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Abstract: Path planning for robotic manipulators has proven to be a challenging issue in industrial
applications. Despite providing precise waypoints, the traditional path planning algorithm requires a
predefined map and is ineffective in complex, unknown environments. Reinforcement learning tech-
niques can be used in cases where there is a no environmental map. For vision-based path planning
and obstacle avoidance in assembly line operations, this study introduces various Reinforcement
Learning (RL) algorithms based on discrete state-action space, such as Q-Learning, Deep Q Network
(DQN), State-Action-Reward- State-Action (SARSA), and Double Deep Q Network (DDQN). By posi-
tioning the camera in an eye-to-hand position, this work used color-based segmentation to identify
the locations of obstacles, start, and goal points. The homogeneous transformation technique was
used to further convert the pixel values into robot coordinates. Furthermore, by adjusting the number
of episodes, steps per episode, learning rate, and discount factor, a performance study of several RL
algorithms was carried out. To further tune the training hyperparameters, genetic algorithms (GA)
and particle swarm optimization (PSO) were employed. The length of the path travelled, the average
reward, the average number of steps, and the time required to reach the objective point were all
measured and compared for each of the test cases. Finally, the suggested methodology was evaluated
using a live camera that recorded the robot workspace in real-time. The ideal path was then drawn
using a TAL BRABO 5 DOF manipulator. It was concluded that waypoints obtained via Double DQN
showed an improved performance and were able to avoid the obstacles and reach the goal point
smoothly and efficiently.

Keywords: Q-learning; DQN; SARSA; DDQN; homogeneous transformation; optimization; obstacle
avoidance

1. Introduction

In general, industrial robots operate faster and more precisely than humans, par-
ticularly in an assembly line where robots perform repetitive tasks. Hence, to find the
shortest or optimal path between two points, path-planning is an important primitive for
autonomous industrial robots. Solving path planning is important for ensuring efficient
robot control and obstacle avoidance [1]. Path planning cannot always be designed in
advance as the global environment information is not always available a priori, especially
in a complex industrial environment. By proposing a proper algorithm, path planning
can be widely applied in partially and unknown structured environments where the robot
can adapt to changes in the environment [2,3]. Traditional path planning requires knowl-
edge about the environment and robots cannot learn in complex environments [4]. Hence
in recent years, various methods for planning the waypoints have been developed that
involve the use of artificial intelligence techniques and heuristic approaches. However,
with the increasing complexity of the working environment, different obstacles of varying
sizes exist [5–7]. So, to address the above issues, the model-free reinforcement learning
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approach is used for path planning where the robot generates the optimal path through
trial and error in a limited workspace. The reinforcement learning algorithm uses the
Markov Decision Process (MDP) where the probabilities and rewards are unknown. For
this purpose, a specific function is formulated which optimizes the rewards based on the
actions through trial-and-error. Moreover, reinforcement learning is majorly used in mobile
robot simulations but has been less explored in manipulators with a restricted workspace
because of its complexity. The methodology proposed in this work can be used for assembly
line operations in industries where repeated jobs take place in a limited workspace area. To
simulate the industrial scenario, an experimental environment with multiple obstacles was
created where the workspace area was fixed based on the camera field of view. Further,
obstacle avoidance was carried out because multiple obstacles may be encountered while
performing assembly operations. The modeling of a 5 DOF manipulator is also covered as
it was necessary to implement the task efficiently [8,9]. In this analysis, movement along z
was not considered so as to operate the robot in safe manner. This methodology could also
be extended to 3D path planning.

2. Related Works

There are many studies that have been reported in the field of path planning with
both conventional and machine learning approaches but among them, machine learning
approaches have gained a lot of popularity [10]. Wang et al. proposed a globally guided
reinforcement learning approach (G2RL) for path planning under dynamic environments
which used spatiotemporal environment information to obtain rewards [11]. Lee et al.
proposed Q-Learning-based path planning for optimizing the mobile paths in a warehouse
environment. The author performed various simulation tests by varying rewards based on
actions and measured path length and path search time and compared the performance
with the Dyna-Q learning algorithm [12]. Dong et al. proposed an improved Deep De-
terministic Policy Gradient (DDPG) algorithm for the path planning of a mobile robot
by adaptively varying exploration factors. The author also compared it with other rein-
forcement algorithms such as Q-Learning and SARSA and found that DDPG performed
better with less computation time and faster convergence [13]. Quan et al. proposed
Gazebo-simulated path planning of Turtlebot3 using Double Deep Q-Learning Network
(DDQN) and Gated recurrent units (GRU)-based Deep Q-Learning. The authors finally
compared the performance of reinforcement algorithms with conventional and heuristic
algorithms, namely the A* and Ant-colony algorithm [14]. Yokoyama et al. proposed an
autonomous navigation system based on the Double Deep Q-Network using a monocu-
lar camera instead of 2D LiDAR [15], whereas Farias et al. implemented reinforcement
learning for position control of the mobile robot by controlling the linear and angular
velocity [16]. Wang et al. reviewed various image processing techniques for weed detection.
The various techniques such as color index-based, threshold-based, and learning-based
ones were discussed in detail [17]. Islam et al. used shapes, color, and texture features to
detect the objects in Columbia Object Image Library datasets [18] whereas Attamimi et al.
used color and shape-based features as the input to the K Nearest Neighbor classifier to
identify the objects for domestic robots [19].

