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(S I N

Abstract: With recent advancements in the classification methods of various domains, deep learning
has shown remarkable results over traditional neural networks. A compact convolutional neural
network (CNN) model with reduced computational complexity that performs equally well compared
to the pretrained ResNet-101 model was developed. This three-layer CNN model was developed for
plant leaf classification in this work. The classification of disease in tomato plant leaf images of the
healthy and disease classes from the PlantVillage (PV) database is discussed in this work. Further,
it supports validating the models with the images taken at “Krishi Vigyan Kendra Narayangaon
(KVKN),” Pune, India. The disease categories were chosen based on their prevalence in Indian
states. The proposed approach presents a performance improvement concerning other state-of-the-art
methods; it achieved classification accuracies of 99.13%, 99.51%, and 99.40% with N1, N2, and N3
models, respectively, on the PV dataset. Experimental results demonstrate the validity of the proposed
approach under complex background conditions. For the images captured at KVKN for predicting
tomato plant leaf disease, the validation accuracy was 100% for the N1 model, 98.44% for the N2
model, and 96% for the N3 model. The training time for the developed N2 model was reduced by
89% compared to the ResNet-101 model. The models developed are smaller, more efficient, and less
time-complex. The performance of the developed model will help us to take a significant step towards
managing the infected plants. This will help farmers and contribute to sustainable agriculture.

Keywords: artificial intelligence; classification; prediction; ResNet-101; validation

1. Introduction

As the world’s population grows, so does the demand for healthy, high-quality food.
Agriculture is one of the most significant factors in the economy for many countries. It
is considered a way of life and a national focus. Farming enables people with little or no
farming experience to grow plants or crops [1]. “The farmers should take preventive steps
to protect the farm from diseases that can be proactively prevented if the cause of the disease
is known in advance. Traditional techniques used are cumbersome and expensive” [2,3].
“The diagnosis of diseases, if mistaken by the experts due to the sizeable cultivating area
they have to inspect and treating the plants, may not be sufficient to save the plant or
reduce the diseases in them” [4]. “As a part of the concern, the farmers followed the steps
to spray pesticides or chemical fertilizers to get rid of the diseases.” However, this harms
the crop along with the ecosystem.

The multidisciplinary approach incorporates botanical data, the species concept, and
computer-aided plant classification solutions [5]. Botanists can now use computer vision
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approaches to help them identify plants thanks to advances in science and technology.
Computer vision researchers used plant leaves as a comparative tool to classify plants
[6]. “The introduction to the deep learning model techniques in the field of classification
and detection” was introduced by [7] with the essential deep-learning tool that is the
CNN. Recent advances in deep learning, particularly in convolutional neural networks
(CNNSs), have resulted in significant breakthroughs in a variety of applications, including
the classification of plant diseases [8]. Robust and cost-efficient schedules for decision-
making in multimode projects were discussed by [9]. The investigation of twenty artificial
intelligence techniques was discussed by [10] for decision-making.

AlexNet, GoogLeNet, ResNet-50, ResNet-18, ResNet-101, VGG 16, VGG 19, DenseNet,
SqueezeNet, and other pre-trained CNN models differ in terms of layer depth and nonlinear
functions used in them. He et al. [11] “conferred a residual network (ResNet) that skips
connections between ReLU and normalization layers. ResNet has many residual blocks;
this helps proficiently with the deeper learning models. Transfer learning can use the
pre-trained network and modify some parts according to work needs” [12,13]. The model
has the same structure, with four essential layers: “convolution layer,” “pooling layer,”
“fully-connected layer,” and “output layer.” The model by Hu et al. [14] is a less complex
algorithm that achieves a precision of 94.26%. Bandwidth usage increases when one tries
to transfer data from sensor to server. The processing time decides on the network’s
bandwidth utilization [15]. A model that offers improvements in computational speed and
model size helps in reducing bandwidth utilization [16].

