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Abstract: Forest fire smoke detection based on deep learning has been widely studied. Labeling the
smoke image is a necessity when building datasets of target detection and semantic segmentation.
The uncertainty in labeling the forest fire smoke pixels caused by the non-uniform diffusion of
smoke particles will affect the recognition accuracy of the deep learning model. To overcome the
labeling ambiguity, the weighted idea was proposed in this paper for the first time. First, the pixel-
concentration relationship between the gray value and the concentration of forest fire smoke pixels
in the image was established. Second, the loss function of the semantic segmentation method based
on concentration weighting was built and improved; thus, the network could pay attention to the
smoke pixels differently, an effort to better segment smoke by weighting the loss calculation of
smoke pixels. Finally, based on the established forest fire smoke dataset, selection of the optimum
weighted factors was made through experiments. mIoU based on the weighted method increased by
1.52% than the unweighted method. The weighted method cannot only be applied to the semantic
segmentation and target detection of forest fire smoke, but also has a certain significance to other
dispersive target recognition.

Keywords: forest fire smoke; semantic segmentation; the weighted method; labeling ambiguity

1. Introduction

The security risks and destruction of ecological balance caused by forest fires have
increased dramatically in recent years in terms of both frequency and scale [1–4]. The
forest fire monitoring and detection is of great significance for reducing the above hazards.
However, it is very laborious to rely solely on the manual monitoring and detection of
forest fires. The development of science and technology has made it possible to monitor
and detect forest fires automatically [5–7].

Many researchers have been working on automatic smoke detection to reduce damages,
since smoke can provide earlier clues for forest fire alarms than flames [8–11]. Many forest
fire detection methods based on smoke recognition have been proposed in the past decade.
The image-based forest fire smoke detection method is the most widely used [12–19]. Strictly
speaking, image-based smoke detection for forest fires can be divided into three categories.
The first category is to only judge whether there is forest fire smoke in an image or not, which
is known as whole image forest fire smoke recognition. The second one is not only to recognize
whether there is forest fire smoke, but also to indicate the locations of forest fire smoke by
bounding boxes [20]. This category is called forest fire smoke detection. The third one is to
densely classify each pixel in an image, which is known as forest fire smoke segmentation.

Forest fire smoke segmentation is a far more difficult task than forest fire smoke recog-
nition and forest fire smoke detection. It requires accurate separation of forest fire smoke
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components from background scenes in an image at pixel levels. Forest fire smoke segmen-
tation outputs a mask with detailed edges, involving object classification, localization and
boundary delineation. Traditional forest fire smoke segmentation methods mainly use hand-
crafted features, such as forest fire smoke color, texture and motion [21–31]. Nevertheless, it
is pretty difficult to define, design or choose useful features due to large variations of forest
fire smoke appearance, resulting in quite poor segmentation performance. Furthermore, some
forest fire smoke segmentation methods extract dynamic features from videos [32]; however,
they are extremely unstable in cases of bad weather. Therefore, forest fire smoke segmentation
from static images plays a very important role in visual monitoring and detection for forest fire
smoke.

In recent years, many methods based on convolutional neural networks (CNNs)
have attracted attention due to their outstanding performance in image segmentation [33].
Semantic segmentation based on CNN, with the input of an arbitrary-size image, utilizes a
set of convolutional layers, non-linear activation functions, pooling and upsampling layers
to output a predicted image [34–38]. Moreover, CNNs have achieved a lot of significant
results in the field of vision detection of forest fire smoke [39,40].

For the forest fire smoke segmentation method based on CNN, it is necessary to
manually label pixels which are forest fire smoke or background in all training images.
However, the fuzziness, translucency, and diversified concentration of forest fire smoke
make it extremely difficult to label forest fire smoke accurately, resulting in subjectivity
and ambiguity for labeling forest fire smoke; thus, annotating such a training dataset has
become a bottleneck in applying these models to forest fire detection.

The labeling problem is widespread in other recognition tasks based on deep learning
and has been studied by many researchers [41–45]. However, in the field of forest fires, the
labeling problem has not been studied. This paper focuses on how to reduce the impact of
the uncertainty for labeling forest fire smoke on smoke segmentation.

In order to improve the accuracy of semantic segmentation of forest fire smoke images
and eliminate the impact of labeling ambiguity on the recognition results, a semantic
segmentation method based on concentration weighting was first proposed in this paper.
By introducing a weighted factor as a measure of the labeling uncertainty, this method can
avoid treating all labeled pixels equally so as to improve the accuracy of the model. The
weighted method was tested and evaluated on the forest fire smoke dataset.