Based on the above discussion, it can be inferred that reinforcement learning ap-
proaches have been implemented mostly for mobile robot navigation with predefined maps
with obstacles. The literature available for solving path planning for manipulators using
reinforcement learning in unknown environment obtained from a vision sensor is very
limited. Hence the main goal of this paperwork was to implement different RL algorithms
for vision-based obstacle avoidance using the camera for 5 DOF robotic manipulators in
a planar environment. Moreover, to find the optimal training values, different test cases
with varying hyperparameters were analyzed. To automate the process of objects detection
in workspace, this paper used visual feedback information for determining the start, goal,
and obstacle positions. This information was further converted into robot coordinates
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for tracing the path in real-time which is another contribution of this paper. The main
objectives are listed below:

1. Implementation of image processing techniques to find the start, goal, and obstacle
positions to be given as inputs to different RL algorithms;

2. Implementation of a homogeneous transformation technique to determine the grid
world coordinates for corresponding camera coordinates and robot coordinates for
respective grid world coordinates;

3. Application of different reinforcement learning algorithms such as Q-Learning, DQN,
SARSA, and DDQN for path planning;

4. Optimization of training hyperparameters using Genetic algorithm and Particle
swarm optimization algorithms;

5. Performance evaluation comparison by varying actions, convergence criteria, obstacle
clearance, and episodes to find optimal parameters for Q- learning and noting the pat
length and time elapsed for each test case;

6. Real-time online-based experimental verification for vision-based obstacle avoidance
for all the test cases using the input obtained from the live camera feed.

The paper is further divided into four sections. Section 3 explains vision-based obstacle
avoidance using different RL algorithms with camera calibration. This is followed by a
performance evaluation of different RL algorithms in Section 4. The experimental results
obtained with their performance analysis are discussed in Section 5. Finally, the conclusion
and future scope of the work are discussed in Section 6.

3. Vision-Based Obstacle Avoidance Using Different Reinforcement Learning Algorithms

In this section, the uses of various reinforcement learning approaches to avoid obstacles
placed in the workspace of TAL BRABO 5 DOF manipulator are studied. This manipulator
has five joints, and they are named as x, y, z, u, and v joints. This robot is India’s first
articulated indigenous robot manufactured by Tata Automation Ltd. which is used in
industries for pick and place, welding, painting, assembly applications, and vision-based
jobs. It helps industrial professionals from dangerous workplaces and provides an efficient
operation [20]. The commands to the robot are communicated to the robot using the Trio
Motion controller via the ActiveX library installed in MATLAB. The robot has a payload
capacity of 10 kg with 750 mm of maximum reach. The detailed kinematic modeling is
described in Appendix A.1. In a reinforcement learning scenario, the environment is the
dynamic models with which the agent interacts. The environment receives actions from the
agent and based on the actions it generates a reward which denotes how well the action
contributes to achieving the task [21]. There are different types of reinforcement learning
algorithms reported in the literature which are classified on the basis of model-based and
model-free algorithms.

The model-based RL algorithm uses machine learning models such as the random
forest, gradient boost, and neural networks to create a policy function whereas in a model-
free environment the policy does not use any explicit models. In this work, the model-free
algorithm was used because it is a simple process where policy is refined based on the
actions and it does not need any environment model to maximize the reward. It does
not use any probability distribution as used in the Markov Decision Process and can be
viewed as a trial-and-error algorithm. The model-free is further classified as on-policy and
off-policy algorithms. Q-Learning is an off-policy algorithm where the updated policy is
different from behavior policy and estimates the rewards for future actions whereas in on
policy the agent follows the optimal actions it has calculated [22]. SARSA is an example of
an on-policy RL algorithm. Therefore, on policy can be used in the situations where the
agent wants to explore, and off-policy can be used where the agent wants to exploit [23].

3.1. Image Processing for Identification of Objects in a Robot Workspace

The main contribution in this work is that the inputs to the algorithm which are the
robot coordinates were obtained from transformed coordinates from the live camera feed.
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The start, goal, and obstacle positions were obtained as pixels and the camera to robot base
transformation was implemented to obtain robot coordinates. The vision system used in
this work was an eye-to-hand configuration where a single 2D Ashu HD web camera was
tilted at an angle of 26◦ to view the robot’s workspace where the obstacles were placed. At
this position the camera was calibrated by placing the checkerboard on the robot workspace
as shown in Figure 1. The main goal of the calibration was to find the geometric parameters
of the image formation and also it helped in eliminating distortion and skew in images.
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Once the calibration was completed, the camera frames were captured, and the RGB
image was converted to grayscale and a particular channel, namely green, blue, and red
channels, were extracted from the RGB data using the image subtraction technique where
pixel values were subtracted to segment the particular part in the image. Once the single
channel was extracted, 2D median filtering was applied to remove the salt and pepper
noises present in the image and pads with zeros to preserve the edges. Further, the grayscale
image was converted to black and white with the threshold values of 0.05, 0.18, and 0.1 for
green (obstacles 1 and 2), red (goal), and blue (start) detection, respectively. Finally, image
blob analysis was carried out to find the bounding box coordinates and centroid values
of the objects in pixels. The process flow diagram for color-based detection using image
processing is shown in Figure 3.
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Further the image coordinates needed to be converted to grid world coordinates; hence,
in this work, a simple and robust technique called homogeneous coordinate transformation
was implemented to obtain the grid coordinates from equivalent obstacle pixel coordinates.
The detailed explanation of homogeneous coordinate transformation can be referred to in
Appendix A.2. Finally, from Equation (A7) the 4 × 4 transformation matrix was obtained.
The obtained transformation matrix Tw

c in this work is described in Equation (1) [24].

Tw
c =


−0.0014 0.0208 0 −1.581

0.019 0.0014 0 −1.703
0 0 0 0
0 0 0 1

 (1)

Finally, using this transformation matrix, the coordinates of start, goal, and goal
coordinates were transformed to real-world coordinates and fed to different RL algorithms
as inputs for path planning. The overall methodology followed in this paper for vision-
based obstacle avoidance is shown in Figure 4.

