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Abstract: To investigate the reinforcing effect of externally prestressed carbon-fiber-reinforced poly-
mer (CFRP) tendons on the shear performance of reinforced concrete beams, a set of model tests was
designed. Static load comparative tests were conducted on one original beam and four reinforced
beams to experimentally investigate the impacts of the prestress level and damage in the shear zone
on the shear reinforcement effect and analyze the reinforcement mechanism of CFRP tendons. The
results show that in the beams reinforced with CFRP, the CFRP tendons could work collaboratively
with the stirrups to reduce the strain on the stirrups; the increasing rate in the yield load was 28–70%.
After the stirrups yielded, the CFRP tendons did not yet reach their ultimate tensile strength and
could still withstand increased shear forces, resulting in an increasing rate of the ultimate load for
the reinforced beams with a CFRP content of 56–78%. The enhancements in both the yield load and
the ultimate load were positively correlated with the level of prestress in the CFRP tendons. This
reinforcement technique efficiently restricts the growth and delays the first appearance of diagonal
cracks. The prestress can close the pre-existing diagonal cracks and provide a reserve of shear ca-
pacity for the beams. The initial damage in the shear zone decreases the initial shear stiffness and
increases the width of the initial diagonal cracks. However, this effect gradually diminishes as the
load increases and does not significantly impact the shear capacity. Prestressing can significantly
improve the strength utilization rate of the CFRP reinforcement when the reinforced beams fail. The
deformation of the CFRP tendon is directly related to the shear deformation. By combining this
relationship with the truss–arch model, the shear capacity for the reinforced beam can be predicted.
The predicted results exhibit an error of less than 10% when compared to the test results, offering
valuable design guidance for reinforced engineering composites.

Keywords: bridge engineering; external prestressing; CFRP tendons; shear strengthening;
shear capacity; diagonal cracks

1. Introduction

The aging of infrastructure in numerous nations, along with growing demands on
loads, has made reinforcing existing reinforced concrete structures an important subject [1,2].
Reinforced concrete beams are prone to failing in two different ways: flexural failure and
shear failure, with shear failure often being sudden and brittle. To avoid brittle failure and
ensure ductile failure (flexural failure), concrete beams need to achieve a sufficient shear
strength through shear strengthening [3]. Years of research have demonstrated that CFRP
possesses several advantages, such as being lightweight and possessing high strength,
corrosion resistance, fatigue resistance, low creep, electromagnetic insulation, and good
seismic performance [4,5]. As a result, CFRP has recently been extensively employed in
improving the shear performance of concrete structures, and some advancements have
been achieved [6–8].
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Compared to flexural strengthening, shear strengthening with CFRP presents a more difficult
challenge due to an insufficient bond length and reduced ductility [9]. Zomorodian et al. per-
formed experimental research on the method of shear reinforcement for side-bonding CFRP.
The failure of the reinforced beams often results from CFRP debonding, which typically
leads to a limitation in the beams’ ductility [10,11], and the enhancement in the shear perfor-
mance is quite minimal [12]. Chen et al. investigated the U-wrap CFRP technique [9,13,14]
and found that the bond length of the CFRP in this technique was constrained by the cross-
sectional dimensions of the concrete structure [15,16]. In addition, Ammar et al. introduced
near-surface-mounted (NSM) technology to shear-strengthening research [17,18], which can
effectively enhance the shear-carrying capacity and deformation capacity when structures
fail [19,20]. However, when the CFRP ratio is too high, it may cause the failure mode of
reinforced beams to change to concrete cover delamination, resulting in the premature
failure of the specimens [21–23]. A high relative slip leads to deterioration in the bonding
performance between the CFRP and concrete, limiting the full utilization of the tensile
strength of the CFRP.