2. Materials and Methods

For semantic segmentation of forest fire smoke, the influence of smoke concentration
was considered, and the idea of weighting was introduced in this paper. By establishing
the pixel-concentration relationship of forest fire smoke in the image, the influence of the
labeling ambiguity caused by non-uniform smoke diffusion would be alleviated and the
recognition accuracy of forest fire smoke would be improved. The method framework of
this paper is shown in Figure 1.
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Figure 1. The main framework of the weighted method proposed in this paper 1. 1: The network is pre-existing deep 
learning semantic segmentation network, encoder is MobileNet [46] and decoder is PSPnet [47]. The network was ini-
tialized with the weights of the MobileNet network pre-trained on the ImageNet. The final optimization loss includes 
weighted loss and cross-entropy loss. 

2.1. Forest Fire Smoke Labeling Based on Weight 
The input of the semantic segmentation network was original images and ground 

truth (GT) images corresponding to original images. The pixel value of the forest fire 
smoke pixel in GT images was labeled as 1 [48,49] and that of the non-forest fire smoke 
pixel in GT images was labeled as 0 in Figure 2a,b. The concentration of forest fire smoke 
varies in pixel because of the non-uniform diffusion of forest fire smoke particles. Due to 
the influence of environmental factors, the concentration of smoke particles will gradu-
ally decrease in the diffusion process, which will result in blurring of the edges of the 
smoke image or mixing with the background such as cloud and fog to cause the uncer-
tainty of the labeling. It is impossible to reflect this kind of uncertainty by simply label-
ing pixels as 1 or 0 without distinction. The misidentification of the trained network 
model will be caused by the inaccuracy of the labeling. 

The idea of weighting in this paper is to integrate the weight into the original 
method in order to make the network understand that forest fire smoke is different in 
concentration. By introducing a weighted factor, it is used as a measure of the uncer-
tainty of the labeled pixels to avoid treating all labeled pixels equally and to identify 
forest fire smoke more accurately. 

The forest fire smoke concentration has a direct correlation with the smoke pixel 
value in the forest fire smoke image. The difference in smoke concentration in the same 
image is represented by the difference in smoke pixel value. For white smoke, the higher 
the smoke concentration, the higher the smoke pixel value in the smoke image, while the 
black smoke is the opposite. 

Therefore, establishing the relationship between the pixel value and the concentra-
tion distribution of the forest fire smoke pixel in the image is necessary for the introduc-
tion of weight. A normalization method to establish the pixel-concentration relationship 
was adopted in this paper as shown in Equations (1) and (2). 
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Figure 1. The main framework of the weighted method proposed in this paper 1. 1: The network is pre-existing deep
learning semantic segmentation network, encoder is MobileNet [46] and decoder is PSPnet [47]. The network was initialized
with the weights of the MobileNet network pre-trained on the ImageNet. The final optimization loss includes weighted loss
and cross-entropy loss.

2.1. Forest Fire Smoke Labeling Based on Weight

The input of the semantic segmentation network was original images and ground
truth (GT) images corresponding to original images. The pixel value of the forest fire smoke
pixel in GT images was labeled as 1 [48,49] and that of the non-forest fire smoke pixel in
GT images was labeled as 0 in Figure 2a,b. The concentration of forest fire smoke varies
in pixel because of the non-uniform diffusion of forest fire smoke particles. Due to the
influence of environmental factors, the concentration of smoke particles will gradually
decrease in the diffusion process, which will result in blurring of the edges of the smoke
image or mixing with the background such as cloud and fog to cause the uncertainty of the
labeling. It is impossible to reflect this kind of uncertainty by simply labeling pixels as 1 or
0 without distinction. The misidentification of the trained network model will be caused
by the inaccuracy of the labeling.
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Finally, the weighted coefficient reflecting the pixel-concentration relationship is: 
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where λ  is the concentration weight. The value range of λ  is [1−k , 1]. The lower 
limit of the pixel-concentration relationship is increased for Equation (4), which can en-
hance the confidence of model for smoke. The weighted image is shown in Figure 2c. 
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Figure 2. Original image, GT image and weighted image. (a) The original image. (b) The GT image. The white area with
the pixel value of 1 is the smoke area and the black area with the pixel value of 0 is the non-smoke area. (c) The weighted
image. The pixel value of the smoke area is distributed between [0, 1].
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The idea of weighting in this paper is to integrate the weight into the original method in
order to make the network understand that forest fire smoke is different in concentration. By
introducing a weighted factor, it is used as a measure of the uncertainty of the labeled pixels
to avoid treating all labeled pixels equally and to identify forest fire smoke more accurately.