3.2. Path Planning Using Q-Learning

The path planning using Q-Learning in this study was explored using a robotic ma-
nipulator to avoid obstacles placed in its workspace. This work has great significance in
industries where robots and humans work together where it finds the optimal waypoints
under both static and dynamic environments. Q-Learning is a model-free off-policy rein-
forcement learning algorithm that learns the value of an action in a particular state without
the environment model. Moreover, it can handle problems with stochastic transitions and
rewards without requiring adaptations [25]. The common steps followed in Q-Learning-
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based path planning are creating the environment, calculating the reward matrix, selecting
the actions, and updating the Q-table [26].
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3.2.1. Creating the Environment

The reachable robot workspace considered for the analysis was (180, 126) mm. This
workspace was visualized as grids of 7 × 10 for ease in simulation analysis where each
grid in the simulation was equivalent to the center point of four smaller square grids of
size 18 mm. Specific colors were chosen for the start, goal, and obstacle positions. The blue
object was taken as start position with a grid value of (1, 1); the red object was taken as goal
position with a grid value of (5, 9); the green object was taken as obstacle position with grid
values of (2, 3) and (4, 8), respectively. The environment generated in MATLAB is shown
in Figure 5 where Figure 5a is the simulated environment chosen for the reinforcement
learning model and the real-time grid world environment is shown in Figure 5b.
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From the figure, it can be seen that the grid world for the corresponding real-time
workspace was created for simulation analysis. The start coordinates were always taken as
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(1, 1) and the goal point as (5, 9). This configuration was followed throughout the analysis.
The main goal of the agent is to reach the blue block from the start position avoiding the
two obstacles. When the agent encounters an obstacle, the agent takes additional jump
from one state to another state as shown by the red arrow. This makes the further learning
of the agent easier. By implementing different configurations of the start, goal, and obstacle
positions, all possible combinations were also analyzed in further sections.

3.2.2. Action Selection and Q-Table Initialization

For every state s, the agent takes the action a based on the interactions with the
environment. Each time the action is performed, reward R is calculated before progressing
to the next time step t + 1. This entire process is divided into episodes where the agent tries
to complete the goal task or run the process for fixed time steps. In this work, four main
actions were taken: North = 1, South = 2, East = 3, West = 4. The Q-Learning algorithm
works on the Q table which is the mapping between the states and actions. Each row
represents the states and columns represent the actions. The q-table is always initialized
to zero. The Q table stores the Q values of state-action pairs, and they are initially set to
zero. The rows in the table represent the robot’s joint angles which is the state, and the
columns represent the action corresponding to the given state [27]. With the environment
and reward obtained, the Q value is calculated at each step per episode and stored as
state-action pairs in the Q table. During training, the Q table is updated till the episodes are
completed and converged. The updating equation for the Q table is given by,

Q(s, a) = Q(s, a) + α
[
R(s, a) + γmaxQ′

(
s′, a′

)
−Q(s, a)

]
(2)

where α is the learning rate refers to the rate of updating the Q value. If it is set to zero,
Q values are not updated and hence nothing is learnt. Hence, it is always chosen closer
to 1. γ is the discount rate which reveals how much the agent has to account for for
future rewards and it varies between 0 and 1. The optimal Q value function q∗(s, a) is
the maximum action–value function that is selected from each row in the Q table which
signifies the maximum amount of reward that can be extracted for the current state and
action. Based on this optimal q value, the best optimal route to goal point will be obtained.
The optimal Q value is given by

q∗(s, a) = max(q(s, a)) (3)

3.2.3. States and Rewards

The states st are the observations that the agent receives from the environment, and
they act as an interface between the agent and the environment because not every environ-
ment will provide full information to the agent. In this paperwork, the robot workspace was
chosen as states with grid world coordinates varying from (1, 1) to (7, 10). The reachable
workspace of robot was limited and to match the robot workspace with the camera’s field
of view, the experimental test was conducted within 7 × 10 grid size.

The reward is a scalar-valued function that is used for evaluating the agent’s (robotic
arm) actions. The rewards are chosen in such a way that positive rewards denote that
the agent has reached the goal point and if it receives the negative reward, the agent
encountered the obstacles. Here in this work, an additional reward was given when the
agent reached one grid closer to the goal point so that convergence became faster and
accurate. The reward R(s, a) for current state s and action, a is given by,

R(s, a) =


10 , i f goal is reached
5, closer to goal
−1, obstacle
1, jump state

(4)
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Finally, the expected value of the next reward is given by,

R
(
s, a, s′

)
= E

[
Rt+1

∣∣s, a, s′
]

(5)

where s′ is the next state at time t + 1 and Rt+1 is the reward at time t + 1.

3.2.4. Updating the Q-Table

When the agent performs actions based on the interaction with the environment,
it receives a reward and corresponding q values are calculated. These values are then
updated in the Q table. Also in this work, ε-greedy was implemented to randomly explore
the actions which help the agent (robot) learn faster and better and does not stick to the
local minima [28]. In general, the ε-greedy policy adopts the best selection from candidates
with the probability of ε and a random selection with the probability of 1 − ε. The value
of ε determines the probability with which the agent performs a random action [29]. If a
random action generated is lower than the value of ε, the agent is allowed to take random
actions, or else the action is determined by the model. As the episodes increase, the value
of ε decreases slowly from 1 [30]. For this work ε was chosen to be 1 since the agent was
allowed to explore rather than perform greedy exploitation. The general equation for
ε-greedy policy is as follows,

a =

{
Maxqt(a) with probability 1− ε
Any action a with probability ε

(6)

3.3. Path Planning Using SARSA

State-Action-Reward-State-Action (SARSA) is a model-free on policy algorithm where
the Q-value depends on the current state of the agent a, the action the agent chooses a, the
reward R the agent obtains for choosing this action, the next state s′ that the agent enters
after taking that action, and finally the next action a′ the agent chooses in its new state. The
environment, states, actions, and rewards for path planning are the same values that were
discussed previously. The SARSA agent interacts with the environment and updates the
policy based on actions taken [31]. The Q value for a state-action pair is updated by an
error, adjusted by the learning rate α. The updating equation is given as,

Q(s, a) = Q(s, a) + α
[
R(s, a) + γmaxQ

(
s′, a′

)]
(7)

The major difference between Q-Learning and SARSA is that in QL, when the reward
passes from the current state to the next state, it takes the maximum possible reward of
the new state and takes random actions whereas in SARSA it follows the obtained policy
and takes current action. The SARSA algorithm can be used when the agent wants to
explore whereas Q-Learning can be used when the agent does not want to explore the
environment [32].