Conventional passive strengthening methods employed to enhance the shear perfor-
mance in structures are not effective enough in controlling the cracks. To address this
limitation, prestressing is applied to carry out active reinforcement, mitigate the high
strength-to-modulus ratio of CFRP tendons, and improve the distribution of the internal
forces within the structure. In the exploration of prestressed-CFRP shear reinforcement
technology, various methods have been employed to apply prestress to CFRP that is bonded
to beams, such as tensioned circular CFRP strips [24], self-locking tensioning [25], and
turning-block tensioning [26]. Zhou et al. [27] conducted a study on the shear strengthening
of U-shaped CFRP strips with bonded tendons and found that the prestressed reinforce-
ment outperformed the pure-adhesive strengthening in suppressing the primary diagonal
crack propagation, delaying the yielding of stirrups, and enhancing the utilization of the
stirrups’ plasticity. This method significantly increased the fiber strength utilization and no-
tably improved the shear-carrying capacity of beams. Moreover, under similar conditions,
higher prestress levels or fiber ratios led to better overall performance in reinforced beams.
Pen et al. [28] investigated the mechanical properties and failure modes of prestressed
NSM CFRP shear strengthening. They discovered that the prestressed NSM CFRP shear
reinforcement substantially enhanced the shear crack loads and shear-carrying capacity.
The prestress effectively constrained the rate and width of the shear crack propagation.
These research results demonstrate that the use of prestressing technology successfully
limits the growth of diagonal cracks and improves the ability of the specimens to with-
stand shear forces. The initial degree of prestress exerts a substantial influence on the
reinforcement effect.

Among the numerous studies on CFRP shear strengthening, the majority focus on
adhesive bonding and NSM techniques, with research on external non-bonded prestressed
CFRP tendon shear-strengthening techniques being relatively limited. Additional data
are needed to comprehensively assess the shear performance of externally prestressed
reinforced concrete beams. This paper presents a novel shear-strengthening technique in-
volving the mechanical fastening of CFRP tendons to a beam using screws, anchorages, and
reaction steel plates. In this study, five reinforced concrete beams with strong bending and
weak shear configurations were fabricated, with four of them reinforced using externally
non-bonded prestressed CFRP tendons for shear strengthening. The study investigated the
influences of the prestress level of the CFRP tendons and beam damage on both the shear-
strengthening effect and the propagation of diagonal cracks through model experiments.
Utilizing the truss–arch model, a method for calculating the shear capacity of the reinforced
beams is proposed and validated against experimental results, providing valuable insights
for engineering applications.
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2. Statical Test
2.1. Specimen Parameter

In this study, we utilized a model test method to investigate the enhancement of the
shear performance in concrete beams reinforced with externally unbonded prestressed
CFRP tendons. Table 1 lists detailed information about the five testing specimens, including
their dimensions, shear span ratios, stirrup ratios, prestressing levels, and the initial states
before reinforcement. Abbreviated combinations are used to represent the specimens.
“CB” denotes the contrast beam, and “RB” represents the reinforced beam. The first set
of numbers indicates the prestress levels of the CFRP tendons, measured in “MPa”. The
second set of numbers distinguishes between the intact condition of the specimen (“0”)
and preloading, which results in the formation of a 0.2 mm-wide diagonal crack before
reinforcement (“0.2”).

Table 1. Summary of specimens.

Specimen Dimension
Shear
Span
Ratio

Stirrup
Ratio

Prestressing
Degree State

CB-0-0
2000 mm
× 200 mm
× 400 mm

1.714 0.25%

— —
RB-0-0 0 intact

RB-400-0 400 intact
RB-800-0 800 intact

RB-400-0.2 400 0.2 mm diagonal
crack

As shown in Figure 1, the specimens measured 2000 mm in length with cross-section
dimensions of 200 mm × 400 mm. The length of the shear zone measured 600 mm, resulting
in a shear span ratio of 1.714. To enhance the flexural strength of the specimen, five steel bars
(two bars in the upper layer and three bars in the lower layer, spot-welded at appropriate
intervals) were utilized as longitudinal reinforcement at the bottom tension zone, resulting
in a reinforcement ratio of 3.06% aimed at preventing bending failure. Additionally, 8 mm
diameter stirrups were employed at intervals of 200 mm, resulting in a stirrup ratio of
0.25%. This stirrup configuration mimics the insufficient shear performance of beams in
engineering scenarios.
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Figure 1. Sketch of RC beam and the location of strain gauges on steel reinforcement.

2.2. Reinforcement Method, Measurement Point Layout, and Loading Method

The reinforcement method is illustrated in Figure 2a, where two reaction steel plates
are fixed at the top near the support point and the bottom near the loading point within
the shear zone of the specimens, respectively. Each reaction frame was securely fastened
to the specimens using eight 22 mm bolts, providing a sufficient safety margin to prevent
stress concentration in the bolt holes and ensure the accuracy of the experiments. The
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CFRP tendons were fixed between the two reaction steel plates using anchorages and
screws. Hydraulic jacks and tensioning devices were utilized to apply prestress to the
CFRP tendons, as shown in Figure 2b. During the prestressing process, the screw was
extended by a connecting nut, an additional steel plate was placed on the elongated screw,
and a hydraulic jack was positioned between the two steel plates. Once the target prestress
value was reached, the nut on the reaction steel plate was tightened, and the tensioning
devices, including the hydraulic jacks and extended screw, were removed to complete the
prestressing procedure.
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Figure 2. Reinforcement systems and instruments. (a) Reinforcement method; (b) prestressing
tensioning device; (c) microscope for crack measurement.

