software, Northwestern Polytechnical University, Xi’an 710072, China
2 Yangtze River Delta Research Institute of NPU, Taicang 215400, China
3 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),

Shenzhen 518055, China
4 Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen 518000, China
5 China Merchants Group Digital Transformation Center, Shenzhen 518000, China
6 Ping An Insurance (Group) Company, Shenzhen 518000, China
* Correspondence: shuhanqi@cs.hitsz.edu.cn

Abstract: Nash equilibrium strategy is a typical goal when solving two-player imperfect-information
games (IIGs). Neural fictitious self-play (NFSP) is a popular method to find the Nash equilibrium in
IIGs, which is the first end-to-end method used to compute the Nash equilibrium strategy. However,
the training of NFSP requires a large number of sample data and the interactive cost of obtaining
such data is often very high. Realizing the efficient training of network under limited samples is an
urgent problem. In this paper, we first proposed a new NFSP-based method, NFSP with prioritized
experience replay (NFSP-PER), to improve the sample training efficiency. Then, a weighted NFSP-PER
with learning time (NFSP-PLT) was proposed to control the utilization degree of priority-weighted
samples. Furthermore, based on the NFSP-PLT, an adaptive upper-confidence-bound applied to tree
(UCT) is used to solve the optimal response strategy, which makes the solving strategy more accurate.
Extensive experimental results show that the proposed NFSP-PLT effectively improves the sample
learning efficiency compared with the existing works.

Keywords: game theory; imperfect information; neural fictitious self-play; deep reinforcement
learning

1. Introduction

With the rapid development of artificial intelligence, computer games, an artificial
intelligence research direction, have attracted much attention in recent years. Compared
with the perfect-information game with completely observable information, the imperfect-
information game with unobservable information is closer to the real application scenario,
and its solution is also more challenging. Due to the existence of this hidden information, it
is more difficult to make decisions than it is in perfect-information games. In recent years,
the study on two-player IIGs has achieved great success. Among them, Nash equilibrium,
an important concept in the game theory, has attracted the attention of researchers. Nash
equilibrium [1] is an optimal solution to the game, which is often used as the solution
goal of imperfect-information games. At present, the main methods to compute the Nash
equilibrium strategy are counterfactual regret minimization (CFR) [2] and fictitious play
(FP) [3].

The CFR is an iterative method to solve the game strategy, and the final average
strategy solved by CFR is a Nash equilibrium strategy or approximate Nash equilibrium
strategy. The CFR expands a game problem through the game tree, and iteratively traverses
each node of this game tree. The CFR has achieved great success in recent years, especially
in poker games [4–8]. For example, DeepStack [4] is the first computer program in the world
to defeat professional poker players in heads-up no-limit Texas Hold’em, using neural

Electronics 2023, 12, 2396. https://doi.org/10.3390/electronics12112396 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112396
https://doi.org/10.3390/electronics12112396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9168-5038
https://doi.org/10.3390/electronics12112396
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112396?type=check_update&version=1

Electronics 2023, 12, 2396 2 of 17

networks combined with CFR to construct a deep counterfactual value network to fit regret
value estimation. Libratus [5] also defeated top human specialist professionals in heads-up
no-limit Texas hold’em, using a blueprint for the overall strategy and a self-improver
algorithm for fixing potential weaknesses. Brown et al. introduce deep CFR, a form of CFR
that obviates the need for abstraction by instead using deep neural networks to approximate
the behavior of CFR in the full game [6]. Schmid et al. introduce a variance-reduction
technique that applies to any sampling variant of MCCFR (Monte Carlo counterfactual
regret minimization), which brings an order-of-magnitude speedup and the empirical
variance decreases by three orders of magnitude [7]. Liu et al. introduce a new CFR variant
recursive CFR (ReCFR) in which recursive substitute values are learned and used to replace
cumulative regrets [9]. However, limited by computing resources and storage resources,
the solution scale of CFR is not enough for large-scale games. When solving large-scale
game problems, the large-scale game problems must be abstracted and expert knowledge
is needed for the detailed design, which greatly limits its further application [8,10–12].

The FP [3] is also an iterative method that can be used to find the Nash equilibrium or
approximate Nash equilibrium in two-player IIGs. A game-player in the FP develops their
best response strategy by competing against opponents in the timesteps of simulated games.
After a sufficient number of repetitions is obtained, the average strategy of the historical
best responses will converge to the Nash equilibrium. However, the FP only provides a
framework with a theoretical guarantee, and the practical solution to the problem still needs
further research. To this end, fictitious self-play (FSP) is proposed by Heinrich et al. [13],
which extends the FP’s scope of application to extensive-form game problems. The FSP
solves the game strategy through machine learning-based methods, which greatly improves
the practicality of the original FP. Furthermore, Heinrich et al. improve the FSP with a deep
neural network and propose a new variant NFSP [14]. The NFSP can be applied to deep
reinforcement learning [15,16] (such as deep Q-learning, DQN [17,18]) to learn the best
response, and uses the supervised learning method (such as deep neural network [19]) to fit
the average strategy. In the NFSP, players play the game with a mixed strategy composed
of their own best response and average strategy, while opponents play the game using their
average strategy. It is worth noting that, compared with the previous methods, such as
CFR-based methods, the NFSP is an end-to-end method and does not require any prior
knowledge. As a result, NFSP is worthy of more attention and research in the field of IIGs.

There are numerous enhanced NFSP-based techniques available at present [20–27].
For example, Xue et al. [20] proposed a novel learning paradigm to solve large-scale
extensive-form NSGs (Network Security Games). The NSG-NFSP reform the best response
policy network in NFSP to be a mapping from action–state pair to action–value, to make
the calculation of best response possible in NSGs. Chen et al. [21] proposed an NFSP-based
method, replacing the computation of best response in NFSP with regret-matching. Zhang
et al. [22] proposed Monte Carlo-NFSP (MC-NFSP), which combines a Monte Carlo tree
search with NFSP to improve the performance in real-time zero-sum IIGs. Ganzfried [23]
compared the performance of two popular algorithms, FP and CFR, and showed that
FP leads to improved Nash equilibrium approximation over a variety of game classes
and sizes. Kamra et al. [24] developed an approximate extension of FP to two-player
games with high-dimensional continuous action spaces. Perolat et al. [25] built a stochastic
approximation of the FP process by using an architecture inspired by actor-critic algorithms.
He et al. [26] proposed local-regret-minimization-based FP (LRM-FP) for computing
approximate Nash equilibrium. The LRM-FP obtains a behavioral strategy by computing
the counterfactual regret from the local state-action value. Han et al. [27] presented a
new NFSP-based method combining NFSP and Kernel Regression UCT (KR-UCT) [28] for
digital curling games (DCGs), where NFSP uses two adversary learning networks and can
automatically produce supervised data. Table 1 provides a brief description of CFR- and
NFSP-based methods.

Electronics 2023, 12, 2396 3 of 17

Table 1. A brief description of CFR- and NFSP-based methods.