3.4. Path Planning Using DQN

DQN is also a model-free RL algorithm where the modern deep learning technique
is used. DQN algorithms use Q-Learning to learn the best action to take in the given
state and a deep neural network or convolutional neural network to estimate the Q value
function [33]. The state is given as the input and the Q-value of all possible actions is
generated as the output. In this work, Long Short Term Memory (LSTM) which is one of
the Recurrent Neural networks was used as a function approximator to map the states and
actions instead of Q table. The DQN uses the Bellman equation to update the q value and it
is given by

Q(s, a) =
[
R(s, a) + γmaxQ

(
s′, a

)
−Q(s, a)

]
(8)

In DQN, all the past experiences are stored in memory and the next action is taken
based on the max q value [34]. The loss function is nothing but Mean Square Error (MSE)
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which is the difference between the target q value and the actual q value. R(s, a) + γmaxQ(s′, a)
represents the target q value. The DQN architecture is built with one input neuron for states,
24 hidden neurons, and four output neurons for actions and it is shown in Figure 6. The
network was further trained, and the performance was analyzed by the varying learning
rate, discount factor, episodes, and steps per episode. The batch size was fixed to 64 with
an L2 regularization factor of 1 × 10−4.
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3.5. Path Planning Using Double DQN

The Double DQN has two neural networks where one network is used for experience
replay similar to working of DQN and another neural network called target network is
used to calculate the q value [35]. Here the best action a with the highest q value is obtained
from the main model and for the obtained best action q, q value is estimated using the
target network. Next, the q value of DQN is updated based on the estimated q value from
the target network Qtnet and the process repeats till the episodes finish. Here there is no
learning rate α when updating the Q-values since it will be used in the optimization stage
of DQN [36]. The basic updating equation for double DQN is as follows,

QDQN(s, a) = R(s, a) + γQtnet
(
s′, a

)
(9)

where
a = max Qqnet(s′, a) ; [from DQN]

qest = Qtnet(s′, a) [from Target network] (10)

Here the environment, states, actions, and rewards for path planning are the same
values that were discussed previously in the Q-Learning section.

Finally, once the optimal waypoints are obtained from Q-Learning, SARSA, DQN,
and Double DQN, the waypoints in terms of grid world coordinates (x, y) are further
transformed into robot coordinates (X, Y, Z) and are sent to the TAL BRABO manipulator
for real-time tracing using the ActiveX library in MATLAB. The transformation matrix T
obtained to convert grid coordinates into robot coordinates is given by,

T =


15.316 −10.105 0 523.594
9.837 14.784 0 2.932

0 0 0 0
0 0 0 1

 (11)

4. Performance Analysis of Different Reinforcement Learning Algorithms

In this section the performance of different reinforcement learning algorithms imple-
mented in this paperwork is discussed. The training hyperparameters namely episodes,
steps per episode, learning rate, and discount rate were varied randomly and for each case
the length of the optimal path obtained from reinforcement algorithms and the elapsed
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time to reach the goal point were calculated [37]. Furthermore, analysis was extended
to apply PSO and GA for optimizing the training hyperparameters instead of randomly
varying the training parameters. Moreover, performance for path planning using optimal
parameters was compared with standard random values and also implemented in real-time
experimentation. The detailed performance analysis implemented in this work is shown in
Figure 7.
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The length of the path was calculated based on the Euclidean Distance calculated
between two points at every step progressing towards the goal point. Moreover, the elapsed
time was calculated which reveals how long the agent has taken to reach the goal point [38].
In reinforcement learning, during each episode, the sequence of states, actions, and rewards
varies from the initial state to the terminal state to maximize the rewards; hence, it is
one of the important training parameters considered for performance analysis. The next
parameter which is varied is the steps per episode which denote the number of steps or
iterations per episode.

5. Results and Discussion

This section presents various results obtained for different test cases for different
reinforcement learning algorithms. Their performance was compared, and an optimal set
of parameters was chosen for real-time experimentation using TAL BRABO manipulator.
The experimental setup for performing vision-based path planning and obstacle avoidance
is shown in Figure 8.

The camera captured the workspace where obstacles were kept and using image
processing the colors were segmented and contours and a centroid were drawn over each
object. Using the centroid values, corresponding grid world coordinates were obtained
using the transformation matrix specified in Equation (8) and fed as input to the rein-
forcement learning algorithms. The live camera feed capturing the objects placed in the
workspace is shown in Figure 9 and their pixel, grid values, and their robot coordinates are
tabulated in Table 1. The robot coordinates were obtained from Equation (A7) as described
in Appendix A. With the increase in episodes, a better optimal policy can be obtained which
leads to better learning. Since the grid world was smaller, episodes of 5000 performed better
but based on the environment the episodes needed to be adjusted for better performance.
Next, the average rewards were analyzed, and it was seen that the one with a lesser average
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reward performed better because there was less deviation between the reward given and
what the agent received. When the deviation was large, the agent was not able to reach the
goal point.
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Table 1. Transformed Coordinates of Colored Objects Placed in Robot Workspace.