To investigate the contribution of the CFRP tendons to the improvement in shear
performance, it was essential to capture the strain variations in both the steel and CFRP
tendons during the experiment. Strain gauges were affixed to the stirrups in the shear zones
and the longitudinal steel reinforcements near the mid-span (as shown in Figure 1, with
S1–S4 representing the stirrup strains, L1 representing the longitudinal steel reinforcement
strains, and E1 representing the erecting reinforcement strains) to measure the strain
variations in the steel bars. Additionally, strain gauges were attached to the surface of
each CFRP tendon to capture the strain of the CFRP tendons. Wheel force transducers
(WFT) were placed on the reaction steel plate at the bottom to measure the tension of the
CFRP tendons.

As depicted in Figure 3, a hydraulic jack with a maximum force of 5000 kN was
utilized for two-point symmetric loading of the specimens in static load tests. A load cell
with a range of 1000 kN was positioned between the hydraulic jack and the loading beam
to monitor the load levels. The distance between the two loading points was 600 mm. Load
increments of 20 kN were applied at each stage, and each load level was sustained for
5 min until the beam failed. The loading method guarantees that the damage to the
specimen takes place within the shear zone. Linear variable differential transformers
(LVDT) were positioned under the loading points and mid-span to measure the variations
in the vertical displacement of the specimens. After each loading stage, the diagonal crack
widths were measured using a microscope for crack measurement equipped with an LED
electronic display screen (with an accuracy of 0.02 mm), as shown in Figure 2c.

2.3. Material

To determine the actual material performance, uniaxial compression tests were con-
ducted on square concrete specimens, which had the same pouring time and curing condi-
tions as the beam specimens. Tensile tests were performed on samples of the utilized steel
bars using a universal testing machine.

CFRP tendons consist of high-strength carbon fibers embedded in polymer resin
materials. These carbon fibers were thoroughly impregnated with resin through a resin
infusion system to ensure the optimal wetting of each fiber. Subsequently, the impregnated
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carbon fibers were shaped into the desired tendon shape and dimensions using molding
equipment. The final step involves a curing process of the CFRP tendons, typically con-
ducted under controlled heating conditions. During curing, the resin hardens, effectively
encapsulating the carbon fibers and providing the tendon with the necessary physical and
chemical properties. When conducting strength testing on CFRP tendons, it was necessary
to assemble the anchors beforehand. Once assembled, the CFRP tendons were subjected to
tensile testing using a universal testing machine, as depicted in Figure 4.
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The material properties obtained from the tests are presented in Table 2.

Table 2. Materials.

Material Dimension/mm fc/MPa fy/MPa fu/MPa E/GPa

Concrete 150 × 150 × 150 46.1 - - 33.5
Longitudinal
reinforcement D = 25 - 434 575 200.9

Erecting
reinforcement D = 12 - 420 560 204.4

Stirrup D = 8 - 365 525 208.1
CFRP tendons D = 10 - - 2123 160.5

D represents the diameter; fc is the compressive strength of the concrete; fy and fu are the yield strength and
ultimate strength of the steel or CFRP tendon, respectively; E is the modulus of the elasticity of the material.
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3. Results and Analysis
3.1. Results

The tests utilized two-point symmetric loading, but due to an error during the field
operation, only one end of the specimen was damaged when it reached the ultimate state.
The test phenomenon discussed in this paper pertains to the damaged end.