The forest fire smoke concentration has a direct correlation with the smoke pixel value
in the forest fire smoke image. The difference in smoke concentration in the same image is
represented by the difference in smoke pixel value. For white smoke, the higher the smoke
concentration, the higher the smoke pixel value in the smoke image, while the black smoke
is the opposite.

Therefore, establishing the relationship between the pixel value and the concentration
distribution of the forest fire smoke pixel in the image is necessary for the introduction
of weight. A normalization method to establish the pixel-concentration relationship was
adopted in this paper as shown in Equations (1) and (2).

Gr(x, y) = G(x, y)−min(G(x, y)), (1)

Rgc =
Gr(x, y)

max(Gr(x, y))
, (2)

where G(x, y) is the pixel value of the smoke area, as shown in the white area in Figure 2b.
min(G(x, y)) is the minimum pixel value of the smoke area and Gr(x, y) is the relative pixel
value of the smoke area. Rgc is the basic pixel-concentration coefficient and max(Gr(x, y))
is the maximum relative pixel value of the smoke region.

In order to discriminate between smoke, cloud, and fog, the background information
of the smoke should be included in the pixel-concentration relationship. Therefore, the
contrast coefficient k was introduced, as shown in Equation (3). The greater the gap between
the average pixel value of the forest fire smoke area and the average pixel value of the
entire image, the larger the contrast coefficient, so that it is much easier to identify the
smoke area.

k =

∣∣∣∣∣ G− Gp

Gns − Gp

∣∣∣∣∣, (3)

where G is the pixel mean of the whole image, Gp is the pixel mean of the smoke area, Gns
is the pixel mean of the non-smoke area and k is the contrast coefficient. The value range of
k is [0, 1], which reflects the relative distance between the pixel mean in the smoke area
and the pixel mean in the whole image.

Finally, the weighted coefficient reflecting the pixel-concentration relationship is:

λ = k× Rgc + 1− k, (4)

where λ is the concentration weight. The value range of λ is [1−k, 1]. The lower limit of
the pixel-concentration relationship is increased for Equation (4), which can enhance the
confidence of model for smoke. The weighted image is shown in Figure 2c.

2.2. Improvement for the Loss Function

In the training process of the semantic segmentation network, when calculating the
loss value, the contribution of each pixel in the smoke area to the loss value should be
evaluated according to the weighted image. The improved loss function was as follows:

L = αLCE + (1− α)LW , (5)

where L is the overall loss function, LCE is the cross-entropy loss function [50,51], LW is the
weighted loss function, calculating the loss between the predicted value and the weighted
value, and α is the control coefficient. The proportion of the weighted part in the overall
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loss function was determined by the control coefficient α. LW and α would be determined
by experiments.

When the weighted loss was not considered, the cross-entropy loss function was used
to train the network, as shown in Equation (6). When the weighted loss was considered,
the idea of weighted was introduced and the loss function was Equation (5).

LCE =

{
− log

∧
yi yi = 1

− log(1− ∧yi) yi = 0
, (6)

where yi = {0, 1} is the category label of a real image and
∧
yi ∈ [0, 1] is the prediction

probability when the corresponding category label is 1.
Since the weight was a discrete value distributed in a certain interval, calculating the

weighted loss was a regression problem. The common loss functions include Mean Abso-
lute Error Loss (LMAE) [52], Mean Squared Error Loss (LMSE) [53] and Cosine Proximity
Loss (LCP) [54]. On this basis, the corresponding improvements of weighted loss function
were made, as shown in Equations (7)–(9).

LMAE =
1
N

N

∑
i=0

∣∣∣∣∧yi −
∆
yi

∣∣∣∣, (7)

LMSE =
1
N

N

∑
i=0

(
∧
yi −

∆
yi)

2
, (8)

LCP = 1−

N
∑

i=0

∧
yi ·

∆
yi√

N
∑

i=0
(
∧
yi)

2
·
√

N
∑

i=0
(

∆
yi)

2
, (9)

where N is the number of samples,
∆
yi ∈ [0, 1] is the weight when the corresponding category

label is 1. LMAE and LMSE are respectively named as L1 Loss and L2 Loss. The original LCP
is the opposite of the cosine distance between the predicted value and the weight. Because
the minimum of the original LCP is −1, which is not suitable to combine with other loss
functions. In this paper, LCP was added 1 to make sure its minimum is 0. The optimal type
of weighted loss function LW would be determined by experimental analysis.