Position Pixels Grid World Robot Coordinates

Start (blue) (131, 79) (1, 1) (530.9, 26.12)

Goal (red) (582, 290) (5, 9) (488.71, 344)

Obstacle 1 (green) (235, 102) (2, 3) (519.17, 105.11)

Obstacle 2 (green) (582, 290) (4, 8) (478.72, 293.93)

Once the transformed coordinates were obtained, using these parameters, different
reinforcement learning algorithms were trained for different episodes namely 1000, 3000,
and 5000. The steps per episode were varied as 50, 100, and 300. The learning rate was
chosen as 0.0001, 0.2, and 1, whereas the discount rate was chosen as 0.01, 0.5, and 0.99. All
these parameters were chosen in such a way that they had low, medium, and high values.
Finally, by using different combinations, the length of the path traversed, average reward,
average steps per episode, and time taken to reach the goal were calculated for different RL
algorithms. Here, the consolidated results of average path length for different reinforcement
learning algorithms are tabulated in Table 2 and the detailed table is described in Table A2
under Appendix A.2.

Table 2. Average Path of Different Reinforcement Learning Algorithms.

Average Path Length (mm)

Episodes Steps/Episodes Learning Rate Discount Factor

Q-Learning 198.16 210.29 198.16 192.19

SARSA 198.16 198.16 210.1 72.02

DQN 198.16 180.06 216.07 114.39

Double DQN 198.16 216.07 216.07 216.07

Since the environment was very small for path planning, the maximum episodes were
taken as 5000 and steps per episode as 300. It was also observed that with episodes more
than 5000, the performance was poor, and the path generated was noisy. From the above
table, it can be noted that during the experimental analysis, when the episodes increased
from 1000 to 5000, the total elapsed time taken by the agent to reach the goal point also
increased. Further, there was no change in path length for all the algorithms and this was
the same for different episodes and learning rates. The notable difference in path length
was observed while varying the discount factor as this is the important weighting factor
which determines the importance of rewards for the future states. From the above analysis,
Double DQN was able to reach the goal point exactly with the path length of 216.07 mm
while Q-Learning and SARSA were not able to reach the goal point with 5000 episodes.
The average steps and elapsed time for training the agent are tabulated in Table 3 with
5000 episodes, 300 steps per episode, the learning rate of 1, and the discount rate of 0.99.

Table 3. Average Steps and Elapsed Time of Different Reinforcement Learning Algorithms.

Algorithm Elapsed Time (s) Average Steps

Q-Learning 2387.2 206.7

SARSA 2073.9 122.4

DQN 3957.4 54.6

Double DQN 3735.1 10.4

The above table discusses the average steps and total time taken for training for
different algorithms in which steps taken by double DQN was less with the value of
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10.4 which shows that training converged with the values equal to the stopping criteria
whereas Q-Learning had average steps of 206.7. Q-Learning took 2387.2 sto complete the
training whereas SARSA completed the training within 2073.9 secs (35 min). Moreover,
it was noticed that training was faster with SARSA than any other algorithms. The DQN
algorithm took 3957.4 s which is approximately one hour for training which was much
slower compared to others. Among deep reinforcement learning algorithms, performance
was better for double DQN since it simultaneously ran the DQN for experience replay and
calculated the q value using another network whereas in DQN, the Q-value was updated
using the reward in the next state. The convergence comparison of different algorithms
with respect to the first 500 episodes with a learning rate of 1 is illustrated in Figure 10.
This graph provides an overall idea of which algorithm performance was better as faster
convergence is needed.
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From the graph, it can be seen that Double DQN converged faster within 40 episodes
whereas Q-Learning performed worse since it never seemed to converge. Secondly, DQN
and SARSA also converged faster at 150 and 170 episodes, respectively, compared to Q-
Learning. It can be inferred that Double DQN performed better among all. Figure 11a–d
depicts the average reward obtained with different learning rates such as 0.0001, 0.2, and 1
for different RL algorithms. It was inferred that the average reward of Q-Learning varied
without converging to a specific value but the average reward of SARSA took 155 episodes
to converge. However, for DQN and Double DQN it converged within 85 episodes. This
shows that the convergence speed was faster for the deep learning-based Q network.

Further, Figure 12a–c denotes the different optimal paths taken by the agent for Q-
Learning for steps 50, 100, and 300, respectively. Similarly, Figure 12d–f shows the agent
path using SARSA for 50, 100, and 300 steps, respectively. Figure 12g–i describes the path
using DQN for 50, 100, and 300 steps, respectively and finally Figure 12j–l shows the path
obtained from Double DQN for 50, 100, and 300 steps, respectively. The agent tries to
reach the goal point by moving from one grid to another by trial-and-error during learning
process. When it encounters an obstacle, a jump is made from one grid to another to find the
optimal path in less time which is denoted by red arrow. Here in this paperwork, the agent
movement around the obstacle was recorded which could be further used for calculating
the probabilities of the future states. The transition jump around the obstacle was taken as
1 and other surrounding grids were made zero so that it did not visit that grid because it
was seen that when it reached nearby grids, time to reach goal was more and sometimes
it did not reach the goal. Then it was seen that Q-Learning and SARSA were not able to
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reach the goal point exactly but reached the grid before the goal point which approximated
to an 18 mm difference in robot workspace. However, DQN and Double DQN performed
better and reached the goal point exactly, which showed that deep reinforcement learning
performed better than conventional reinforcement learning algorithms. Hence, steps per
episode played a major role as they recorded the state and reward for the state–action pair.
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Next by varying the discount rate, the agent’s path was recorded, and its performance
was compared. The discount rate considered in this work was 0.01, 0.5, and 0.99, respec-
tively. This is one of the important weighting factors for reinforcement learning apart from
learning rate since it reveals the importance of future rewards and adjusts the agent’s be-
havior accordingly for long-term goals. So, the agent path was recorded which is illustrated
in Figure 13. Figure 13a–i denotes the different paths taken by the agent for discount rates
of 0.01, 0.5, and 0.99, respectively, using different reinforcement learning algorithms such
as Q-Learning, SARSA, DQN, and Double DQN. It can be seen that for the higher discount
rate, the agent was able to reach the goal efficiently but when the discount rate was 0.01 it
never reached the goal, and the learning was poor. It was seen that SARSA reached the
goal only when the discount rate was 0.5. Hence, the discount rate of 0.99 should be chosen
for a better performance. The total agent steps generated for 5000 episodes with 300 steps
per episode are tabulated in Table 4. This shows the total steps the agent took to reach the
goal point.
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(d–f) SARSA (g–i) DQN (j–l) Double DQN. Also, it can be noted that in some sub figures like (e,f)
there is no change in path even when the steps per episode is changed.