The failure mode of CB-0-0 exhibited a typical shear–compression failure: after the
stirrups yielded, the deflection of the specimen rapidly increased until structural fail-
ure, while the longitudinal reinforcement remained in the elastic range. In specimen
CB-0-0, vertical bending cracks emerged in the pure bending zone when loaded to around
80 kN. At a load of 160 kN, the shear zone exhibited the first diagonal crack, which pro-
gressively expanded as the load increased. When the load reached 481 kN, the diagonal
crack expanded rapidly, leading to the failure of the specimen. The final failure pattern is
illustrated in Figure 5a.
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The failure processes of specimens RB-0-0, RB-400-0, and RB-800-0 showed similarities.
Using specimen RB-400-0 as an illustration, vertical bending cracks resembling those
observed in specimen CB-0-0 also emerged at around 80 kN. The first diagonal crack visible
at 260 kN was located at a height between one-half and one-third of the shear span, with an
angle roughly parallel to the line connecting the support and loading points. As the load
increased, several new diagonal cracks appeared successively, and the existing diagonal
cracks extended toward both ends of the support and loading points, resulting in a major
diagonal crack. After the stirrups yielded, the deflection of the specimen continued to
increase even if the load remained constant in the short term. Concrete spalling happened
concomitantly, and the increasing rate in the width of the main diagonal crack and the
tension of the CFRP tendon accelerated. When the specimen collapsed imminently, the
load stopped increasing. Within a brief time, the concrete adjacent to the loading point
in the shear span disintegrated, resulting in the specimen’s failure. Figure 5b shows the
failure situation, in which the CFRP tendons did not fracture and were projected through
diagonal cracks while the anchoring devices remained undamaged.

Prior to performing the static load test, specimen RB-400-0.2 was subjected to a load
of 270 kN before reinforcement, resulting in a diagonal crack measuring 0.2mm in width.
After installing prestressed CFRP tendons, the pre-existing diagonal cracks were completely
sealed. In the static load test, the pre-existing diagonal cracks started to expand slowly
from the first loading level. When the diagonal crack width measured 0.2 mm again,
the load reached 320 kN, representing an 18.5% increase compared to the state without
reinforcement. This suggests that using prestressed CFRP tendons could limit the growth
of pre-existing diagonal cracks in the specimen. The phenomenon of RB-400-0.2 after the
significant expansion of the diagonal cracks was similar to other reinforced beams.

The experimental results are presented in Table 3. The findings indicate that using
prestressed CFRP tendons for shear reinforcement led to a significant augmentation in
the cracking load, yield load, and ultimate load. The yield loads of RB-0-0, RB-400-0, and
RB-800-0 increased by 20.8%, 38%, and 75%, respectively, compared to CB-0-0. The ultimate
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loads had respective increases of 47.71%, 70.27%, and 87.32%. This phenomenon suggests
that as the prestress level of the CFRP tendons increased, the yield load and ultimate
load of the specimen also increased, leading to improved reinforcement effects. The shear
capacities of specimens RB-400-0 and RB-400-0.2 were similar, suggesting that the initial
damage in the shear zone did not have a substantial effect on the shear capacity.

Table 3. Test results.

Specimen Cracking Load
/kN

Yield Load
/kN

Ultimate Load
/kN

CB-0-0 160 460 481
RB-0-0 220 590 709

RB-400-0 260 660 819
RB-800-0 300 780 901

RB-400-0.2 - 680 810

3.2. Analysis of Load–Vertical Displacement of Loading Points

We obtained the vertical displacement of the loading point at every load level and
then graphed the load–displacement curves for all specimens, as depicted in Figure 6. The
vertical displacement values were obtained by averaging the readings from two LVDTs
positioned at the loading points, corrected in the vertical direction to reduce the influence
of load eccentricity and loading beam deformation. The load–displacement behavior can
be roughly divided into three stages of linear response.
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During Stage I, diagonal cracks did not appear in the shear zone of any specimen, and
the shear stiffness remained constant. The load–displacement curves of all undamaged
specimens coincide, showing the highest shear stiffness.