Deep learning methods have demonstrated significant improvements in plant leaf
classification performance [17]. “Data augmentation influences the average precision of
the class” [18,19]. A new model was developed by [20] for fault detection using k-means
clustering for risk management decision making. At every step, k-means algorithm moves
each mean value to the center of the next step and then updates by recomputing the
distance between each failure mode and its nearest central vectors. The steps will be
repeated till the cluster results of these two iterations no longer vary. After that, the cluster
converges, and the final k clusters are formed for decision making. Hasan et al. [21]
reviewed the most current training, dataset training, data augmentation, feature extraction,
crop recognition, plant enumeration, and plant disease detection techniques, and the
performances of classifiers. Liu et al. [22] developed “a ten-layer CNN model and got
an accuracy of 87.92% with the Flavia dataset.” Mukti et al. [23] “used transfer learning
for the deep learning models AlexNet, VGG 16, VGG 19, and ResNet-50 in their work
to classify images of plant leaves, achieving an accuracy of 99.80% with the ResNet-50
mode.” Classification of nine plant species using AlexNet and support vector machine was
done by [24] and achieved an accuracy of 91.15%. Jadhav et al. [25] “classified soybean
disease with the deep learning networks of AlexNet, GoogLeNet, VGG 16, ResNet-101,
and DenseNet 201. GoogLeNet and VGG 16 had the highest accuracy of 96.4% compared
to the other networks.” Chen et al. [26] achieved an accuracy level of 84.25% with the
INC-VGGN model on the PV dataset for the classification of rice plant disease, and the
model’s performance was improved to 91.83% on their dataset. The classification of four
paddy leaf diseases by [27] ResNet-101 achieved 91.52% accuracy . The dataset of paddy
leaves consisting of brown spots, leaf blast, leaf blight, leaf smut, and a healthy class was
collected from Kaggle and UCI repository. A Faster R-CNN algorithm was used by [28]
to diagnose rice plant disease and attained an average accuracy of 98.84% for healthy and
three disease classes. Rangarajan et al. [29] used “six different deep learning models, viz.,
AlexNet, VGG16, VGG19, GoogLeNet, ResNet101, and DenseNet201, in classifying ten
classes of four varieties of plants with healthy and disease classes of egg-plant, hyacinth
beans, ladies finger, and lime. The authors achieved the highest accuracy of 97.3% with
GoogLeNet.” Begum et al. [30] used three plant species of the PV dataset, peppers, potato,
and tomato, for disease classification. The authors attained average accuracies of 94%,
95%, and 97% with the Xception, Inception Resnet-V2, and MobileNetV2 models. “The
tomato plant fruit disease was categorized by [31] with VGG 16 and two ResNet models of
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ResNet-50 and ResNet-101 into healthy and disease cases with a mean average precision of
90.87% from ResNet-101. Li et al. [32] achieved an accuracy of 95% with the same model
with a different training based on CNN for the remotely sensed images.”

In their work, Rangarajan et al. [17] classified tomato plant disease (TPD) with AlexNet
and VGGI16 for one healthy and six disease classes. Brahimi et al. [33] classified TPDs
with AlexNet and the GoogLeNet model; for the PV dataset, they attained accuracies of
98.66% and 99.18%, respectively. Zhang et al. [34] used the ResNet-50 model to identify
tomato leaf disease and achieved an accuracy of 97.28%. Karthik et al. [35], in their work
for the detection of TPD, attained an accuracy of 95% with a residual CNN model and 98%
with an attention-based residual CNN model. In detecting tomato plant leaves (TPL) with
disease, Gonzalez et al. [36] used four models, MobileNetV2, NasNetMobile, Xception,
and MobileNetV3, for the PV dataset and achieved accuracies of 75%, 84%, 100%, and
98%, respectively. Table 1 provides a comparative study of related work in plant disease
classification.

Table 1. Comparative study of related work in classification of plant disease.

Ref No Model Obijective Dataset Accuracy Limitations
Flavia dataset
e consists of only
[22] Ten-layer CNN Clasif:ﬁ:g? of Flavia 87.92% healthy classes.
P Diseased classes
are not studied.
AlexNet 83.66% deiiﬁt)ifjgf;ls
23] VGG19 Identification of PlantVillage 91.75% can be deploved in
VGG16 plant disease & 94.96% bil I; }}: )
ResNet-50 99.8% fobLe to ep
the farmers.
The size of the
developed model
Classification of PlantVillage 84.25% is more to be used
[26] INC-VGEN rice plant images Own dataset 91.83% directly to be
deployed on
mobile as an App
Other variety of
paddy leaf
e diseases with a
[27] ResNet-101 Classﬂlcathn of Kaggle an duct 91.52% larger dataset and
paddy leaf disease repository other CNN models
can be used for
better accuracy
A mobile-based
. . . system with IoT
[28] Faster R-CNN Diagnosis of rice  Kaggle and own 98.25% can be
plant disease dataset .
implemented for
future work.
AlexNet 95%
GoogLeNet Classification of 96.4% T;ig‘glf(;}; ;e(t:’z\e]i\]
[25] VGG16 soyabean plant PlantVillage 96.4% classification
ResNet-101 disease 92.1% accurac
DenseNet 201 93.6% y
Xception 949, More classes can
[30] Inception Classﬁlczjltlon of PlantVillage 95% be use%d. for. the
Resnet-V2 plant disease 979, classification
MobileNetV2 ? problem.
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Table 1. Cont.
Ref No Model Objective Dataset Accuracy Limitations
Classification of Dai)smetp‘f:)th a
ResNet-101 ten different 96.9%
291 GoogLeNet diseases in four Own dataset 97.3% background can be
oS used for
P classification.
The computation
AlexNet Classification of . 98.66% and size of. the
[33] tomato plant PlantVillage o classification
GoogLeNet . 99.18%
disease model can be
reduced.
[17] AlexNet Ciaoirsllzf’tgatlgrrllto f PlantVillage 97:49% ;l;hceo\rilcftlaii?r?gfl
VGGl6 op 8 97.29% e y
disease intensive.
The classification
Identifying tomato model can be used
[34] ResNet-50 yms PlantVillage 97.28% for detecting more
leaf disease .
variety of
disease classes.
More disease
Attention-based Detection of ] o classes can be used
[35] Residual CNN tomato leaf disease PlantVillage 98% in the future to
detect disease.
MobileNetV2 . . 75% Xception model is
. Disease detection o performing as the
NasNetMobile . ] 84% o
[36] . in tomato plant PlantVillage o best classifier
Xception leaves 100% with high
MobileNetV3 98% &

computation cost.