From the table, it can be inferred that Double DQN took only 3, 80, 299 agent steps to
reach the goal point whereas Q-Learning took 12, 27, 734 steps to reach the same goal point.
Hence it can be concluded that Double DQN had a superior performance. Further, to find
the optimal training hyperparameters, GA and PSO were implemented in this work using
MATLAB. The four main input variables considered for optimizing were episodes, steps
per episode, learning rate, and discount rate as these variables had a major effect on q value
and rewards, and the output variables were chosen as the length of the path traversed
by the agent. The GA was run with an initial population size of 50 and 400 generations.
The initial swarm matrix for PSO was taken to be 0.5. The lower bound and upper bound
values are shown in Table 5.
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(d–f) SARSA (g–i) DQN (j–l) Double DQN. Also, in some cases like in Figure (b,j) and Figure (c,d),
there was no change in path or the agent does not respond at all.

Table 4. Total Agent Steps for Different Reinforcement Learning Algorithms.

Algorithm Total Agent Steps

Q-Learning 12, 27, 734
SARSA 6, 41, 319
DQN 3, 99, 929

Double DQN 3, 80, 299

The problem was formulated as an unconstrained nonlinear optimization problem.
Similarly, a particle swarm optimization algorithm was also used to compare the optimized
results of GA and PSO and their effect on agent path traveled. In PSO, the swarm size was
taken to be (100, 40) with an initial swarm span of 2000. The total iterations were chosen
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to be 800. The initial weights of each particle with respect to the neighbors’ particles were
taken as 1.49. The optimized parameters were obtained from GA and PSO and one of
the solutions is listed in Table 6. Finally, these parameters were implemented on different
reinforcement learning algorithms, and the paths traced were analyzed.

Table 5. Upper and Lower Limits of Optimization Parameters.

Parameters Lower Limit Upper Limit

Episodes 200 5000
Steps per Episode 50 500

Learning Rate 0 1
Discount Rate 0 1

Table 6. Results Obtained from the Optimization Algorithm.

Parameters GA PSO

Episodes 5000 4598
Steps per Episode 298 300

Learning Rate 0.987 0.99
Discount Rate 1 0.99

The above discussion was entirely tested in the same environment. Further, to validate
the optimized parameters obtained, in this work different environments were created and
the agent actions were analyzed using the Double DQN algorithm. Since based on the
above analysis Double DQN had the better performance comparatively, it was chosen for
further analysis as shown in Figure 14a–d. The environment was created by adding more
obstacles, changing the obstacle positions, and changing the goal point. The analysis was
tested with a maximum of four obstacles using the Double DQN algorithm since this gave
a better performance than the other RL algorithms.
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From the Figure 14a–d, it can be inferred that the agent was able to reach the goal
point under for two and four obstacles. There was some lag in reaching the goal point with



Electronics 2022, 11, 3636 18 of 26

three obstacles. The optimal parameters used for this analysis were, namely, episode = 5000,
steps = 300, learning rate = 1, and discount rate = 0.99. Since the environment was smaller,
the number of obstacles was restricted to four. These training parameters can vary based
on the size of the environment and the type of applications chosen. This analysis can be
implemented with similar environments and different obstacle sizes. Further, the grid
world coordinates were converted to robot coordinates using the transformation Equation
(A7) to perform real-time vision-based path planning. The agent path traced in terms of robot
coordinates is illustrated for different obstacles and different goal points in Figure 15a–d. This
was analyzed to compare the simulation and real-time robot tracing.
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From Figure 15a,b, the agent was able to reach the goal by the learning process with
a path length of 198.16 mm and 252.47 mm. The time taken to reach the goal point was
1455.2 and 1672.66 s, respectively. Next with three obstacles, the robot was made to reach
the goal, but the robot was not able to reach the goal point and had an error of about
40 mm along x and 4 mm along y from the goal point as shown in Figure 15c. The path
length was 233.97 mm. Figure 15d shows the robot’s shortest path with four obstacles
with a path length of 252.47 mm. It can be inferred that reinforcement learning algorithms
work for any number of obstacles with suitable selection of training parameters. The
obstacle considered in the simulation was a square with each side measuring 36 mm but
in real time the diameter of the obstacle was 20 mm. Hence, there was a safe distance of
16 mm which was considered in the simulation analysis. The optimal training parameters
obtained from GA and PSO were implemented in real-time path planning. The coordinates
obtained after coordinate transformation were then sent to the robot via the ActiveX library
installed in MATLAB to perform the path planning. In the real time experimentation, x
and y coodinates were considered and sent to the robot with z coordinates maintained at
a constant 300 mm. The reason was that for a safer operation of the z axis motors of the
robot, the analysis was considered in a planar environment but in future, a 3D analysis will
be considered. The real-time path planning using TAL BRABO 5 DOF manipulator with
two obstacles (Figure 15b) is shown in Figure 16a–c.
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From the Figure, it can be visualized that the robot tried to follow the path as illustrated
in Figure 15b with two obstacles. The robot started from start position (528.805, 27.553) mm
as shown in Figure 16a and tried to avoid the two obstacles as shown in Figure 16b and
successfully reached the goal point (539.86, 204.84) mm as shown in Figure 16c. Similarly,
the analysis was tested for other conditions with different obstacles and the robot reached
the goal point without hitting the obstacles. The speed profile and joint velocities of the
TAL BRABO robot while performing online path planning were recorded for case b and
shown in Figure 17a,b.