In Stage II, the shear stiffness of the specimens decreased when diagonal cracks
occurred in the shear zone. The concrete’s contribution to the shear strength no longer
increased, while both stirrups and CFRP tendons started to significantly contribute to the
shear capacity. Comparing CB-0-0 with RB-0-0, it is evident that the reinforced beams
exhibited higher shear stiffness, a result indicating the additional stiffness provided by
the CFRP tendons. Upon comparing the curves of RB-0-0, RB-400-0, and RB-800-0, it is
noted that their shear stiffness in Stage II was similar. However, the load at which diagonal
cracking occurred—termed the “change point”—rose with increased prestress, enhancing
the overall stiffness of specimens under identical loads. Therefore, the enhancement in
shear stiffness due to the CFRP tendons was positively correlated with the level of prestress.
Comparing RB-400-0 to RB-400-0.2 reveals that the pre-existing diagonal cracks significantly
reduced the shear stiffness before reaching the yield load, but did not markedly change the
yield load itself or the displacement at the loading points. This suggests that the pre-cracks
had minimal impact on the shear capacity.
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Upon entering Stage III, the stirrups in the shear zone yielded, leading to a further
decrease in the shear stiffness, quicker expansion of the diagonal cracks, and a more
pronounced change in the displacements at the loading points. In contrast to the immediate
failure observed in CB-0-0 after the stirrups yielded, the reinforced beams maintained
a considerable level of stability, and the failure displacement of the loading point was
considerably greater than in CB-0-0, leading to an enhancement in ductility. This is because
the CFRP tendons that had not reached their ultimate strength could withstand increased
shear. Throughout these stages, the shear stiffness diminished progressively, indicating
a significant correlation between the shear stiffness of the reinforced beams with CFRP
tendons and the cracking state within the shear span.

3.3. Stirrup and CFRP Strain Analysis

As depicted in Figure 7, we used RB-400-0 as an example to introduce strain variations
in the stirrups (S1) and CFRP tendons—both on the same side—before the first diagonal
crack occurred. The strain in the stirrup tended toward 0, suggesting that it was not actively
contributing to the resistance against the shear forces, while the CFRP tendon showed
negligible deformation. Following the emergence of the diagonal crack, the growth rates of
the strains in both the stirrups and the CFRP tendons increased. The yielding of the stirrup
led to a further increase in the strain rate of the CFRP tendons. Close to the ultimate load,
the slope of the load–strain curve for the CFRP tendon approaches zero.
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Figure 8a depicts the load–strain curves for stirrup S1 in all specimens. It can be
seen that at loads greater than the cracking load for CB-0-0, the strain in the reinforced
beams’ stirrups significantly was reduced compared to that in CB-0-0. This suggests that
the CFRP tendons assumed the portion of the shear force that would initially be carried
by the stirrups. The stirrup S1 in beam CB reached the yield state with a load of 424 kN.
Compared to the CB beam’s stirrup S1, which yielded at a load of 424 kN, the stirrups
S1 in the reinforced beams RB-0-0, RB-400-0, and RB-800-0 yielded at loads of 544 kN,
624 kN, and 760 kN, respectively—increases of 38%, 47%, and 79%. Therefore, the CFRP
tendons effectively alleviated the stress on the stirrups, thereby decelerating the increase
in the stirrup strain. In addition, the higher the level of prestress, the more significant the
reinforcement effect.
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Figure 8b depicts the load–strain curves for the CFRP tendons in all reinforced beams.
In specimen RB-400-0.2, the stirrup’s strain rate was considerably higher than that in
the other reinforced beams before the diagonal crack formed. Furthermore, within the
same reinforced beam, the strain growth rate of both the CFRP tendons and the stirrups
varied similarly in terms of load. This indicates that the CFRP tendons always worked in
conjunction with the stirrups, jointly contributing to the increase in shear capacity.

Table 4 lists the tensile strength exerted by the CFRP tendons in the static load testing.
Under the conditions of prestressing, the CFRP tendon’s utilization of the tensile strength
increased by over 20% with the ultimate load. When the specimen completely failed, the
average maximum utilization of the CFRP tendon’s strength was 87%. This demonstrates
the effective utilization of CFRP tendons’ strength.

Table 4. Tensile strength exerted by CFRP tendons.

Specimen σf,p/MPa σf,y/MPa σf,y/ff σf,u/MPa σf,u/ff σf,max/MPa σf,max/ff

RB-0-0 0 414 19.5% 997 47.0% 1755 82.7%
RB-400-0 459 875 41.2% 1678 79.0% 1976 93.1%

PRB-800-0 766 1286 60.6% 1443 68.0% 1845 86.9%
PRB-400-0.2 409 901 42.4% 1558 73.4% 1821 85.8%

σf ,p is the prestressing of CFRP reinforcement; σf ,y and σf ,u represent the stress of CFRP reinforcement at the yield
load and ultimate load, respectively; σf ,max is the maximum tensile strength exerted by CFRP reinforcement; f f is
the tensile strength of CFRP reinforcement.

3.4. Analysis of Crack Growth

Figure 9 illustrates the width of the diagonal cracks at various load levels. The
results indicate that applying CFRP tendon shear reinforcement to undamaged specimens
significantly increased the cracking load and delayed the onset of inclined crack formation.
As the level of prestress increased, the cracking load of the diagonal cracks also increased,
demonstrating that the prestressed CFRP tendons provided a reserve of shear capacity for
the specimen.