3. Results
3.1. Experimental Platform

The experimental environment was Ubuntu 16.04 and the deep learning framework
was Keras. The hardware configuration included E5-2620 CPU and GeForce GTX 1080TI
GPU. The encoder of semantic segmentation network is MobileNet [46] and decoder of
semantic segmentation network is PSPnet [47]. The batch size was 4 during training. The
initial learning rate was set as 0.0001 and the optimization method was Adam. Then the
learning rate was dynamically adjusted according to the loss value of the verification set.
Once the loss value of the validation set stop decreasing, the learning rate will decay at a
rate of 0.9. The network input was RGB images, GT images and weighted images. The size
of these images was adjusted to 576 × 576.

3.2. Forest Fire Smoke Dataset

With the consideration of the environment, shooting angle, shooting distance and
interference such as the coexistence of clouds and smoke, the forest fire smoke dataset was
composed of 176 forest fire smoke images collected from literature and websites. According
to the concentration of forest fire smoke and cloud interference, the dataset was divided
into four categories: thick smoke (TKS), thin smoke (TNS), thick smoke and clouds (TKSC),
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and thin smoke and clouds (TNSC), as shown in Figure 3. The distribution, which is
basically the same as that in literature and websites because of the randomness when
collecting these images without considering smoke concentration, is shown in Table 1. 10%
of the images in the dataset were randomly selected as the test set. The remaining images
were randomly divided into the training set and the validation set at a ratio of 1:1.
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Figure 3. The four categories of the forest fire smoke dataset. (a) Thick smoke. (b) Thin smoke. (c) Thick smoke and 
clouds. (d) Thin smoke and clouds. 
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Figure 3. The four categories of the forest fire smoke dataset. (a) Thick smoke. (b) Thin smoke. (c) Thick smoke and clouds.
(d) Thin smoke and clouds.
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Table 1. The distribution of the four categories for the forest fire smoke dataset.

Thick Smoke Thin Smoke Thick Smoke and
Clouds

Thin Smoke and
Clouds

126 25 21 4

3.3. Evaluation Index

To better verify the accuracy of the semantic segmentation network for forest fire
smoke recognition, the mean intersection over union (mIoU) was used to evaluate the
model performance in this paper. The larger mIoU, the better the recognition performance.

mIoU is a standard indicator of semantic segmentation tasks [55]. In the semantic
segmentation field, IoU is essentially a method to quantify the overlap percentage between
the target mask and the prediction mask. Specifically, it refers to the ratio of the number
of pixels in the common area of the target mask and the prediction mask to the total
number of pixels between them. mIoU is the average of IoUs for each category, as shown
in Equation (10).

mIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

, (10)

where since each pixel in the image has a category label, it is assumed that the total number
of categories is k + 1, including k object categories and 1 background. pij represents the
number of pixels of category i predicted to be category j. In this paper, k is 1.

3.4. The Segmentation Results for the Weighted Method

Three main factors affect the weighted method: the relationship between the pixel
value and the concentration distribution of forest fire smoke, the type of weighted loss
function LW and the control coefficient α. There are two kinds of relationships between
the pixel value and the concentration distribution of forest fire smoke, respectively Rgc
and λ. The former is just the normalized relative pixel value of forest fire smoke, which is
approximately regarded as the concentration distribution of forest fire smoke, while the
latter is multiplied by a contrast coefficient k based on the former and then increases the
lower limit of the pixel-concentration relationship.

When the pixel-concentration distribution of forest fire smoke is Rgc and λ, the experi-
mental segmentation results with different type of weighted loss function LW and control
coefficient α are shown in Figure 4.
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The results of mIoU for three types of weighted loss functions LW are shown in Table 2.
All the experiments in Table 2 were made 20 times and then the average value was taken
as the final result. When the pixel-concentration relationship is λ, the optimal weight loss
function is LMAE and the optimal control coefficient is 0.1, mIoU of the weighted method is
75.49%, which is the highest among the weighted methods.

Table 2. Segmentation results of the pixel-concentration relationship, the type of weighted loss
function and the control coefficient.