Method Game Types Contribution

DeepStack [4] two-player IIGs combines deep neural network valuation to conduct a finite
depth search on the game tree, the first to defeat professional
poker players in heads-up no-limit Texas Hold’em

Libratus [5] two-player IIGs defeated top human specialist professionals in heads-up no-
limit Texas hold’em, using a blueprint for the overall strategy
and a self-improver algorithm for fixing potential weaknesses

deep CFR [6] two-player IIGs obviates the need for abstraction by instead using deep neural
networks to approximate the behavior of CFR in the full game

MCCFR [7] two-player IIGs introduces a variance-reduction technique, brings an order
of magnitude speedup and the empirical variance decreases

FSP [13] two-player IIGs solves the game strategy through machine learning-based
methods, which greatly improves the practicality of the FP

NFSP [14] two-player IIGs a first end-to-end solving method for FSP, learns the best
response with DRL and uses the supervised learning to fit the
average strategy

[25] two-player IIGs uses an architecture inspired by actor-critic algorithms,
builds a stochastic approximation of the FP process

[24] two-player IIGs uses generative neural networks to approximate players’
best responses while also learning a differentiable
approximate model to the players’ rewards

NSG-NFSP [20] NSGs reforms the best response policy network in NFSP to be
a mapping from action-state pair to action-value

[21] two-player IIGs replaces the computation of best response in NFSP with regret
-matching, make the optimality gap converge to zero as
it iterates

MC-NFSP [22] two-player IIGs uses MC to NFSP, improves the performance in real-time
zero-sum IIGs

LRM-FP [26] two-player IIGs obtains a behavioral strategy by computing counterfactual
regret from the local state-action value

[27] DCGs combines NFSP and KR-UCT, uses two adversary learning
networks and can automatically produce supervised data

The NFSP still requires a large number of training samples to make the network
performance good enough, although these methods improve the performance of NFSP
to some extent. In previous NFSP-based methods, the training samples are randomly
sampled. However, the value of different samples is different, so it is efficient to select
more valuable samples for training. In terms of sample utilization efficiency, the NFSP
still has great room for improvement. Therefore, this paper studies the problem of sample
utilization efficiency in the training of NFSP. In vanila DQN [18], network training is
carried out through uniform sampling. Prioritized experience replay [29] increases sample
utilization efficiency by changing the priority of sample sampling, which further improves
the performance of vanilla DQN. In view of this, in this paper, we propose an NFSP-based
method, NFSP with Prioritized Experience Replay (NFSP-PER), which enhances the sample
learning efficiency by optimizing the empirical learning method. Specifically, the priority
experience replay mechanism is introduced to preferentially sample samples with higher
value. Through the more efficient use of samples with higher value, the priority-weighted
sample utilization degree control is realized, and the efficient sample learning of NFSP is
realized. In the NFSP-PER, considering the instability of the traditional deep reinforcement
learning (DRL) method [16] when solving the optimal response strategy, an adaptive UCT
is used, combined with the traditional DRL method. Extended experiments show that the
proposed method improves the sample learning efficiency compared with the comparison
methods. We summarize our contributions as follows:

(1) We propose an NFSP-based method, studying the strategy of IIGs. Not only can
the proposed method solve the strategy of two-player IIGs, but can also solve the strategy
of multiplayer IIGs.

Electronics 2023, 12, 2396 4 of 17

(2) We propose an NFSP-PER combining NFSP with Prioritized Experience Replay,
which enhances the sample learning efficiency by optimizing the empirical learning method.
In addition, NFSP-PLT is proposed to realize the priority-weighted sample utilization
degree control. Furthermore, in the NFSP-PER, an adaptive UCT is used, combined with
the traditional DRL method, to solve the optimal response strategy.

(3) Extensive experimental results showed that the proposed NFSP-PLT efficiently
improves the sample learning efficiency and can solve the strategy of multiplayer IIGs
compared with the comparison methods.

This paper is organized as follows: Section 2 introduces related works. Section 3 intro-
duces the system model and problem formulation. Section 4 introduces an overview of the
proposed method in detail. Section 5 shows the experimental results, including comparison
experiments and ablation studies. Section 6 presents the conclusion of this paper.

2. Related Works

In this section, the concepts of Nash equilibrium, NFSP and UCT will be introduced.
The Table 2 provides a detailed description of symbols in the paper.

Table 2. Detailed descriptions of symbols in the paper.

Symbol Detailed Description

σi The strategy of game-player i, a probability vector over actions for the player i on the
current state of the game. σ−i is the strategy of game-players except player i.

ui The payoff of game-player i. ui(σi, σ−i) is the payoff of game-player i when the
strategies σi and σ−i are applied by players i and −i, respectively.

BR(σ−i) The game-player i’s best response to the opponent −i’s strategy. This means the strategy
obtaining the most payoff for player i when the opponent −i adopts the strategy σ−i.

σ∗i The Nash equilibrium strategy, which means player i chose the best response for the
opponent −i.

nj The number of visits to child node j. n represents the number of visits to the current
node. X̄j represents the mean value of selecting the child node.

|δi| The temporal difference error [16] (TD-error) of the experience sample ei.
α This controls the effect degree of the TD-error, α ∈ [0, 1].

2.1. Nash Equilibrium

Nash equilibrium is a classical concept in the field of game theory [1]. Nash equilib-
rium is a strategy profile in which a game player cannot obtain more benefits by deviating
from Nash equilibrium. Here, we provide some necessary descriptions to better understand
the Nash equilibrium.

In the field of IIGs, a strategy refers to the probability distribution of all legal actions
on an information set. The information set is a unique concept in IIGs. The game state in
the information set is indistinguishable for game-players. For a specific game problem, the
best response of the game-player is the best response to the opponent’s strategy. When the
game-player chooses the best response in the game process, the game-player can obtain the
maximum benefit in this game. The formal definition of the best response BR(σ−i) is [1]:

ui(BR(σ−i), σ−i) = max
σ′i

ui
(
σ′i , σ−i

)
(1)

where BR(σ−i) is the game-player’s best response to opponents’ strategy σ−i; σi is the
strategy of game-player i; σ−i is the strategy of game-players except player i; ui is the payoff
of game-player i. For a two-player zero-sum game, u1 + u2 = 0.

Nash equilibrium strategy refers to when game-players choose the best response
strategy. A Nash equilibrium σ∗ can be defined as [1]:

ui
(
σ∗i , σ∗−i

)
= max

σ′i

ui
(
σ′i , σ∗−i

)
(2)

Electronics 2023, 12, 2396 5 of 17

It should be noted that, in most cases, it is very difficult to directly calculate the Nash
equilibrium. Thus, in many cases, we can calculate an approximate Nash equilibrium:
ε-Nash equilibrium. In an ε-Nash equilibrium, no game-player can improve their utility
more than ε by unilaterally changing their acting strategy. An ε-Nash equilibrium can be
defined as [1]:

ui
(
σ∗i , σ∗−i

)
+ ε = max

σ′i

ui
(
σ′i , σ∗−i

)
(3)

2.2. Neural Fictitious Self-Play

NFSP [14] is a method of using a machine learning algorithm to solve the game strategy
under the framework of game theory. The average strategy could theoretically be proved
to be the Nash equilibrium strategy or approximate Nash equilibrium strategy.