The PV database consists of 38 different plants leaves with healthy and disease classes

of 14 species [37]. This paper offers the TPD classification with the proposed compact CNN
models. In this work, a database with TPDs that occur in Indian states and the healthy type
was chosen for analysis. Classification of nine leaf classes consisting of “Tomato Healthy
(H) and disease classes Bacterial Spot (BS), Early Blight (EB), Late Blight (LB), Leaf Mold
(LM), Mosaic Virus (MV), Septoria Leaf Spot (SLS), Target Spot (TS), and Yellow Leaf Curl
Virus (YLCV)” was performed. The performances of the developed models are compared

with

that of ResNet-101 with transfer learning. The proposed models have less depth as

compared to ResNet-101. The main contributions of this work are as follows:

1.

Three highly accurate and compact models, N1, N2, and N3, have been proposed
for the disease classification of TPL. The proposed models show high classification
accuracy and require short training times. The performances of the models were
validated by employing them to classify TPL from the challenging PV dataset and
KVKN dataset. The models exhibited high classification accuracy for an unknown
dataset.

The proposed models maintained good classification accuracy with compact model
size. N1 and N3 were 8.5 MB in size, and N2 model was 17.14 MB.

To validate the versatility of the proposed models, they were also employed in tomato
leaf disease classification using images captured from a mobile phone. The dis-
ease classification accuracy shows that the proposed models are well suited for TPL
disease classification.

The paper describes the materials and methods in Section 2, followed by results and

discussions in Section 3, and the conclusion in Section 4.
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2. Materials and Methods

This research involved the classification of TPDs and the validation of the trained
model with unknown data. Figure 1 depicts the workflow for classifying nine classes of
TPL.

Dataset =  Pre-processing —®»Deep Learning model

Figure 1. Workflow for classification and validation of TPDs.

2.1. Dataset and Pre-Processing

The TPL images from the PV database were used in this work [37]. The healthy tomato
class and eight diseased leaf categories found in Indian states were used for classification
purposes. Classification of nine leaf classes consisting of “Tomato Healthy (H) and disease
classes Bacterial Spot (BS), Early Blight (EB), Late Blight (LB), Leaf Mold (LM), Mosaic
Virus (MV), Septoria Leaf Spot (SLS), Target Spot (TS), and Yellow Leaf Curl Virus (YLCV)”
was done. “It is critical to adhere to the basic steps that are customary in the study, one of
which is pre-processing, for the actual maneuver of any algorithm and the preservation of
uniformity in the study” [34,38—41]. The dataset was augmented with color augmentation
of saturation, hue, and contrast; position augmentation of rotation by 45°, 135°, 225°, and
315°; and flipping horizontally and vertically, during the pre-processing stage. Saturation
augmentation modifies the image’s vibrancy. A grayscale image is fully desaturated, a
partially desaturated image has muted colors, and positive saturation shifts colors closer
to the primary colors. Adjusting the saturation of an image can help your model perform
better. Hue augmentation changes the color channels of an input image at random, causing
a model to consider alternative color schemes for objects and scenes in the input image.
This technique is helpful in ensuring that a model does not memorize the colors of a given
object or scene. Hue augmentation allows a model to consider the edges and shapes of
things, and the colors. The degree of separation between an image’s darkest and brightest
areas is defined as contrast. The dataset is augmented with said combination of color and
position augmentation. The augmented dataset consisted of 94,500 images resized to a
standard size of 256 x 256 x 3 for the developed N1, N2, and N3 models and 224 x 224 x
3 for the ResNet-101 model. Table 2 shows the PV dataset images for each class before and
after data augmentation. The KVKN dataset was used for predicting the performances of
the trained models. The authors collected the data on the farm of KVKN, which were not
augmented.

Table 2. Class-wise image data before and after augmentation of PV database.

Class PV Database
Before Augmentation After Augmentation

“BS” 100 10,500
“EB” 100 10,500
“H” 100 10,500
“LB” 100 10,500
“LM” 100 10,500
“MV” 100 10,500
“SLS” 100 10,500
“TS” 100 10,500
“YLCV” 100 10,500

TOTAL 900 94,500
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2.2. CNN Models

The primary goal of this research was to develop a computationally less complex
and precise “learning model” for classifying TPL. Figure 2 depicts the proposed compact
CNN model for the classification and validation of the TPD. The three CNN models have
variations in the Conv2D layer, as shown in Table 3. There are three sets of convolution
2D layers, “Conv2D layer,” “batch normalization layer,” and “ReLU layer.” The “max-
pooling layer follows the first two sets”; the “fully connected layer, softmax classifier, and
classification layer” follow the third set.

| Input Layer |

| Conv2D Layer |

v

' '
' '
i '
i i
: | Batch Mormalization Layer | :
i '
' '
' '

'

| FelLl) Layer |

| Conv2D Layer |

v

[
i
[
[
: | Batch Normalization Layer |
[
i
i

| Felll Layer |

| Conv2D Layer |

i
[
1
i
: | Batch Normalization Layer |
i
[
I

| RelLl) Layer |

'---.-.----I-- - = e e =

| Fully connected Layer |

v

| Softmax Layer |

v

| Classification Layer |

Figure 2. Proposed compact CNN model for classification.