Figure 10 shows the measured maximum diagonal crack widths of specimens CB-0-0,
RB-0-0, RB-400-0, and RB-800-0 at a load of 300 kN, as displayed on the LED electronic
screen of the microscope for crack measurement. These readings correspond to points A,
B, C, and D in Figure 8. A significant restrictive effect of CFRP tendons on the diagonal
crack width development was observed. Moreover, under the same load, larger prestress
resulted in smaller diagonal crack widths. The statistics presented in Table 5 provide addi-
tional confirmation of this theory by presenting crack widths of 0.2 mm, 0.3 mm, 0.5 mm,
and 0.8 mm.
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Table 5. Tensile strength exerted by CFRP tendons.

Specimen P0.2 P0.3 P0.5 P0.8

CB-0-0 275 300 322 395
RB-0-0 308 328 380 480

RB-400-0 366 400 495 572
RB-800-0 420 460 534 650

RB-400-0.2 320 380 466 568
P0.2, P0.3, P0.5, P0.8 are the corresponding load values to the crack widths of 0.2 mm, 0.3 mm, 0.5 mm,
0.8 mm, respectively.

Comparing the data for RB-400-0 and RB-400-0.2 in Table 5, it can be inferred that with
CFRP tendons at the same prestress level, the impact of initial damage in the shear zone
on crack width gradually diminished as the load increased. When the crack widths were
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relatively large, the impact of the initial damage on the crack resistance of the specimens
can be negligible.

4. Calculation

This section introduces a shear design model to predict the shear capacity of beams
reinforced with externally unbonded prestressed CFRP tendons. Based on the analysis of
the test results, when the stirrups yield, there is a significant decrease in the shear stiffness,
posing challenges for accurately predicting the shear deformation. This complicates the
accurate calculation of incremental strains on CFRP tendons. Therefore, this study empha-
sizes the shear capacity at the point of the stirrups yielding, aligning with the yielding load
of the specimens.

The truss–arch model [29] is commonly used to predict the shear capacities for rein-
forced concrete beams. Since the load-bearing capacity provided by externally unbonded
CFRP is not constrained by the concrete beam, a separate calculation is often employed. As
shown in Figure 11, the shear capacity of the oblique section in the strengthened concrete
beam can be expressed as the sum of the capacities of the concrete, the stirrups, and the
CFRP tendons:

Vy = Vc + Vs + Vf , (1)

where Vy is the shear strength at the beam yield; Vc is the shear strength provided by the
concrete; Vs is the shear strength provided by the stirrups; Vf is the shear strength provided
by the CFRP tendons.
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4.1. Initial Beam

The shear strength of the original beam comprises the strength of the concrete (Vc) and
the stirrups (Vs). These values can be calculated by referencing existing standards. This
study refers to the Chinese standard GB50010-2010, entitled “Code for Design of Concrete
Structures” [30]. The equation employed for shear capacity is as follows:

Vc = αcv ftbh0, (2)

αcv =
1.75

λ + 1
, (3)

Vs =
Asv fyvh0

s
cot θ, (4)

where αcv is the concrete shear capacity factor, which is valued by Equation (3); λ is the
shear span ratio; ft is the tensile strength of concrete; b and h0 are the width and effective
depth of the concrete beam, respectively; Asv is the total cross-sectional area of all stirrup
legs in the oblique section; fyv is the yield strength of stirrups; s is the stirrup spacing; θ is
the angle of the diagonal cracks.
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4.2. Reinforcement of CFRP Tendon

The axial force of the CFRP tendons is transmitted to the reinforced concrete beam
through reaction steel plates. When the reaction steel plates are stably and firmly fixed to
the reinforced concrete beams, the contribution to the shear strength of the CFRP tendons
is as follows:

Vf = n f σf A f sin β, (5)

where n f is the number of CFRP tendons that are projected through diagonal cracks in
the shear span; σf is the effective stress of the CFRP tendons; A f is the area of a single
CFRP tendon.

The effective stress of CFRP tendons can be determined as the sum of the prestress
and the stress increment. The stress increment can be calculated by the strain increment:

σf = σp + ∆σf , (6)

∆σf = E f ∆ε f , (7)

where σp is the prestress of the CFRP tendons; ∆σf is the stress increment of the CFRP
tendons; E f is the elastic modulus of the CFRP tendons; ∆ε f is the strain increment of the
CFRP tendons.