Pixel-Concentration
Relationship

Weighted Loss
Function Type Control Coefficient mIoU (%)

Rgc LMAE 0.1 74.99
Rgc LMSE 0.8 74.31
Rgc LCP 0.9 74.25
λ LMAE 0.1 75.49
λ LMSE 0.9 75.27
λ LCP 0.4 75.26

Figure 5 shows the corresponding segmentation images of these methods and makes
a visual comparison between the segmentation images and the corresponding GT images.
It was concluded that the results obtained by the method proposed in this paper are more
similar to GT images than the method without weighting. Figure 5d,h are the results of the
weighted method.
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Table 4. The segmentation performance for the proposed algorithm in four categories. 

Figure 5. Comparison of segmentation results. (a,e) The original image. (b,f) GT image. (c,g) Unweighted. (d,h) Segmenta-
tion with λ-MAE-0.1.

In order to evaluate the statistical significance of classification differences, a 10-fold
cross validation was performed so as to have more than 1 experiment (10 in this case) where
to calculate average (Ave) and standard deviations (SD) about experimental results in case
of different approaches or algorithms. As shown in Figure 6, the dataset was divided into
ten parts randomly on average, one of which was used as the test set, and all images in the
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remaining nine parts would be randomly allocated as the train set and the validation set at
a ratio of 1:1. Each test set is different, ensuring that each image in the dataset can be used
as test set once.
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Table 3. Comparative experimental results with or without weighting.

Number Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part
10 Ave SD

PSPnet w/o
weight 74.01 75.20 70.41 74.67 77.15 69.81 79.94 73.17 69.14 75.10 73.86 3.21

PSPnet w.
weight 75.49 79.64 73.37 75.1 75.65 70.07 80.11 75.35 72.64 76.33 75.38 2.85

Table 4. The segmentation performance for the proposed algorithm in four categories.

Number
Without Weight With Weight

TKS TNS TKSC TNSC TKS TNS TKSC TNSC

Ave 73.19 67.44 72.6 62.12 74.59 68.08 72.77 60.47
SD 2.84 5.52 5.82 2.45 2.41 7.13 5.88 5.42

First, 10-fold cross-validation was used to evaluate the performance of the model
with (w.) and without (w/o) weights. The experimental results showed that the weighted
method was 1.52% higher than the average value of mIoU for the method without weight-
ing in Table 3, which verified the effectiveness of the weighted method. At the same
time, the weighted method has a lower standard deviation, which makes the network
more stable.

Then the performance for the proposed algorithm was investigated by considering
the segmentation performances in four categories (thick smoke, thin smoke, thick smoke
and clouds, and thin smoke and clouds) separately, as shown in Table 4. For TKS, the
weighted method has a good performance compared with the unweighted method. For
TNS and TKSC, the mean value of mIoU for the weighted method is higher than that of the
unweighted method, but its standard deviation is larger. The reason for this phenomenon
may be that the amount of data about TNS and TKSC is too small, which leads to larger
fluctuations in the model. The result of TNSC has further verified the weighted method
would fail when the data about TNSC is severely insufficient.
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4. Discussion

In order to evaluate the effectiveness of the weighted method, comparative exper-
iments with and without the weight were conducted on several common semantic seg-
mentation networks, such as FCN [56], Segnet [57] and Unet [58], and a forest fire smoke
detection method, Frizzi [39]. The control coefficient and weighted loss function type for
all the tested network architectures have been determined by alike experiments conducted
in 3.4, as shown in Table 5. The comparative results for the above segmentation methods
with and without weighting are shown in Table 6.

Table 5. Determination of experimental parameters for different segmentation methods.

Methods Pixel-Concentration
Relationship

Weighted Loss
Function Type Control Coefficient mIoU(%)

FCN λ LMAE 0.1 71.73
Segnet λ LCP 0.7 77.21
Unet λ LMSE 0.8 75.66
Frizzi λ LMAE 0.2 76.37

Table 6. Comparison of different segmentation methods with and without weighting.

Number
FCN Segnet Unet Frizzi

w/o
Weight w. Weight w/o

Weight w. Weight w/o
Weight w. Weight w/o

Weight w. Weight

Ave 73.63 76.01 71.89 74.11 73.35 75.12 74.20 75.68
SD 4.83 3.23 3.26 3.65 3.67 2.54 2.54 2.15

As shown in Table 6, for each semantic segmentation network, mIoU of the weighted
method has been improved than the unweighted method to some degree. The experimental
results showed that the optimal type of weighted loss function and control coefficient of
each segmentation method may be different. For a specific dataset, the three optimal
parameters of the weighted method, including the pixel-concentration relationship, the
type of loss function and the control coefficient, would be verified by experiments.