The functional descriptions of convolutional layers for the developed CNN model 1
(N1), model 2 (N2) and, model 3 (N3) are as shown in Table 3.
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Table 3. Functional description of convolution layers for N1, N2, and N3 models.

CNN Layer CNN Model

N1 N2 N3
1st Conv2D 3x3,8 3x3,16 7x7,8
2nd Conv2D 3 x 3,16 3 x 3,32 5x 5,16
3rd Conv2D 3x3,32 3 x 3,64 3 x 3,32

“The convolutional layer describes a collection of the filters carrying out convolution
over the entire image. Each convolutional layer learns the numerous features that detect
discriminatory outlines in the tomato leaves to distinguish the type of disease in this
architecture. CNN'’s feature extractor comprises particular neural networks that decide on
weights during the training process. Deep neural networks see diverse feature evidence
from the preceding layer after each gradient apprises a dataset. Furthermore, as the
parameters of the initial layers are restructured through the training phase, the data delivery
of this input feature map differs significantly. This significantly impacts training speed
and necessitates various heuristics to determine parameter initialization [35]. This model
employs an activation function known as the rectified linear unit (ReLU). It is the identity
function, f(x) = x, for all positive values of input "x,” and zeros for the negative values. ReLU
is triggered sparingly, mimicking the neuron’s inactivity in response to certain impulses.
The neural network classification then operates on the image features and generates the
output. The pooling layer activates only a subset of the feature map neurons. A "2-by-2’
window is used across all blocks with a stride factor of '2.” The feature maps’” width and
height are effectively reduced while the number of channels remains constant. The neural
network includes convolution layer piles and sets of pooling layers for feature extraction.
The convolution layer employs the convolution process to transform the image. It is best
described as a series of digital filters. The pooling layer combines neighboring pixels into a
single pixel. The pooling layer then reduces the image dimensions. Batch normalization
significantly reduces training time by normalizing the input of each layer in the network,
not just the input layer. This method allows for higher learning rates, which reduces the
number of training steps required for the network to converge [42]. The softmax function
is the activation function in the CNN model’s output layer that predicts a multinomial
probability distribution.”

“The benefits of small filter sizes over fully connected networks are that they minimize
computing costs and weight sharing, resulting in lower back-propagation weights. Until
now, the best choice for practitioners has been 3 x 3 [43,44]. The N1 CNN model has a
fixed filter size of 3 x 3 in all three convolution layers. In the 1st Conv2D, there are eight
filters, and in the 2nd Conv2D and 3rd Conv2D, there are 16 and 32 filters, respectively. In
the N2 CNN model, the filter size is 3 x 3, and the number of filters in them is doubled
compared to N1. In the N3 CNN model, the filter size for the 1st Conv2D layeris 7 x 7,
with eight filters. The 2nd Conv2D layer is 5 x 5, with 16 filters, and the 3rd Conv2D layer
is 3 x 3 with 32 filters.”

The VGG16 model [45] is a 16-layer CNN model. The VGG16 model is shown in
Figure 3. The VGG16 model has a convolutional layer, followed by a ReLU activation layer.
All the convolutional layers have a filter size of 3 x 3 but a specific number of filters for
the convolution. “The max-pooling layer follows two sets of two convolutional layers and
one ReLU layer combinations. The max-pooling layer follows the next three sets of three
convolutional layer and one ReLU layer combinations; these layers are followed by the
fully connected layer, softmax layer, and classification layer.” The proposed N1, N2, and
N3 models have batch normalization layers.
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The top-5 error for the ResNet-50 model is 5.25; for ResNet-101 it is 4.60; and for
ResNet-152 it is 4.49 [11]. ResNet-101 performs between ResNet-50 and ResNet-152, so
ResNet-101 was chosen for the classification in this work. We used the ResNet-101 model
with transfer learning and proposed N1, N2, and N3 models to classify nine TPL classes.
This augmented dataset was used to train CNN models for TPL classification. This work’s
models were created in MATLAB2019b using a deep learning toolbox. The dataset was split
into training and testing datasets, 80-20%, involving healthy and diseased plant leaves.

2.3. The CNN Model

“The classification of the model is based on the performance and its accuracy. The
confusion matrix of the test dataset is used to evaluate the performance parameters.” The
diagonal elements of the confusion matrix show correct classification, and non-diagonal
elements show misclassification. The following are the metrics [46,47]:

*  “True positives (TP) represent the positive samples that were correctly labeled by the
classifier,”

*  “True negatives (TN) represent the negative samples correctly labeled by the classifier,”

*  “False positives (FP) represent the negative samples incorrectly labeled as positive,”
and

¢  “False negatives (FN) correctly labeled the positive samples incorrectly labeled as
negative.”