Specifically, there are best responses and average strategies in NFSP [14], in which the
best response is fitted by the DRL [16] method and the average strategy is fitted by a deep
neural network. In the game, the game-player chooses the mixed strategy, composed of the
best response and the average strategy, to play the game, while the opponent adopts the
average strategy for the game-player. In the process of network training, NFSP [14] contains
two datasets for sample storage. One is the best-response sample dataset, which is used
to store the samples generated when the game-player makes decisions according to the
mixed strategy in the game process; the other is the average strategy sample dataset, which
is used to store the samples generated when the game-player makes decisions according to
the best response in the game process.

In addition, in order to assure the stability of the resulting algorithm and enable
simultaneous self-play learning, the NFSP employs two technical advances. To eliminate
the windowing artefacts caused by sampling from a finite data memory, it firstly employs
reservoir sampling [30]. Secondly, it employs anticipatory dynamics [31] to allow each
agent to sample its own best reaction behaviour while also tracking changes in opponents’
behaviour more effectively.

2.3. Upper Confidence Bound Applied to Tree

UCT is the most widely used MCTS algorithm in recent years [32]. The UCT algorithm
can be used to solve the problem of “exploration and utilization” in MCTS. Exploration
refers to the selection of unreached nodes, and utilization refers to the utilization of known
historical information in the iteration process. UCT algorithm adopts upper confidence
bounds (UCB) in the sub-node selection stage of the Monte Carlo tree search. Kocsis and
Szepesvári [33] proposed UCB to realize the tree search. In the selection of child nodes
in the dobby gambling machine problem, the value of child nodes is approximated by
Monte Carlo simulation to approximate the expected reward. UCB has the advantages of
simplicity and efficiency, and can ensure that the optimal limit is kept in a constant range
in the case of regret growth [34]. Whenever a node (or an action) is to be selected in the
current game tree, the selection can be modeled as an independent multi-armed bandit
machine problem, with the parent node as a bandit and the action of selecting a child node
as a rocker. The child node j selected in each iteration needs to meet the following equation
to be maximized:

UCT = X̄j + 2Cp

√
2 ln n

nj
(4)

where n represents the number of visits to the current node, nj the number of visits to
child node j. Cp > 0 and Cp is a constant. X̄j represents the mean value of selecting the
child node.

The first term of Equation (4) is equivalent to the confidence interval of utilization,
and the second term is equivalent to the degree of trust in exploration. The essence of
Equation (4) is to achieve a balance between exploration and utilization in MCTS. The
exploration term can be understood as being more willing to explore better strategies,

Electronics 2023, 12, 2396 6 of 17

while the utilization term indicates that it is more inclined to use the existing optimal
strategies. The global optimal strategy solution can be solved through a balance between
exploration and utilization. On the one hand, with the access of each node, the denominator
of the exploration item increases, reducing its proportion. On the other hand, if another
child node of the parent node is accessed, the numerator increases. Thus, the value of
the exploration item of the brother node that is not accessed increases. The exploration
item can ensure that the selection probability of each child node is non-zero, which is very
important for the randomness of the strategy. Therefore, even the child nodes with low
rewards are guaranteed to be finally selected (in the case of sufficient time), and different
game tree paths can be explored. This can be determined by adjusting the constant Cp of
the exploration item that determines the importance of strategic exploration. As the UCT
iterations grow to infinity, the probability of choosing a suboptimal action at the root node
converges to zero at a polynomial rate [35–38].

3. System Model and Problem Formulation

Extended game [39] is a classic game model that represents sequential decision games.
Especially in the field of IIGs, extended games are often used to model corresponding
problems. Extended game describes the game process through a game tree, where nodes
(also known as decision points) represent the game state. A game process is a path in which
the starting node is the root node and the ending node is the leaf node. The direction of this
path is determined by the game actions chosen by game players. In the field of incomplete
information games, a finite extended game usually uses a six-tuple < N, H, P, f , I, u >
for formal description [39]. N is the set of game players in the game. H is the set of
game states, and the action sequence constitutes each game state h, h ∈ H. P is the player
function and P(h) is the player who will take an action after the state h. f is a function that
associates with every state h. I is the information set of the game. u is the payoff function
for game players.

We conducted research on strategy solving problems in the field of IIGs. From the
previous introduction, it can be found that the main goal is solving its Nash equilibrium
strategies or approximate Nash equilibrium strategies. In the paper, we first model the
poker problem as an extended game model for representation. The vanilla NFSP [14] can
solve game strategies with an end-to-end way and avoid the need for a large amount of
prior knowledge. NFSP uses DRL to solve the optimal strategy and supervised learning to
solve the average strategy. Finally, it can theoretically ensure that its average strategy is an
approximate Nash equilibrium strategy. However, NFSP has a low efficiency in sample
utilization, which hinders its further expansion and application. We conducted research
on this issue in the paper. The goal is to improve the efficiency of training samples while
maintaining game performance.

4. Our Method

In this section, the proposed methods NFSP-PER and NFSP-PLT are introduced and
elaborated in detail.

4.1. An Overview of NFSP-PER and NFSP-PLT

To improve the sample efficiency in the training process of NFSP, we applied a priority
experience replay mechanism [29] to the NFSP [14] and proposed an NFSP-PER. In our
NFSP-PER, samples with higher value will be given a higher sampling priority during
network training. In addition, for samples with a higher value, our method will further
improve its utilization to better mine the sample value. Finally, the efficient network
training is realized under a limited number of samples.

The framework of NFSP-PER is shown in Figure 1. There are two game-players, player
and opponent, in the figure. The player acts according to the mixed strategy while the
opponent acts according to the average strategy. MDRL is used to train the DRL method
and MSL is used to train the supervised learning method. St is the game state at the t-th

Electronics 2023, 12, 2396 7 of 17

timestep. at is the action in the t-th timestep. rt+1 is the reward when the player takes the
action at at the game state St.

Step 1: The game-players both make decisions in the game, in which the player acts
with a mixed strategy and the opponent acts with an average strategy. Here, the mixed
strategy consists of the best response and the average strategy.

Step 2: Storing samples. There are two sample datasets, MDRL (st, at, rt+1, st+1) and
MSL (st, at). MDRL stores samples when the player acts in the game, while MSL stores
samples when the player acts with best response.

Step 3: Training networks. This step is mainly used to train the neural networks with
a priority experience replay mechanism [29]. In our NFSP-PER, we take the DQN (deep
Q-learning) [18] as the DRL method and deep neural network as the supervised method.

best response

average strategy

game

opponentplayer

average strategy

mixed strategy

𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷
(𝑆𝑆𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡+1, 𝑆𝑆𝑡𝑡+1)

𝑀𝑀𝑆𝑆𝑆𝑆
(𝑆𝑆𝑡𝑡,𝑎𝑎𝑡𝑡)

sample pool

Step 1: play the gameStep 2: store samplesStep 3: training networks

Update DRL-network
𝑄𝑄(𝑆𝑆, 𝑎𝑎|𝜃𝜃𝑄𝑄)

Update SL-network
Π 𝑆𝑆,𝑎𝑎|𝜃𝜃Π

Figure 1. The framework of the proposed NFSP-PER.