The above experiments show that the amount of data is an important factor that affects
the weighted method. If the amount of data is too small, the performance of the network
will fluctuate greatly, which can be proved by the standard deviation of the weighted
method under 10-fold cross-validation becoming larger when the data is insufficient. The
amount of data will be further expanded in the following research. In addition, as a
multi-objective optimization problem, the selection for specific parameters of the weighted
method will be made a further research focus.

5. Conclusions

The semantic segmentation method based on concentration weighting was proposed
for the first time in this paper. After building a semantic segmentation dataset of forest fire
smoke, the pixel-concentration relationship between the gray value and the concentration
of forest fire smoke pixels in the image was established. Then the loss function of the
semantic segmentation method based on concentration weighting was built and improved.
Finally, the selection of the optimum weighted factors was made by experiments. The
segmentation experiments based on the weighted method were made and mIoU increased
by 1.52% than the unweighted method. It can be concluded that the weighted method has
a better segmentation and recognition performance than the unweighted method and can
reduce the influence of labeling ambiguity on segmentation results to a certain extent. The
weighted method cannot only be applied to the semantic segmentation and target detection
of forest fire smoke, but also has a certain significance to other dispersive target recognition.



Electronics 2021, 10, 2675 11 of 13

Author Contributions: Conceptualization, Z.W. and C.Z.; methodology, Z.W., C.Z. and Y.T.; software,
Z.W.; validation, Z.W., C.Z., Y.T., J.Y. and W.C.; formal analysis, Z.W.; investigation, Z.W.; resources,
Z.W.; data curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing,
Z.W., C.Z., Y.T., J.Y. and W.C.; visualization, Z.W.; supervision, C.Z., Y.T., J.Y. and W.C.; project
administration, C.Z.; funding acquisition, C.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 31971668.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Wees, D.; van Der Werf, G.R.; Randerson, J.T.; Andela, N.; Chen, Y.; Morton, D.C. The role of fire in global forest loss

dynamics. Glob. Chang. Biol. 2021, 27, 2377–2391. [CrossRef] [PubMed]
2. Coogan, S.C.P.; Daniels, L.D.; Den, B.; Burton, P.J.; Flannigan, M.D.; Gauthier, S.; Kafka, V.; Park, J.S.; Wotton, B.M. Fifty years of

wildland fire science in Canada. Can. J. For. Res. 2021, 51, 283–302. [CrossRef]
3. Fischer, R. The Long-Term Consequences of Forest Fires on the Carbon Fluxes of a Tropical Forest in Africa. Appl. Sci. 2021, 11,

4696. [CrossRef]
4. Milanovic, S.; Markovic, N.; Pamucar, D.; Gigovic, L.; Kostic, P.; Milanovic, S.D. Forest Fire Probability Mapping in Eastern Serbia:

Logistic Regression versus Random Forest Method. Forests 2021, 12, 5. [CrossRef]
5. Cang, N.M.; Yu, W.J. Early forest fire smoke detection based on aerial video. J. Phys. Conf. Ser. 2020, 1684, 012095. [CrossRef]
6. Chen, T.H.; Wu, P.H.; Chiou, Y.C. An early fire-detection method based on image processing. In Proceedings of the 2004

International Conference on Image Processing, Singapore, 24–27 October 2004; Volume 1703, pp. 1707–1710.
7. Chino, D.Y.T.; Avalhais, L.P.S.; Rodrigues, J.F.; Traina, A.J.M. BoWFire: Detection of Fire in Still Images by Integrating Pixel Color

and Texture Analysis. In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil,
26–29 August 2015; pp. 95–102.

8. Filkov, A.I.; Duff, T.J.; Penman, T.D. Improving Fire Behaviour Data Obtained from Wildfires. Forests 2018, 9, 81. [CrossRef]
9. McKenzie, D.; Shankar, U.; Keane, R.E.; Stavros, E.N.; Heilman, W.E.; Fox, D.G.; Riebau, A.C. Smoke consequences of new

wildfire regimes driven by climate change. Earth’s Future 2014, 2, 35–39. [CrossRef]
10. Hinojosa, M.B.; Laudicina, V.A.; Parra, A.; Albert-Belda, E.; Moreno, J.M. Drought and its legacy modulate the post-fire recovery

of soil functionality and microbial community structure in a Mediterranean shrubland. Glob. Chang. Biol. 2019, 25, 1409–1427.
[CrossRef] [PubMed]
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