“The performance parameters evaluated were macro-recall, macro-precision, macro-
F1-score, and mean accuracy. Sensitivity/recall is the measure of the model that appropri-
ately detects the positive class and is also known as the true positive rate. The model as-
signing positive events to the positive class is measured by a positive predictive value, also
known as precision. Fl-score is the harmonic mean of recall and precision. Macro-recall is
the average per-class effectiveness of a classifier at identifying class labels. Macro-precision
is the average agreement of data class labels per class with classifiers. Macro-F1-score is the
relation between positive labels of the data and those agreed to by the classifier based on
per-class average. Accuracy is the ratio of correct predictions to all predictions.”

TP
“Sensitivity / Recall = m” €))
YC_| Recall
“MacroRecall = % ()
where C represents the number of classes.
“ L _ TP ”
Precision = TP L EP 3)
y'C . Precision
“MacroPrecision = %” 4)
2 X PrecisionX Recall
" — ” 5
Flscore PrecisionXRecall ®)
y-C_, F1Score
“MacroFlscore = =2=—=————" (6)
C
TP+TN
£’ — 7 7
ACCUTACY = 15 TN+ FP + EN @)

2.4. Validation of the Trained CNN Model

Following classification, the CNN models were validated using images from the PV
database that were not included in the training or testing sets and images taken at KVKN.
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Models were validated using 1090 images, which aided in predicting the class and accuracy
of unknown data.

3. Results and Discussion

The entire investigation was carried out on an augmented dataset of 94,500 images
from the PV database for nine Tomato plant classes. Figure 4 depicts healthy and diseased
TPL images.

Figure 4. Images of TPL from the PV dataset.

As per the pre-processing in Section 2.1, data augmentation and image resizing were
performed. Transformations were used to increase the data to avoid overfitting the training
models and generalizing their responses. The dataset was augmented with color augmen-
tation of saturation, hue, and contrast; position augmentation of rotation by 45°, 135°, 225°,
and 315°; and flipping horizontally and vertically. Figure 5 shows some of the pre-processed
images of TPL with color augmentation of hue, saturation, and contrast. The first row
shows the original images of different TPL classes. The images in the second, third, and
fourth row show the saturation, hue, and contrast augmentation, respectively, of the images
in row one.

Original

Saturation

Contrast

Figure 5. Pre-processed samples of a dataset of TPL.

“Opverfitting occurs when the model fits well to training data but does not generalize
well to new, previously unseen data. Overfitting problems can be prevented by taking
measures such as data augmentation, simplifying the models, dropout, regularization,
and early stopping” [48,49]. To ensure consistency, all networks used here had the same
hyperparameters. In this work, the mini-batch size was set to 10, the epochs were set to 2,
and the learning rate was set to 0.0001. “The training loss (TL) was reduced to a minimum
value in two epochs. Hence, two epochs was chosen. The training accuracy (TA) and TL,
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along with the validation accuracy (VA) and validation loss (VL), were as shown in Figure
6 for the ResNet-101, N1, N2, and N3 models. The model with increasing TA and VA and
decreasing TL and VL show that overfitting was prevented. The TA and TL for the models
are shown in Figure 6a for ResNet-101, Figure 6¢ for N1, Figure 6e for N2, and Figure 6g
for N3. The VA and VL for the models are shown in Figure 6b for the ResNet-101 model,
Figure 6d for the N1 model, Figure 6f for the N2 model, and Figure 6h for the N3 model.”

Training accuracy and training loss for ResNet-101 Validation accuracy and validation loss for ResNet-101
model model
100 100 y
z z -
g 80 g 80
g e g 60
e < Pz
g @ §® ~
E 3
g g 20 /
< 0 0 -
1 7560 15,119 1 7560 15,119
Training data Training data
ining accuracy ining loss validation accuracy validation loss
(a) (b)
Training accuracy and training loss for N1 model Validation accuracy and validation loss for N1 model
100 100 [
§ 80 § 80
2 60 g e0
£ <
> >
§v g
5 S d
g 20 g 20 /
< < /
0 [ e —— T
1 7560 15,119, 1 7560 15,119
Training data Training data
——training accuracy ——training loss ——— validation accuracy validation loss
() (d)
Training accuracy and training loss for N2 model Validation accuracy and validation loss for N2 model
100 100 —
E 80 g 80
g 60 g e
£ £
g 4 T 40
g g
5 5
g ® Y
0 0 = = e
1 7560 15,119 1 7560 15,119
Training data Training data
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Figure 6. TA and TL and VA and VL were calculated for the ResNet-101 and N1, N2, and N3 models.

“Smoothing the graph allows important patterns to stand out more clearly. The
smoothened graphs of TA and TL, and VA and VL for the ResNet-101 and proposed N1,
N2, and N3 models are shown in Figure 7. The TL curves for the models are shown in
Figure 7a for ResNet-101, Figure 7c for N1, Figure 7e for N2, and Figure 7g for N3. The VA
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and VL for the models are shown in Figure 7b for ResNet-101, Figure 7d for N1, Figure 7f
for N2, and Figure 7h for N3.”
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Figure 7. TL, VA, and VL were calculated for the ResNet-101 and N1, N2, and N3 models.