After the optimization of the learning sequence of experience segments is completed
in the NFSP-PER, the optimization of learning degree of experience segments is further
considered [40]. Based on this, NFSP-PLT is proposed in the paper. The core idea of the
NFSP-PLT is that the experience fragments with a higher learning value should be given
more learning times. This paper adjusts the learning times of experience segments in
training to control the learning degree of experience segments with different values. The
framework of the NFSP-PLT is the same as the NFSP-PER, as shown in Figure 1.

4.2. Non-Fictitious Self Play-Priority Experience Replay

Compared with the vanilla NFSP [14], our NFSP-PER mainly improves the efficiency
of training samples. Then, we mainly focus on step 3 in Figure 1; that is, describing the use
of samples for network training in detail.

In the NFSP, DQN [18] adopts the experience replay mechanism, and the learning
order of experience samples is adjusted to a certain extent. It constantly updates to obtain
the optimal Q value, Q∗(s, a) ← Q(s, a) + α(r + γmaxQ(s′, a′)−Q(s, a)). Q(s, a) is the Q
value of state-action value when taking the action a on the state s. α is the learning rate,
γ is the discount factor and r is the reward when taking the action a on the state s. DQN
saves all the previous experience samples and then simply samples them randomly [18]. It
learns the experience samples of the later experience first, or learns the experience samples
of the previous experience later. However, there is a lack of refined management for the
learning sequence of experience samples with different values in the sample pool when
using simple random sampling. As long as random sampling is used, no matter whether
the learning value of the experience sample is high or low and whether the experience
sample contains any learning value, priority will be given to learning. In view of this, we
can provide a better organizational arrangement to the learning order.

Based on the experience replay mechanism in the DQN [18], our NFSP-PER introduces
the priority experience sampling mechanism and sets the priority according to the learning

Electronics 2023, 12, 2396 8 of 17

value of the experience samples to filter the experience in the sample pool. For the current
agent, the experience samples with higher priority will be sampled and learned first to
optimize the learning order. Taking the size of TD-error [16] as a measure of priority, the
TD-error can reflect how unexpected the experience sample is to the current agent; that is,
it reflects the extent to which the newly generated experience exceeds the knowledge and
experience of the intelligence. Therefore, the larger the TD-error, the more valuable the
experience sample, and the higher the priority should be. The priority of samples p(ei) can
be defined as:

p(ei) =
(|δi|+ ε)α

∑k(|δi|+ ε)α (5)

where ei is the experience sample; |δi| is the TD-error of ei and α ∈ [0, 1], which controls
the effect degree of the TD-error. When α = 0, it degenerates to simple random sampling.
ε is a positive value with small value, which is used to avoid zero-priority experience
samples and ensure that all experience samples can be sampled. This representation bal-
ances simple random sampling with greedy priority sampling (i.e., sampling in descending
order of TD-error [16] absolute value). Sampling according to the normalized probability
ensures that the sampling probability is proportional to the priority and contains mono-
tonic characteristics. It also improves the exploration of sampling and the diversity of
experience samples.

It should be noted that the introduction of priority changes the probability distribution
of the original experience samples and introduces deviation, which needs to be corrected.
The method adopts weighted importance sampling for deviation annealing, which has
a small variance compared with general importance sampling. When correcting, the
importance sampling weight is added to the loss function as the weight coefficient, and
then the updated gradient is used to complete the update.

In the NFSP-PER, with the gradual convergence of training, the weight can be elasti-
cally adjusted by the annealing method, and the annealing coefficient β can be introduced.
Starting from an initial value β0, the influence of weight will gradually decrease as the
training gradually linearly increases to 1 to determine the final weight. Thus, the final
weight can be defined as:

ωi =
(N · p(ei))

−β

maxj ωj

=
(N · p(ei))

−β

maxj
(

N · p
(
ej
))−β

=

(
p(ei)

minj p
(
ej
))−β

(6)

where ωi =
1
N

1
p(ei)

.

4.3. NFSP-PLT

After the optimization of the learning sequence of experience samples is completed,
the optimization of the learning degree of experience samples is further considered. The
higher the learning value, the more in-depth learning should be provided. This paper
adjusts the learning times of experience samples in training to control the learning degree
of experience samples with different values. Based on the NFSP-PER, we further proposed
NFSP-PLT. Specifically, the priority of the previous part is used as the weight coefficient
of the learning times. The learning times LT(ei) of experience segments in one instance of
training can be defined:

LT(ei) = clip[p(ei)NLTmax, NLTmin, NLTmax] (7)

Electronics 2023, 12, 2396 9 of 17

where NLTmin and NLTmax are the upper and lower bounds of the learning times LT of
experience segments, respectively. clip limits the learning times LT after rounding to the
range [NLTmin, NLTmax]. In this process, attention should be paid to ensuring a moderate
degree of learning and avoid over-fitting problems.

In addition, the best response of NFSP-PER uses batch learning, and the priorities of
multiple experience segments obtained by batch sampling may be different, so the priority
weight is updated to the average of the priorities of all experience segments. The learning
times LT of experience segments in a batch training can be redefined as follows:

LT(e) = clip

[
1
k

k−1

∑
i=0

p(ei)Nlt max, Nlt min, Nlt max

]
(8)

where k is the batch size and e = e0, e1, L, ek is the sampled batch experience.
A detailed algorithm of the proposed NFSP-LT is described in Algorithm 1. In the

Algorithm 1, η is the dynamic anticipation parameter, η ∈ [0, 1], β is the best-response
strategy (β = ε− greedy(Q), which selects a random action with probability ε and oth-
erwise chooses the action that maximizes the predicted action values, Q represents the
action-value network of DQN), π is the average strategy, MDRL (st, at, rt+1, st+1) and MSL
(st, at) are sample datasets, MDRL stores samples when the player acts in the game, while
MSL stores samples when the player acts with the best response and T is the upper bound
of episodes.

Algorithm 1 The algorithm of the proposed NFSP-PLT

Require: Initialize the game environment Γ, game player, fictitious player
Output: The strategy π∗

1: Initialize σ = (1− η)β + ηπ, θ, θ′, MDRL, MSL, T
2: for episode 1→ T do
3: while the episode is not the end do . Sample and collect the experience data
4: select the action according to the σi playing with the average strategy π−i of the

fictitious player
5: generate the experience fragments e
6: determine the priority of e and save to the MSL
7: if σ = β then . Save the data with best response
8: save e to the MDRL
9: end if

10: end while
11: priority sampling experience fragments in the MSL and update the DRL method

with θ
12: periodically update θ′

13: update the priority of the MSL with the learned TD-error
14: update the π with MDRL
15: end for
16: π = π∗ return π∗

4.4. Applying Adaptive UCT in the NFSP-PER

We used the experience playback mechanism to improve the sample learning efficiency
of traditional NFSP in NFSP-PER and NFSP-PLT. Similar to the traditional NFSP method,
the DRL method is also used in the previous proposed method to solve the optimal
response strategy, which will lead to a difficult convergence and unstable convergence in
the training process. To solve this problem, we further propose a strategy solution method
based on a combination of adaptive UCT [32] and DRL to solve the optimal response
strategy. It should be noted that the difference between this method and the previously
proposed method is the introduction of adaptive UCT when solving the optimal strategy.
Therefore, unless otherwise specified in the following statements, the sampling forms used
are experience playback mechanisms. Considering that an adaptive UCT algorithm based

Electronics 2023, 12, 2396 10 of 17

on fittest survival MCTS (FS-MCTS) [41] is used to solve the optimal response strategy, we
first introduce the adaptive UCT algorithm.