The deformation of the CFRP tendon in the strengthened beam equals the relative
displacement between the two reaction steel plates of the CFRP tendon. To determine the
vertical displacement of the two reaction steel plates, it is necessary to calculate the shear
deformation of the beam. The model depicted in Figure 12 is constructed based on the
shear deformation computation approach presented by Pan et al. [31]. The deformation of
the CFRP tendons is represented as the relative deformation between the anchoring ends
A and B of the CFRP tendons after loading:

∆ f = (δvB − δvA) sin β, (8)

where δvA and δvB are the vertical deformations at the anchoring ends A and B of the CFRP
tendons, respectively.
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The vertical deformation of the truss was induced by the compression of the inclined
concrete struts and the elongation of the stirrups. The length of the oblique concrete
column is h0/ sin θ, and the width is h0 cos θ. Under the action of the shear force, the
vertical deformations of the concrete and the stirrups in the shear zone are expressed
as follows:

δvc =
∆c

sin θ0
= εc

h0

sin2 θ0
=

V
Ecb sin3 θ0 cos θ0

, (9)

δvs =
Vh0

Es Asv
, (10)
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where δvc and δvs are the vertical deformation values induced by the inclined concrete
struts and stirrups, respectively; ∆c is the shortening of the inclined concrete struts; εc is the
compressive strain of the inclined concrete struts; Ec and Es are the elastic modulus values
of the concrete and stirrups, respectively; V is the shear force acting on the beam.

After reinforcement, the stirrups and CFRP tendons collaborate to establish the overall
stiffness. When calculating the overall stiffness, it is essential to unify the two materials
into a common material. This involves transforming the CFRP tendons into equivalent-
area stirrups. Prestressing enables the CFRP tendons to reserve shear force, consequently
mitigating the deformation of the stirrups. The shear deformation caused by the stirrups in
the beam with CFRP tendons is expressed as follows:

δ′vs =

(
V − n f σp A f sin β

)
h0

Es

(
ρvbh0 cot θ + k f−sn f A f sin β

) , (11)

k f−s =
E f

Es
, (12)

where δ′vs is the vertical deformation caused by the stirrups after reinforcement; is the
stirrup ratio; k f−s is the equivalent conversion coefficient for transforming CFRP tendons
into stirrups, representing the ratio of their elastic modulus; E f is the elastic modulus of
the CFRP tendons.

The vertical deformation is proportional to the distance from the bearing chair in
the shear zone in the model. The vertical displacement at the restrained end of the CFRP
tendon can be determined and then substituted into Equation (8):

δvA =
xA
a

δvc, (13)

δvB =
xB
a
(
δvc + δ′vs

)
, (14)

∆ f =
[ xB

a
(
δvc + δ′vs

)
− xA

a
δvc

]
sin β, (15)

where xA and xB are the horizontal distances from the bearing chair to the anchoring ends
A and B, respectively; a is the length of the shear zone.

The fixation of a CFRP tendon in this reinforcement method requires coordination with
two anchorages, and the CFRP tendon is secured to the anchorages by friction. Referring to
the internal force of the CFRP tendon in the anchorages proposed by Ping [32], as shown
in Figure 13, the axial elongation length of the CFRP tendon in the anchorages under the
action of the axial tensile force is given by the following equation:

∆l f ,a =
∫ la

0

FN
A f

dl =
1
2

la·
FN
A f

, (16)

where ∆l f ,a is the axial elongation length of the CFRP tendon in the anchorage section; la is
the length of the CFRP tendon in the anchorage section; FN is the axial tension force of the
CFRP tendons. Thus, the calculated length of the CFRP tendon in the anchorage section is
1/2la. The calculated length of the CFRP tendon (l f ) and the strain increment of the CFRP
tendon (∆ε f ) are given by the following equations:

l f = lAB − la = h/ sin β − la, (17)

∆ε f =
∆ f
l f

σy,e/σy,p
. (18)
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4.3. Calculation of Shear Capacity