The tomato plant images were classified with the ResNet-101 model with transfer
learning and the proposed N1, N2, and N3 models, as shown in Figure 8. For TPD
classification, each model was trained with 80% of the dataset and tested with 20% of
the dataset. The classified images with the N1 model are shown in Figure 8a. Figure 8b
depicts the N2-classified images. Figure 8c illustrates images classified by the N3 model,
and Figure 8d shows images classified by the ResNet-101 model.
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TS H YLCV LM
() (d)

Figure 8. Output images after classification for 20% testing data using (a) N1, (b) N2, (c) N3, (d)
ResNet-101.

Table 4 shows the classification accuracies of N1, N2, N3, and ResNet-101 models for
80% of the training dataset. The table compares previous work on plant leaves’ classification
with the proposed work. Brahimi et al. [33] attained accuracies of 98.66% and 99.18% for
AlexNet and GoogLeNet, respectively. N1, N2, and N3 achieved accuracies of 99.13%,
99.51%, and 99.40%, respectively. The input size of images for AlexNet was 227 x 227 x 3,
and it was 224 x 224 x 3 for GoogLeNet, VGG 16, and ResNet models. The ten-layer CNN
model was fed with images of size 64 x 64 x 3, and the attention-based residual CNN was
256 x 256 x 3. All the models compared in Table 4 were trained with the PV database.
“The ten-layer CNN model by [22] achieved accuracy of 87.92% with the Flavia dataset and
84.02% with the PV dataset.” When identifying TPL disease, Anandhakrishnan et al. [50]
achieved an accuracy of 99.45% with the Xception V4 model. Qiu et al. [8], in their work
on plant disease recognition on a self-collected dataset, achieved an average accuracy of
97.62%. The VGG16 model was used to train a “teacher model” with a better recognition
rate and a much larger volume than the “student model.” The information was then
transferred to MobileNet via distillation. This process reduced the model size to 19.83 MB.
The classification accuracy for the pretrained VGG16 model was 99.21%, and the size of the
trained model was 477 MB. The proposed trained models N1 and N3 were 8.5 MB, and the
N2 model was 17.14 MB. The pre-trained ResNet-101 demonstrated classification accuracy
of 99.97%, and the size of the trained model was 151 MB. AlexNet, GoogLeNet, and VGG
16 had larger model sizes as compared to the N1, N2, and N3 models. The developed
N2 model achieved accuracy in the same range as ResNet-101 and VGG16, though being
88.65% smaller than ResNet-101 and 96.41% smaller than VGG16.



Electronics 2022, 11, 2994 14 of 22

Table 4. Performance comparison of proposed work in comparison to other existing works.

Model & Ref No. Datasize Accuracy Model Size
AlexNet [33] 14,828 98.66% 227 MB [51]
GoogLeNet [33] 14,828 99.18% 27 MB [51]
AlexNet [17] 13,262 97.49% 227 MB [51]
VGG16 [17] 13,262 97.29% 515 MB [51]
ResNet [34] 41,127 97.28% 96 MB [51]
Ten-layer CNN [22] 94,500 84.02% 7 MB
Attention based o .
Residual CNN [35] 95,999 98% Not given
Xception V4 [50] 14,528 99.45% 85 MB [51]
Dls“lled[;\g]"bﬂeNet 54,305 97.62% 19.83 MB
VGG16 94,500 99.21% 477 MB
N1 94,500 99.13% 8.5 MB
N2 94,500 99.51% 17.14 MB
N3 94,500 99.40% 8.5 MB
ResNet-101 94,500 99.97% 151 MB

The CNN model’s training time is also critical, as illustrated in Figure 9. The N1,
N2, and N3 models are three-layer CNN models that are compact in size. The N1 model
takes less time than the N2 model. The N2 model has twice the number of filters as the N1
model. The VGG16 model also took more training time than the proposed models. There
was a steep rise in the training time for the ResNet-101 model. Note that 89% of the time
was reduced for training the N2 model compared to the ResNet-101 model. The proposed
models have shown better results than state-of-the-art classifiers.

Time for training the model
3,00,000
2,50,000

2.00,000
1,50,000
1,00,000
50,000 I I
70 80 20

60

Time (in seconds)

Training dataset size (in percent)

EN] EN2 EN3 BEVGG16 mResNet-101

Figure 9. Training time for deep learning networks with varying training dataset sizes.

The confusion matrix contains information on the correct and incorrect classification
of each of the nine classes of tomato leaves. Table 5 shows the confusion matrix for the
ResNet-101 and proposed N1, N2, and N3 models.
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Table 5. Confusion matrix for proposed models for the PV dataset.

(a) “Confusion matrix for ResNet-101 model.”