The calculation process of the traditional UCT algorithm has to deal with millions of
game tree nodes in each iteration [32]. This will simulate until a fixed number of iteration
rounds and traverse all game states. Adaptive UCT combines the simulated adaptive
mechanism with the iteration of UCT. First, we will clarify several key concepts, including
the candidate set, current optimal candidate, and adaptive threshold. Among them, the
candidate set represents the optional actions under the current information set. The current
optimal action represents the optimal action in the candidate set. The optimal judgment
standard is determined according to the selection node strategy of UCT [32]. The adaptive
threshold represents the number of iteration rounds to start the significance detection.
The core idea of the adaptive mechanism is that, under the current number of iteration
rounds, the optimal action of the current information set can be significantly distinguished
by historical statistical data, and then the iteration process of UCT can be terminated in
advance. The detailed algorithm of using adaptive UCT to solve optimal response strategy
is described in the Algorithm 2. Then, the adaptive UCT process is described as follows:

Algorithm 2 The algorithm of solving optimal response strategy based on adaptive UCT

Require: The current game state S0, iteration time T, adaptive threshold T_Threshold,
sample significance level α

Output: The optimal action A_best in current state
1: for iteration 1→ T do
2: create the node of game tree: Node_current← S0
3: while Node_current is non-terminal do . Expand the game tree
4: U(s, a) ∝ P(s, a)/(1 + N(s, a))
5: Select(Node_current): Node_current = argmax node(Q(s, a) + U(s, a))
6: end while
7: if Node_current is not fully expanded then
8: Node_current← Expand(Node_current)
9: end if

10: simulate with value and policy network: (P(s′, ·), V(s′)) = fθ(s′) ←
Simulation(Node_current)

11: backup from current node: Q(s, a) = 1/N(s, a)∑s′ |s,a→s′ V(s′) ←
Backup((Node_current)

12: if iteration 6 T_Threshold then
13: if Z(Acurrent, Aothers) 6 Zα/2 then
14: return Acurrent
15: end if
16: end if
17: end for
18: return argmaxA(N(S))

Step 1: Set the initial candidate set as all the optional actions of the current information
set. Use the UCT algorithm to iteratively simulate the current information set. Use the
memory module to count the historical simulation data until the number of iterations
reaches the adaptive threshold.

Step 2: Obtain the current best candidate according to the UCT, and start to perform
significance detection. Compare the candidate set elements with the best candidate. If the
significance of the best action is better than a candidate and the candidate will be deleted
from the candidate set and if there is only one element in the candidate set, execute step 4;
otherwise, execute step 3.

Step 3: Continue to perform UCT simulation, iterating for a fixed number of rounds,
and then return to step 2.

Step 4: Terminate the iteration in advance and take the current candidate as the optimal
action of the information set to return the result.

Electronics 2023, 12, 2396 11 of 17

The strategy solution of traditional UCT algorithm [32] usually depends on the number
of iteration rounds, and the main improvement in the adaptive mechanism is that it can
provide a pruning and early termination idea for UCT. In the adaptive UCT iteration
process, when there is only one candidate action in the candidate set, the iteration can be
terminated in advance; that is, when one action is significantly better than other candidates,
the UCT result can be returned. This adaptive mechanism can be applied to the whole UCT
iteration game tree, and can be directly applied to the subtree to prune UCT in the game
tree simulation process.

5. Experiments

We conducted experiments to evaluate the performance of our proposed in terms of
the reward compared with the performances of the comparison methods. In addition, we
conducted ablation studies to verify the effectiveness of the proposed method.

5.1. Experimental Setup

In the field of IIGs, the poker game was regarded as a test platform for many years.
Successful poker agents, such as DeepStack [4] and Libratus [5], both take the poker game
Heads-up No-limit hold’em (HUNL) as the test platform to verify their effectiveness. The
poker game contains all necessary elements of IIGs, such as game players, utility function
and imperfect information. Thus, we also used the poker game as the test platform in
this paper.

Leduc poker and the HUNL are used to test the effectiveness of the proposed methods.
Leduc poker contains six cards, with two rounds in a game. The two game-players both
have a private card in the first round. Here, the private card is unobservable to each other
player. In the second round, a public card is dealt. In the process of the game, the action
could be call, fold and raise. For the HUNL, there are 52 cards and four rounds. In the
first round, the two private cards are dealt to the game-player. Three public cards are
dealt in the second round. In the third round and fourth round, one public card is dealt,
respectively.

In addition, game performance is used to verify NFSP-PER compared with other
methods. This metric is a classical metric in the field of IIGs. In our NFSP-PER, DQN
is used to fit the best response. The sample datasets of MDRL and MSL are 30,000 and
1,000,000, respectively. In the game, reservoir sampling is used to store < S, a, r > of the
best response. The learning rate in the DRL and SL are 0.1 and 0.005, respectively. The
Programming language is Python and all experiments are conducted on four Xeon(R) CPUs
of E5-2640 with 10 cores @2.40 GHz, and one Tesla P100 GPU with 16G memory. The
discount parameter γ is 0.99. The loss function used in DQN is described as:

L
(

θQ
)
= E(s,a,r,s′)∼MDRL

[(
r + max

a′
Q
(

s′, a′ | θQ′
)
−Q

(
s, a | θQ

))2
]

, (9)

and the loss function used in the SL method is described as:

L
(

θΠ
)
= E(s,a)∼MSL

[
− log Π

(
s, a | θΠ

)]
, (10)

the mixed strategy in the game is σ = Π(s, a|θΠ), with the probability 1 − η, and
σ = ε− greedy with the probability η.

5.2. Comparison Experiment Results

In the paper, two improvements are conducted based on the NFSP, which are NFSP-
PER and NFSP-PLT. In order to verify the effectiveness of these two proposed methods,
three comparison methods are used to conduct experiments, which are DeepCFR [6],
random and NFSP-UCT. The agent NFSP-UCT is provided by the Annual Computer
Poker Competition (ACPC). A total of 20,000 games are conducted when played using the

Electronics 2023, 12, 2396 12 of 17

comparison method, respectively. An average return with 95% confidence is used as the
metric. Average return is measured by bb/h, which is a standard measure of the win rate
in poker games [4,5]. bb/h represents how many big blinds won in each hand (in poker
games, one hand stands for playing one game).

Two groups of experiments were conducted in the paper. Firstly, the comparison
experiment was conducted on the Leduc and HUNL; the results are shown in Tables 3 and 4.
Secondly, to further verify the performance of our method, we conducted a test experiment
in multiplayer poker, which are three-player and six-player No-limit hold’em games,
represented with 3-NH and 6-NH, respectively. In Table 3, ‘NFSP-PER vs. Random’
represents that, in a two-player game, the agents training with the two methods (NFSP-PER
and Random) are used for gameplay. When the return is greater than zero, the NFSP-PER
method is superior. The higher the return, the more obvious the advantage of the NFSP-
PER. The other two (NFSP-PER vs. NFSP-UCT and NFSP-PER vs. DeepCFR) are similar to
‘NFSP-PER vs. Random’.