When calculating the shear capacity, under the action of the initial shear force, shear
deformation occurs in the beam, leading to an increase in the stress of the CFRP tendons.
This increases the contribution of the CFRP tendons, resulting in an elevated shear capacity
of the beam. To predict the shear strength of a beam reinforced with externally unbonded
prestressed CFRP tendons, it is necessary to execute an iterative program, as depicted in
Figure 14. The shear capacity is deemed to have reached the limit of yielding when further
iterations do not yield an increase in shear capacity.
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In engineering, the prestress level of CFRP tendons generally does not exceed 50% of
their tensile strength, commonly less than 1000 MPa [33]. When the inclination angle is 45◦,
after iterative calculations, the maximum effective stress of the CFRP tendon under the
test conditions in this study was determined to be 1421 MPa. Therefore, the tension in the
CFRP tendons typically remained below their maximum tensile strength, and fracture did
not occur. The iterative calculations did not account for the fracture of the CFRP tendons.
The discrepancies between the predicted results and the experimental results are within
10%, as shown in Table 6 for comparison.

Table 6. Comparison of experimental and predicted values.

Specimen σf,e σf,p ∆σ
∆σ
σf,e

Vy,e Vy,p ∆V
∆V
Vy,e

CB-0-0 - - - - 230 245.3 15.3 6.7%
RB-0-0 414 396.6 17.4 4.2% 290 289.3 −0.7 −0.2%

RB-400-0 875 866.8 8.2 0.9% 330 341.5 11.5 3.5%
RB-800-0 1286 1181 105 8.2% 390 376.5 −13.5 −3.5%

RB-400-0.2 901 815 86 9.5% 340 335.8 −4.2 −1.2%

The subscripts “e” and “p” represent the results of experiments and predictions, respectively.
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5. Conclusions

This article introduces a methodology for improving the shear performance of re-
inforced concrete beams by employing externally unbonded prestressed CFRP tendons.
Through comparative model experiments, we explored the influence of prestressed CFRP
tendon reinforcement on the shear capacities, failure modes, and the developments of
diagonal cracks in concrete beams. The mechanism of this reinforcement method was
analyzed, leading to the following conclusions:

1. The CFRP tendons operated collaboratively with the stirrups after the occurrence of
diagonal cracks, thereby diminishing the strain on the stirrups and delaying their yield.
After the stirrups yielded, the CFRP tendons assumed the heightened shear force,
enhancing the ultimate shear capacity and the ductility of the beams. Prestressing
enhanced the efficacy of the CFRP tendons, with a higher prestress resulting in
better reinforcement effects. In the experiment, the increment in the yield load was
minimal in the absence of prestress, registering a growth rate of 28%. The most
substantial increase was observed at 800 MPa of prestress, attaining a growth rate
of 70%. Similarly, the increase in the ultimate load was minimal without prestress,
exhibiting a growth rate of 47% and peaking at 800 MPa of prestress, registering a
growth rate of 87%.

2. The initial damage within the shear zone diminished the early shear stiffness and
augmented the early widths of diagonal cracks, with this effect gradually diminishing
as the applied load increased. The initial damage within the shear span region
demonstrated no significant impact on the shear capacity.

3. The CFRP tendons, as shear reinforcement, significantly increased the cracking load,
delayed the initiation of diagonal cracks, and restricted the development of crack
widths. In the experiments, the cracking load of the reinforced beams increased with
higher levels of prestress. Furthermore, under the same loading conditions, specimens
with higher prestress in the CFRP tendons exhibited smaller diagonal crack widths.
Prestress provided a reserve of shear capacity, with higher prestress resulting in higher
cracking loads and smaller crack widths.

4. External unbonded prestressed CFRP tendon reinforcement can fully utilize the tensile
strength of the CFRP tendons. Without prestress, the CFRP tendons could exhibit
only 47% of their strength. However, with prestress, the CFRP tendons could exhibit
at least 68% of their strength, resulting in a more significant improvement under
ultimate loads compared to instances without prestress.

5. The deformation of the CFRP tendon in the reinforced beam was equal to the relative
displacement between the two reaction steel plates and was directly affected by
shear deformation of the beam. Based on this connection, a calculation method for
externally unbonded prestressed CFRP tendon reinforcement for the shear capacity
of concrete beams is proposed. The predicted results show an error of less than 10%
when compared to the experimental results, providing a relatively accurate prediction
of the shear capacity.

The above conclusions will be substantiated through additional testing and finite
element simulations to enhance the reliability of the test results and attain sufficient design
values, considering a broader range of variability. However, further experimental work
and theoretical research are required to establish more rational and accurate predictive
models, encompassing various concrete strengths, stirrup spacing, and types of FRP.
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