Actual Class
Class BS EB H LB LM MV SLS TS YLCV
BS 2097 0 0 0 0 0 1 0 2
» EB 0 2100 O 0 0 0 0 0 0
< H 0 0 2100 0 0 0 0 0 0
O LB 0 0 0 2099 0O 0 1 0 0
T 1B 0 0 0 0 2100 0 0 0 0
fé MV 0 0 0 0 0 2100 O 0 0
¥ SLS 0 0 0 0 0 0 2100 0 0
~ TS 0 0 2 0 0 0 0 2098 0
YLCV 0 0 0 0 0 0 0 0 2100
(b) Confusion matrix for N1 model
Actual Class
Class BS EB H LB LM MV SLS TS YLCV
BS 2077 4 0 3 0 0 13 3 0
» EB 0 2064 1 6 5 0 19 3 2
< H 0 0 2100 0 0 0 0 0 0
U LB 0 0 0 2094 0 1 2 0 3
T 1B 2 2 0 2 2078 2 6 7 1
-_‘5’ MV 0 0 3 3 0 2090 4 0 0
L SLS 4 0 0 11 2 0 2083 0O 0
~ TS 0 0 1 0 0 0 4 2095 0
YLCV 4 5 0 9 2 3 16 7 2054
(c) Confusion matrix for N2 model
Actual Class
Class BS EB H LB LM MV SLS TS YLCV
BS 2080 4 0 1 3 0 6 0 6
» EB 0 2097 0 1 0 0 1 1 0
< H 0 0 2097 2 0 0 1 0 0
O LB 0 0 1 2076 6 2 6 1 8
E) LB 1 2 0 2 2074 0 11 0 10
;‘é MV 0 0 0 0 0 2095 4 0 1
¥ SLS 2 0 0 1 0 2 2092 0 3
~ TS 0 0 1 0 0 0 1 2098 0
YLCV 0 0 0 1 1 0 0 0 2098
(d) Confusion matrix for N3 model
Actual Class
Class BS EB H LB LM MV SLS TS YLCV
BS 2074 3 0 3 4 1 8 2 5
» EB 2 2090 O 3 1 1 1 1 1
E H 0 0 2099 1 0 0 0 0 0
O LB 0 2 2 2090 0 1 3 0 2
E LB 2 2 0 7 2080 2 7 0 0
-fé MV 0 0 0 0 0 2096 4 0 0
L SLS 0 1 1 5 4 2 2083 1 3
~ TS 0 0 3 0 0 0 0 2097 0
YLCV 1 2 2 5 2 6 3 1 2078
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The performance parameters were calculated based on the elements of the confusion
matrix. Based on this, the performance parameters for N1, N2, N3, and ResNet-101 models
are shown in Table 6. Brahimi et al. [33] stated that “the mean accuracy was 99.18% for
GooglLeNet.” The average precisions by [31] for classification of disease in tomato fruit
using VGG16, ResNet-50, and ResNet-101 were 88.28%, 89.53%, and 90.87%, respectively.
The proposed N1, N2, N3, and ResNet-101 models achieved macro-precision of 99.13%,
99.51%, 99.40%, and 98.10%, respectively. The proposed N1, N2, and N3 models achieved
mean accuracies of 99.81%, 99.89%, 99.86%, respectively, and a mean accuracy of 99.58%
for the ResNet-101 model. Macro-recall, macro-precision, and macro-F1-score of N1, N2
and N3 are higher than those of the ResNet-101 model.

Table 6. Performance parameters for the classification of nine classes of Tomato plant.

“Model” “Macro Recall” M.a?ro p MacroﬂF 1 Mean P
Precision Score Accuracy
N1 99.13% 99.13% 99.13% 99.81%
N2 99.51% 99.51% 99.51% 99.89%
N3 99.4% 99.4% 99.4% 99.86%
ResNet-101 98.11% 98.1% 98.09% 99.58%

The performance parameters of recall, precision, Fl1-score, and accuracy for all nine
classes of TPL for the proposed N1, N2, N3 model, and ResNet-101 model are shown in
Figures 10-13. The recall for the nine classes is shown in Figure 10. The performance of the
N2 model is suitable for all classes. The recall values for EB, SLS, and TS classes are low for
the ResNet-101 model compared to the proposed N1, N2, and N3 models. Precision for all
the nine classes of TPL was evaluated and is shown in Figure 11. The Fl-score is shown in
Figure 12 for all nine classes. The ResNet-101 model showed lower performances for EB,
LB, LM, SLS, and TS. Accuracy for the TPL classes is shown in Figure 13. The accuracy for
all classes was good for the proposed N1, N2, and N3 models.

Recall for the tomato plant classification

100.00%
E’ 50.00%
£ 58.00%
§ 57.00%
=
E 96.00% I I
55.00% -
ES EB H LE LM MV 5L3 T8 TYLCV

Tomato plant leaf classes

N1 model ®WN2model ®N3modsl ®mResNet-101 model

Figure 10. Recall performance for TPL classes.
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Precizion for the tomato plant classification
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Tomato plant leaf claszes
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Figure 11. Precision performance for TPL classes.
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Figure 12. F1-score performance for TPL classes.
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Figure 13. Accuracy performance for TPL classes.