Table 3. Comparison results of NFSP-PER.

Game NFSP-PER vs.
Random

NFSP-PER vs.
NFSP-UCT

NFSP-PER vs.
DeepCFR

Leduc 0.9731 ± 0.05 0.0168 ± 0.09 0.2162 ± 0.07
HUNL 34.0647 ± 0.48 36.7131 ± 0.66 27.9865 ± 0.63

Table 3 shows the comparison experiment results of NFSP-PER vs. comparison meth-
ods. The game performance of NFSP-PER is significantly better than the comparison
methods: Random, NFSP-UCT and DeepCFR. The average return won in 20,000 games
on the Leduc are 0.9731 ± 0.05 bb/h, 0.0168 ± 0.09 bb/h and 0.2162 ± 0.07 bb/h, respec-
tively. The average return won in 20,000 games on the HUNL was 34.0647 ± 0.48 bb/h,
36.7131 ± 0.66 bb/h and 27.9865 ± 0.63 bb/h, respectively. On the Leduc game, the NFSP-
UCT loses the least compared with Random and DeepCFR when they are against NFSP-PER.
This is because the scale of the Leduc game is relatively small; the UCT in NFSP-UCT can
be simulated under limited conditions to obtain a better strategy. However, in the HUNL
game, the NFSP-UCT loses the most compared with Random and DeepCFR methods when
compared with NFSP-PER. This is because the scale of the HUNL game is very large and
contains four rounds; the UCT in NFSP-UCT cannot be simulated under limited conditions,
resulting in a poor final strategy.

Table 4. Comparison results of NFSP-PLT. ‘NFSP-PLT vs. Random’ is similar to ‘NFSP-PER vs.
Random’ in Table 3.

Game NFSP-PLT vs.
Random

NFSP-PLT vs.
NFSP-UCT

NFSP-PLT vs.
DeepCFR

Leduc 1.0513 ± 0.05 0.0189 ± 0.09 0.2633 ± 0.07
HUNL 34.0445 ± 0.48 47.0840 ± 0.32 28.0418 ± 0.63

Table 4 shows the comparison experiment results of NFSP-PLT vs. comparison meth-
ods. The game performance of NFSP-PLT is also better than the comparison methods:
Random, NFSP-UCT and DeepCFR. The average return of 20,000 games on the HUNL
was 1.0513 ± 0.05 bb/h, 0.0189 ± 0.09 bb/h and 0.2633 ± 0.07 bb/h, respectively. The
average return of 20,000 games on the HUNL was 34.0445± 0.48 bb/h, 47.0840 ± 0.32 bb/h
and 28.0418 ± 0.63 bb/h, respectively. In this comparative experiment, we can draw a
similar conclusion to that in the previous Table 3: among the three comparison methods,
NFSP-UCT performed best in the Leduc game and worst in the HUNL game. The reason
for this is the same as that described in the previous paragraph.

In addition, NFSP-PLT is slightly better than NFSP-PER, which shows that our further
improvement in NFSP-PER is also effective. For example, when playing vs. NFSP-UCT on

Electronics 2023, 12, 2396 13 of 17

the HUNL, the average return of NFSP-PLT is 47.0840 ± 0.32 bb/h, which is more than that
of NFSP-PER, 36.7131 ± 0.66 bb/h.

The second group of experiments was conducted on the 3-NH and 6-NH games. It
should be noted that the comparison method DeepCFR was not used in this experiment.
This is because DeepCFR only solves two-player IIGs, and is not applicable in multiplayer
IIGs. Thus, in this experiment, only the two methods Random and NFSP-UCT were used
to test. Table 5 shows the results after testing the proposed methods on two games: 3-NH
and 6-NH (3-NH is three-player No-limit hold’em and six-player No-limit hold’em). For
example, the number on the Row ‘NFSP-PER’, ‘3-NH’ and column ‘vs. Random’ represents
that the return of ‘NFSP-PER vs. Random’ on the game ‘3-NH’. ‘NFSP-PER vs. Random’ is
similar to ’NFSP-PER vs. Random’ in Table 3.

Table 5. Comparison results on the 3-NH and 6-NH.

Game vs. Random vs. NFSP-UCT

NFSP-PER 3-NH 58.3802 ± 1.12 11.3967 ± 1.42
6-NH 84.5855 28.5454 ± 2.18

NFSP-PLT 3-NH 61.3869 ± 1.08 11.7747 ± 1.42
6-NH 85.4392 47.0840 ± 0.32

The experimental results are shown in Table 5. Our method performed well in two mul-
tiplayer games: 3-NH and 6-NH. For the NFSP-PER, the average return won in 20,000 games
on the 3-NH was 58.3802 ± 1.12 bb/h and 11.3967 ±1.42 bb/h, respectively. The average
return won in 20,000 games on the 6-NH was 84.5855 bb/h and 28.5454 ± 2.18 bb/h, re-
spectively. For the NFSP-PLT, the average return won in 20,000 games on the 3-NH was
61.3869 ± 1.08 bb/h and 11.7747 ± 1.42 bb/h, respectively. The average return won in
20,000 games on the 6-NH was 85.4392 bb/h and 47.0840 ± 0.32 bb/h, respectively. In this
experiment, for NFSP-UCT, we found that, as the number of players increased, more was
lost. Compared with the three-player game 3-NH, more was lost in the six-player game
6-NH. This further shows that our previous analysis is reasonable. That is, in a larger game,
the UCT in NFSP-UCT can not be simulated well under limited conditions, which results
in a poor final strategy. In addition, we found that the performance of NFSP-PLT is better
than that of NFSP-PER in both the three-player game 3-NH and six-player game 6-NH.
The reason for this is that, compared with NFSP-PER, NFSP-PLT wins more returns when
playing games with the same comparison method, which further verifies the effectiveness
of NFSP-PLT.

After the previous comparative experiments, in general, our proposed method has
indeed improved sample utilization efficiency compared to existing methods. Moreover,
the introduction of adaptive UCT further improves the performance of the solving strategy.
The experimental results also demonstrate that our method can effectively solve two-player
and multiplayer strategies in the field of IIGs. Of course, there are still some areas for
improvement in our method. Firstly, the computation time still needs to be reduced.
Although our strategy performance has improved after the introduction of UCT, it still
requires considerable computational resources and time. Secondly, our method lacks
theoretical guarantees in multiplayer games. Although NFSP has theoretical guarantees in
two-player games that the strategy is an approximate Nash equilibrium strategy, there is no
theoretical guarantee in multiplayer games, and the method we proposed is also the same.
Finally, the proposed method has only been validated in poker games, especially in Texas
Hold’em poker, and its expansion to other types of applications requires further research.