The above figure shows the linear speed profile and angular velocity generated for the
TAL BRABO robot with two obstacles using Double DQN. The velocity was generated for
the path illustrated in Figure 17b to show that the variation of the joint velocities was very
minimal while performing path planning. Thereby it shows that the use of Double DQN
online-based path planning was smooth.
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6. Conclusions

This work mainly focused on vision-based path planning in a robotic manipulator
using different reinforcement learning algorithms such as Q-Learning, SARSA, DQN, and
Double DQN and found out the optimal training parameters using GA and PSO. This
work could be used in industries where humans and robots work together such as welding,
assembly operations, spray painting, and so on. In this work, an industrial scenario for
obstacle avoidance based on camera input was implemented for robotic manipulators. This
work created a map with obstacles based on images captured from the camera for path
planning. The robot workspace was divided into 7 × 10 grids (260 × 370) mm for ease
of analysis and obstacles were placed occupying one grid. The grids of start, goal, and
obstacles were differentiated into colors. The image processing techniques were applied
successfully and using coordinate transformation, pixel to grid world coordinates were
obtained. The transformed coordinates were the inputs to the reinforcement algorithms.

The following conclusions drawn from this work are as follows:

1. Performance analyses were carried out to understand the agent’s behavior by chang-
ing the important training parameters such as steps, episodes, learning rate, and
discount rate;

2. Q-Learning and SARSA were not able to reach the exact goal point and had a 50 mm
error from the goal point in robot coordinates. Q-Learning took 12, 27, 734 steps in
total to reach the goal point, but SARSA took fewer steps of 6, 41, 319. Moreover,
the SARSA convergence speed was very fast with different learning rates. Among
Q-Learning and SARSA, SARSA training and performance were better and faster.
SARSA performed better only with a learning rate of 0.5;

3. Deep reinforcement learning techniques such as DQN and Double DQN were also
implemented in this work. It was found that Double DQN convergence was faster
than DQN and it took 3, 80, 299 agent steps to reach the goal point. Among the two,
Double DQN performed much better. The order of performance was as follows;

4. Double DQN > DQN > SARSA > Q-Learning;
5. The analysis with different obstacles and goal points was carried out using Double

DQN as it performed better and it was found that the agent took a longer path to
reach the goal point; hence, 5000 episodes was not enough for convergence. However,
with four obstacles, since it took the shortest path, it reached the goal point effectively;

6. The speed profile and individual joint velocities were calculated to show the effective-
ness of online-based real-time path planning using reinforcement learning algorithms;

7. Finally, the robot coordinates obtained from the grid world to robot transformation
were sent to TAL BRABO Robot for real-time path planning.
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This work could be further extended with dynamic objects in the robot workspace
which will be the future scope of work. Moreover, different cluttered scenes could be
created and the performance of the RL algorithms could be analyzed. This work focused on
algorithms with discrete action space but algorithms with continuous action space could
be implemented. Moreover, deep learning could be used to identify the objects in the
robot workspace.
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Appendix A

Appendix A.1. Kinematic Modeling of TAL BRABO Manipulator

The calculation of forward and inverse kinematics of the manipulator involves the
formation of Denavit-Hartenberg (DH) parameters based on reference frames drawn on
each of the joints [19]. The frames of the individual robot joints of the TAL BRABO
manipulator with respect to the camera frame were formulated based on DH parameters
are listed in Table A1.

Table A1. DH Parameters of TAL BRABO Manipulator.

L α d θ

0 −90 0.463 [d1] θ1
0.376 [L2 ] 0 0 θ2 − 90
0.42 [L3 ] 0 0 θ3 + 90

0 −90 0 θ4 − 90
0 0 0 θ5

The DH parameters are formed based on L, α, d, and θ where L denotes the robot
link length along zn−1 to zn the axis of the robot; α is the robot joint angle between zn−1
and zn axis; d is the robot link length along xn−1 to xn axis and θ is the robot joint angle
between xn−1 and xn axis; n denotes the number of frames in the robot [20]. The coordinate
frames of each joint were measured physically and designed in SolidWorks which is shown in
Figure A1. The position and joint limits of the TAL BRABO manipulator are listed in Table 2.
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Next by using the general transformation equation as shown in Equation (A1), the
transformation matrix of individual joints was formed. The general transformation equation
is as follows [17],

i−1
i T =


Cθ −SθCα SθSα LCθ
Sθ CθCα −CθSα LSθ
0 Sα Cα d
0 0 0 1

 (A1)

where i is the no. of frames varying from 1 to 5 for TAL BRABO; cos(x) is written as Cx
and sin(x) as S. Here x is nothing but θ or α. Further using Equation (A1) individual joint
transformations are formed and the final end effector to base transformation is obtained by
multiplying all the matrices and it is given by

0
5T = 0

1T × 1
2T × 2

3T × 3
4T × 4

5T (A2)

0
5T =


0 0 1 0.420

−0.0175 −0.9998 0 0
0.9998 −0.0175 0 0.840

0 0 0 1

 (A3)

From Equation (A3), last columns denote translation vector which gives (X, Y, Z)
coordinates of the robot and for TAL BRABO it is (420, 0, 840) mm which is the home
position of the robot.