As per the pre-processing section, The receiver operating characteristic (ROC) explicitly
states how well the probabilities of the positive and negative classes are distinguished.
The ROC curve is generated by varying this probability threshold and computing the
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corresponding true positive rate (TPR) and false positive rate (FPR). The x-axis in ROC
represents the FPR, and the y-axis represents the TPR [53,54]. The area under the curve
(AUQ) is a critical calculation metric for assessing the performance of any classification
model. It indicates how well the model can distinguish between classes. The higher the
AUC, the more accurately the model predicts the classes. ROC is a probability curve, and
the AUC represents the degree or measure of separability. “The AUC is a measure of the
ability of a classifier to distinguish between classes and is used as a summary of the ROC
curve. The higher the AUC, the better the model is at distinguishing between the positive
and negative classes. The ROC curves for the ResNet-101 and proposed N1, N2, and N3
models are shown in Figure 14.” The AUC for ResNet-101 and N2 is 100%, and the AUC
for N1 and N3 is 99.98%. This result shows the excellent performance of the N1, N2, N3,
and ResNet-101 models in the classification of TPL.

ROC Curves for ResNet-101 model Classification

ROC Curves for N1 model Classification
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Figure 14. ROC for the ResNet-101, N1, N2, and N3 models.

The average precision (AP) is an essential parameter in a detection or classification
task; it is the area under the precision—recall curve. The AP for the nine classes is shown in
Table 7 for the PV dataset.

Table 7. Average precision of each class of tomato leaf classification.

Class N1 N2 N3 ResNet-101
BS 98.9% 99.05% 98.76% 99.58%
EB 98.29% 99.86% 99.52% 92.08%
H 100% 99.86% 99.95% 100%
LB 99.71% 98.86% 99.52% 95%
LM 98.95% 98.76% 99.05% 98.33%

MV 99.52% 99.76% 99.81% 100%
SLS 99.19% 99.62% 99.19% 99.17%
TS 99.76% 99.9% 99.86% 98.75%

YLCV 97.81% 99.9% 98.95% 100%

The trained N1, N2, N3, and ResNet-101 models were validated with the anonymous

data to predict its class and accuracy. The mean accuracy for validating the model is shown
in Figure 15 for anonymous PV data. The N2 model delivered excellent performance for all
the classes compared with N1 and N3 models. N2 showed mean accuracy of 96.40% for H
and LB classes. EB had low accuracy for all the models. Overall, it can be seen that the N2
model behaved exceptionally well in classification and prediction, along with ResNet-101.
Figure 16 shows the trained models’ predictions of the KVKN captured image. The image
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class was predicted as LB by all the models, and the accuracy of prediction by N1 was 100%,
that of N2 was 98.44%, that of N3 model was 96%, and that of ResNet-101 was 95.95%.

Prediction of tomato plant leaves
100.00

g

e 80.00

="

g 6000

Ty

-4

5 4000

g

g 2000

=
0.00

BS EB H 1B 1M MV SLS TS YLCV

Tomate plant leaf classes

EN1 ENI EN3 mEEesNetlOl

Figure 15. Predictions by N1, N2, N3, and ResNet-101 for PV data.

N1: 100% LB
N2: 98.44% LB
N3: 96% LB
ResNet-101: 95.95% LB

Figure 16. Predictions by N1, N2, N3, and ResNet-101 for KVKN data.

Computational models with robustness and high precision computing output have
extended their usage in practical application scenarios, including classification in healthcare,
industry, etc. The developed N1 model, N2 model, and N3 model trained on the PV dataset
were able to predict the class of TPL of the KVKN dataset. The models can be deployed
via applications on mobile phones in the future, allowing farmers to make quick decisions
about tomato plant disease management. The management step towards infected plants
can be spraying appropriate pesticides or just removing the infected plants from the field
to avoid the further spread of disease.

4. Conclusions

This work used deep learning models, N1, N2, N3, and ResNet-101, to classify TPL
images from the PV database. The developed model showed an accuracy of classification
equally as good as ResNet-101. Compared to the ResNet-101 model, the developed model’s
training time was reduced by 92% for the N1 model, 89% for the N2 model, and 90% for
the N3 model. N2 is 88.65% more compact than ResNet-101 and is about as accurate. The
developed models outperform ResNet-101 in terms of performance parameters such as
“macro-precision, macro-F1-score, and mean accuracy.” The proposed N2 model had an
AUC of 100%, and the N1 and N3 models have an AUC of 99.98%, indicating good classifier
performance. The average precision in each tomato plant class has been consistently strong,
affirming a more robust classification process. The PV and KVKN images were used to
validate these trained models. The mean accuracies of N1, N2, N3, and ResNet-101 were
99.81%, 99.89%, 99.86%, and 99.58%, respectively, for the PV test dataset. The prediction
accuracies for proposed N1, N2, N3, and ResNet-101 models were 100% LB, 98.44% LB, 96%
LB, and 95.95% LB for the KVKN dataset. This classification problem will assist farmers in
detecting and taking appropriate steps for disease management, which will benefit society.
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In the future, the models can be deployed via an application to mobile phones that can help
farmers make rapid decisions about the management of tomato plant diseases.
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