5.3. Experimental Results

In order to verify the effectiveness of the method proposed in the paper, we conducted
experiments in this section. First, we verified the effectiveness of the proposed methods
NFSP-PER and NFSP-PLT, respectively. The method we proposed improves the efficiency
of sample utilization, which is embodied in the training process. To this end, we conducted

Electronics 2023, 12, 2396 14 of 17

a game evaluation on the training process methods of Leduc and HUNL. Specifically,
50,000 rounds of training were conducted on the Leduc and the HUNL platforms for
NFSP-PER, NFSP-PLT and NFSP-UCT agents, respectively. During the training process,
a conduct evaluation was carried out, with random agents every 1000 rounds. A total of
10,000 games were conducted for each evaluation. The reward curve of the three agents
playing with random agents in Leduc and the HUNL is shown in Figure 2.

time steps

re
w

ar
d

NFSP-UCT

NFSP-PER

NFSP-PLT

(a) (b)

Figure 2. Experimental results results of the proposed method. The Y-axis represents the reward
and the X-axis represents the number of timesteps. The higher the reward, the better the method.
(a) Evaluation in training process on Leduc; (b) Evaluation in training process on the HUNL.

As shown in Figure 2a in the Leduc, the three different agents have little difference in
game level during training, and NFSP-PER and NFSP-PLT are slightly dominant. As shown
in Figure 2b in the HUNL, the game level of NFSP-PER and NFSP-PLT greatly improved
compared with NFSP-UCT. At the same time, in the late stage of training, NFSP-PLT won
the most returns and the highest level of intelligence. The experimental results fully verify
the effectiveness of our proposed method.

Secondly, we conducted experiments on the HUNL to test the effectiveness of the
adaptive UCT algorithm. The traditional UCT algorithm usually specifies a fixed number of
iteration rounds in the iterative solution strategy. However, the limited iteration time, which
is set manually, often cannot meet the actual needs. There is a contradiction between the
accuracy of gamestate evaluation and the limited iterative simulation time, and both of them
are crucial for solving game strategies. When measuring the influence of adaptive threshold
and confidence on the strategy solution, the baseline algorithm selected is UCT_3000; that
is, the UCT algorithm with a fixed number of iterations of 3000.

By setting different adaptive thresholds and confidence levels to match with UCT_3000
for comparative experiments, the solution accuracy and time consumption of the adaptive
UCT algorithm was obtained with different thresholds and confidence levels, as shown
in Table 6. For example, UCT(2800, 0.98) indicates that the adaptive threshold is 2800 and
the confidence level is 0.98, where the unit time consumption indicates the number of
milliseconds spent in each search and solution action. Experiments show that the adaptive
UCT algorithm can better balance its solution speed and accuracy. The online search time
is reduced while maintaining the strength of the strategy. The adaptive UCT algorithm not
only relies on longer iteration rounds to evaluate the value solution strategy more accurately,
but also prunes by eliminating significant inferior nodes to improve the efficiency of the
UCT solution. Finally, UCT(2800, 0.98) was used in the paper.

Electronics 2023, 12, 2396 15 of 17

Table 6. Ablation results of adaptive UCT.

Different Settings Accuracy Unit Time Consumption

UCT_3000 1 37.22
UCT(2800, 0.98) 0.976 21.95
UCT(2800, 0.95) 0.971 21.76
UCT(2800, 0.90) 0.968 22.08
UCT(2500, 0.98) 0.934 20.86
UCT(2500, 0.95) 0.936 19.61
UCT(2500, 0.90) 0.933 20.29
UCT(2000, 0.98) 0.903 16.07
UCT(2000, 0.95) 0.901 16.03
UCT(2000, 0.90) 0.902 16.02

6. Conclusions

In this paper, we propose a new NFSP-based method NFSP-PER, studying the strategy
of IIGs. The proposed NFSP-PER can not only solve the strategy of two-player IIGs,
but can also solve the strategy of multiplayer IIGs. NFSP-PER combines NFSP with
prioritized experience replay, which enhances the sample learning efficiency by optimizing
sampling order of training samples. In addition, NFSP-PLT is proposed to control the
utilization degree of priority-weighted samples through the learning times of samples.
Furthermore, based on the NFSP-PLT, an adaptive UCT is applied to solve the optimal
response that making the strategy more accurate. Extensive experimental results show that
the proposed NFSP-PLT effectively improves the sample learning efficiency compared with
the existing works.

In the future, we will consider that there are two aspects worthy of further study: First
of all, the strategy solution of a large-scale game based on the NFSP method, which mainly
aims to achieve an effective strategy solution to large-scale multi-player game problems.
Secondly, application research based on the NFSP method, which mainly applies this kind
of method to other, related applications.

Author Contributions: Conceptualization, H.L. and S.Q.; methodology, H.L. and D.Z.; software, D.Z.
and J.Z.; validation, L.Y., X.W. and Q.L.; formal analysis, J.X.; writing—original draft preparation,
H.L. and S.Q.; writing—review and editing, L.Y., X.W. and Q.L.; supervision, L.Y. and J.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by key fields R&D project of Guangdong Province (No.2020B0101-
380001), Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B121-
2010005), Shenzhen Foundational Research Funding under Grant (JCYJ20200109113427092, 2020080517-
3048001), Basic Research Programs of Taicang, 2022 (TC2022JC14), Fundamental Research Funds for
the Central Universities (G2022WD01027, NWPU), PINGAN-HITsz Intelligence Finance Research
Center, Ricoh-HITsz Joint Research Center, GBase-HITsz Joint Research Center.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [CrossRef]
2. Zinkevich, M.; Johanson, M.; Bowling, M.; Piccione, C. Regret minimization in games with incomplete information. Adv. Neural

Inf. Process. Syst. 2007, 20, 1729–1736.
3. Brown, G.W. Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc. 1951, 13, 374.
4. Moravčík, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; Bowling, M. Deepstack:

Expert-level artificial intelligence in heads-up no-limit poker. Science 2017, 356, 508–513. [CrossRef]
5. Brown, N.; Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science 2018, 359, 418–424.

[CrossRef] [PubMed]
6. Brown, N.; Lerer, A.; Gross, S.; Sandholm, T. Deep counterfactual regret minimization. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 793–802.

http://doi.org/10.2307/1969529
http://dx.doi.org/10.1126/science.aam6960
http://dx.doi.org/10.1126/science.aao1733
http://www.ncbi.nlm.nih.gov/pubmed/29249696

Electronics 2023, 12, 2396 16 of 17

7. Schmid, M.; Burch, N.; Lanctot, M.; Moravcik, M.; Kadlec, R.; Bowling, M. Variance reduction in monte carlo counterfactual
regret minimization (VR-MCCFR) for extensive form games using baselines. In Proceedings of the AAAI Conference on Artificial
Intelligence, Honolulu, HI, USA, 29–31 January 2019; Volume 33, pp. 2157–2164.

8. Liu, W.; Jiang, H.; Li, B.; Li, H. Equivalence analysis between counterfactual regret minimization and online mirror descent. In
Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 13717–13745.

9. Liu, W.; Li, B.; Togelius, J. Model-free neural counterfactual regret minimization with bootstrap learning. IEEE Trans. Games 2022.
[CrossRef]

10. Cotae, P.; Reindorf, N.E.A. Using counterfactual regret minimization and Monte Carlo tree search for cybersecurity threats. In
Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest,
Romania, 24–28 May 2021; pp. 1–6.