Appendix A.2. Homogeneous Transformation of TAL BRABO Manipulator

Here grid to world transformation Tw
g and the world to camera transformation Tc

w can
be obtained from camera calibration. The camera to world transformation Tc

g is unknown
in eye-to-hand configuration. The transformation equation is as follows

Tc
w Tw

g = Tc
g (A4)

Next, to find the world coordinates with respect to camera pixel points, a transforma-
tion equation is formulated to represent centroid pixel point ‘P’ from camera frame {c} to
world frame {w} as shown in Figure A2.
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From the Figure A2, to align the centroid P with grid world, first, it has to be rotated
by an angle of θo and then translated by a distance of do1 [24]. Next, the transformation
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matrix is formulated from which camera to world transformation can be found out for all
the camera pixel points. The equations are as follows,[

Pc

1

]
=

[
Rw

c + do1
1

]
=

[
Rw

c dw
c

0T 1

][
P
1

]
(A5)

In general,
P0 = Tw

c P (A6)

Therefore, from Equation (A6) we obtain

Tw
c = P0P−1 (A7)

where P0 is 4 ×m grid coordinates with respect to the grid world coordinates; P is 4 × n
camera coordinates with respect to world coordinates; Tw

c is 4 × 4 transformation matrix
between camera and grid world; Rw

c is a 4 × 4 rotation matrix between camera and grid
world; dw

c is the translation distance between camera and grid world. In this work for the
formation of Pc matrix, the pixel values of the robot workspace are obtained so that the
entire workspace can be mapped globally. This helps in finding the robot coordinates when
the objects are kept anywhere in the workspace.

The analysis based on different combinations of length of the path traversed, average
reward, average steps per episode, and time is taken to reach the goal were calculated for
different RL algorithms. The various results obtained are tabulated in Tables A2–A4. Since
the environment is very small for path planning, the episodes were taken as 5000 and steps
per episode as 300. For larger environments, learning will be better if the episodes are high.
From the table, it can be also noted that when the episodes increased from 1000 to 5000, the
total elapsed time taken by the agent to reach the goal point also increased.

Appendix B

Table A2. List of Mathematical Symbols Used.

Symbols Meaning

L robot link length along zn − 1 to zn
α robot joint angle between zn − 1 and zn axis
d robot link length along xn − 1 to xn axis
θ robot joint angle between xn − 1 and xn axis

Ti−1
i Transformation matrix between i frame and i− 1 frame
Cx cos(x)
Sx sin(x)

(x, y) Grid world Coordinates
(X, Y, Z) Robot Coordinates

s Current state at time t
a Current action at time t
R Current Reward at time t
α Learning rate for RL algorithms
γ Discount rate for RL algorithms

QDQN(s, a) Q value of Double DQN network
Qqnet(s, a) Q value of DQN network
Qtnet(s, a) Q value of target network

Table A3. List of Abbreviations.

Acronym Abbreviations

RL Reinforcement Learning
DQN Deep Q Network

SARSA State-Action-Reward-State-Action
DDQN Double Deep Q Network

MATLAB MATrix Laboratory
TAL Tata Automation Ltd.
DOF Degrees of Freedom
DH Denavit-Hartenberg



Electronics 2022, 11, 3636 24 of 26

Table A4. Performance Evaluation of Different reinforcement Learning Algorithms.

Parameter Algorithm Values Length of
Path

Average
Reward

Average
Steps Time (s) Parameter Algorithm Values Length of

Path
Average
Reward

Average
Steps Time (s)

Episodes Q-Learning 1000 198.16 1286.3 270.8 553.19 Steps/Episode Q-Learning 50 234.57 174.76 49.73 970.71

3000 198.16 1160.9 244.13 1419.1 100 198.16 376.8 88.96 1305.2

5000 198.16 1104.8 206.7 2387.2 300 198.16 1104.8 206.7 2387.2

SARSA 1000 198.16 617.2 134.4 285.76 SARSA 50 198.16 182.36 47.5 902.93

3000 198.16 568.4 124.9 852.78 100 198.16 556.66 122.4 1455.2

5000 198.16 556.66 122.4 1455.2 300 198.16 1143.26 240.33 2073.9

DQN 1000 216.07 7 10 301.79 DQN 50 90.131 −50 50 2102.6

3000 234.57 −110.4 300 2211.4 100 233.98 715.6 191.4 3844.3

5000 216.07 228.8 54.6 3957.4 300 216.07 228.8 54.6 3957.4

Double DQN 1000 216.07 7 10 321.4 Double DQN 50 348.08 126 46.6 2305.8

3000 216.07 6.8 10.2 1022.9 100 216.07 −34.4 48 3955

5000 216.07 6.6 10.4 3735.1 300 216.07 6.6 10.4 3735.1

Learning
rate Q-Learning 0.0001 198.16 902.93 208.3 2335.7 Discount

Factor Q-Learning 0.01 17.9 −214.33 288.63 2818

0.2 198.16 898.23 224.5 2351.4 0.5 0 −131.76 298.3 2748.6

1 198.16 1104.8 20 2387.2 0.99 198.16 1104.8 206.7 2387.2

SARSA 0.0001 216.07 −0.7 18.1 869.14 SARSA 0.01 162.35 −205 213.76 2172.5

0.2 216.07 −0.7 18.1 709.74 0.5 216.07 −0.7 18.1 840.06

1 198.16 556.66 556.66 1455.2 0.99 198.16 556.66 206.7 1455.2

DQN 0.0001 216.07 228.8 54.6 3957.4 DQN 0.01 109.22 −19.2 80.6 6026.5

0.2 0 7 10 3894.3 0.5 17.9 −4.8 21.8 13,652

1 216.07 −300 300 11,740 0.99 216.07 228.8 228.8 3957.4

Double DQN 0.0001 216.07 6.6 10.4 3735.1 Double DQN 0.01 0 −300 300 2356.3

0.2 216.07 6.6 10.4 3607.6 0.5 216.07 7 10 6657.1

1 216.07 7 10 11,782 0.99 216.07 6.6 10.4 3735.1
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