11. Zhang, H.; Lerer, A.; Brown, N. Equilibrium Finding in Matrix Games via Greedy Regret Minimization. Proc. Aaai Conf. Artif.
Intell. 2022, 36, 9484–9492.

12. Wang, Z.; Mu, C.; Hu, S.; Chu, C.; Li, X. Modelling the dynamics of regret minimization in large agent populations: A master
equation approach. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria,
23–29 July 2022; pp. 534–540.

13. Heinrich, J.; Lanctot, M.; Silver, D. Fictitious self-play in extensive-form games. In Proceedings of the International Conference
on Machine Learning, Lille, France, 6–11 July 2015; pp. 805–813.

14. Heinrich, J.; Silver, D. Deep reinforcement learning from self-play in imperfect-information games. arXiv 2016, arXiv:1603.01121.
15. Montague, P.R. Reinforcement learning: An introduction, by Sutton, RS and Barto, AG. Trends Cogn. Sci. 1999, 3, 360. [CrossRef]
16. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.
18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
19. Montufar, G.F.; Pascanu, R.; Cho, K.; Bengio, Y. On the number of linear regions of deep neural networks. Adv. Neural Inf. Process.

Syst. 2014, 27, 2924–2932.
20. Xue, W.; Zhang, Y.; Li, S.; Wang, X.; An, B.; Yeo, C.K. Solving large-scale extensive-form network security games via neural

fictitious self-play. arXiv 2021, arXiv:2106.00897.
21. Chen, Y.; Zhang, L.; Li, S.; Pan, G. Optimize neural fictitious self-play in regret minimization thinking. arXiv 2021,

arXiv:2104.10845.
22. Zhang, L.; Chen, Y.; Wang, W.; Han, Z.; Li, S.; Pan, Z.; Pan, G. A Monte Carlo Neural Fictitious Self-Play approach to approximate

Nash Equilibrium in imperfect-information dynamic games. Front. Comput. Sci. 2021, 15, 155334. [CrossRef]
23. Ganzfried, S. Fictitious play outperforms counterfactual regret minimization. arXiv 2020, arXiv:2001.11165.
24. Kamra, N.; Gupta, U.; Wang, K.; Fang, F.; Liu, Y.; Tambe, M. Deep Fictitious Play for Games with Continuous Action Spaces. In

Proceedings of the AAMAS, Montreal, QC, Canada, 13–17 May 2019; pp. 2042–2044.
25. Perolat, J.; Piot, B.; Pietquin, O. Actor-critic fictitious play in simultaneous move multistage games. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, Playa Blanca, Spain, 9–11 April 2018; pp. 919–928.
26. He, K.; Wu, H.; Wang, Z.; Li, H. Finding nash equilibrium for imperfect information games via fictitious play based on local

regret minimization. Int. J. Intell. Syst. 2022, 37, 6152–6167. [CrossRef]
27. Han, Y.; Zhou, Q.; Duan, F. A game strategy model in the digital curling system based on NFSP. Complex Intell. Syst. 2022,

8, 1857–1863. [CrossRef]
28. Yee, T.; Lisỳ, V.; Bowling, M.H. Monte Carlo Tree Search in Continuous Action Spaces with Execution Uncertainty. In Proceedings

of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 690–697.
29. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
30. Vitter, J.S. Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 1985, 11, 37–57. [CrossRef]
31. Shamma, J.S.; Arslan, G. Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria. IEEE

Trans. Autom. Control 2005, 50, 312–327. [CrossRef]
32. Gelly, S.; Wang, Y.; Munos, R.; Teytaud, O. Modification of UCT with Patterns in Monte-Carlo Go. Ph.D. Thesis, INRIA, Paris,

France, 2006.
33. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In ECML 2006: Machine Learning: ECML 2006, Proceedings of the

European Conference on Machine Learning, European Conference on Machine Learning, Berlin, Germany, 18–22 September 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 282–293.

34. Russo, D. A note on the equivalence of upper confidence bounds and gittins indices for patient agents. Oper. Res. 2021,
69, 273–278. [CrossRef]

35. Couëtoux, A.; Hoock, J.B.; Sokolovska, N.; Teytaud, O.; Bonnard, N. Continuous upper confidence trees. In LION 2011: Learning
and Intelligent Optimization, Proceedings of the International Conference on Learning and Intelligent Optimization, Rome, Italy, 17–21
January 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 433–445.

36. Saffidine, A.; Cazenave, T.; Méhat, J. UCD: Upper Confidence bound for rooted Directed acyclic graphs. Knowl.-Based Syst. 2012,
34, 26–33. [CrossRef]

http://dx.doi.org/10.1109/TG.2022.3158649
http://dx.doi.org/10.1016/S1364-6613(99)01331-5
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/s11704-020-9307-6
http://dx.doi.org/10.1002/int.22837
http://dx.doi.org/10.1007/s40747-021-00345-6
http://dx.doi.org/10.1145/3147.3165
http://dx.doi.org/10.1109/TAC.2005.843878
http://dx.doi.org/10.1287/opre.2020.1987
http://dx.doi.org/10.1016/j.knosys.2011.11.014

Electronics 2023, 12, 2396 17 of 17

37. Lee, K.M.B.; Kong, F.; Cannizzaro, R.; Palmer, J.L.; Johnson, D.; Yoo, C.; Fitch, R. An upper confidence bound for simultaneous
exploration and exploitation in heterogeneous multi-robot systems. In Proceedings of the 2021 IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8685–8691.

38. Roy, K.; Zhang, Q.; Gaur, M.; Sheth, A. Knowledge infused policy gradients with upper confidence bound for relational
bandits. In ECML PKDD 2021: Machine Learning and Knowledge Discovery in Databases. Research Track, Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 13–17 September 2021; Springer: Cham,
Switzerland, 2021; pp. 35–50.

39. Osborne, M.J.; Rubinstein, A. A Course in Game Theory; MIT Press: Cambridge, MA, USA, 1994.
40. Li, H.; Qi, S.; Zhang, J.; Zhang, D.; Yao, L.; Wang, X.; Li, Q.; Xiao, J. NFSP-PER: An efficient sampling NFSP-based method with

prioritized experience replay. In Proceedings of the 2022 the 4th International Conference on Data Intelligence and Security
(ICDIS), Shenzhen, China, 24–26 August 2022; pp. 388–393.

41. Zhang, J.; Sun, X.; Zhang, D.; Wang, X.; Qi, S.; Qian, T. Fittest survival: An enhancement mechanism for Monte Carlo tree search.
Int. J. Bio Inspired Comput. 2021, 18, 122–130. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJBIC.2021.118092

	Introduction
	Related Works
	Nash Equilibrium
	Neural Fictitious Self-Play
	Upper Confidence Bound Applied to Tree

	[id=A1]System Model and Problem Formulation
	Our Method
	An Overview of NFSP-PER and NFSP-PLT
	Non-Fictitious Self Play-Priority Experience Replay
	NFSP-PLT
	Applying Adaptive UCT in the NFSP-PER

	Experiments
	Experimental Setup
	Comparison Experiment Results
	Experimental Results

	Conclusions
	References

