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Abstract: Sodium-ion batteries (SIBs) are considered a potential replacement for lithium-ion batteries
in the area of low-cost large-scale energy storage. Due to its low operating voltage, high capacity,
non-toxicity and low production cost, titanium dioxide is now among the anode materials under
investigation and shows the most promise. However, its poor electrical conductivity is one of the
main reasons limiting its large-scale application. Herein, we designed a ruthenium-doped anatase-
type VTi2.6O7.2 ultrafine nanocrystal (Ru-VTO). As the anode of SIBs, Ru-VTO delivers a high specific
capacity of 297 mAh g−1 at 50 mA g−1, a long cycle life of 2000 cycles and a high rate capability
(104 mAh g−1 at 1000 mA g−1). The excellent performance may be related to the solid-solution
interatomic interactions and the enhanced conductivity after ruthenium doping. These studies
demonstrate the potential of Ru-VTO as an anode material for advanced SIBs.

Keywords: titanium-based material; ru doping; high conductivity; anode; sodium-ion battery

1. Introduction

With severe global energy and environmental problems, it is vitally necessary to build
ecologically friendly and effective energy storage devices [1,2]. Due to their plentiful reserves
and low prices, sodium-ion batteries (SIBs) have received a lot of attention as a substitute for
lithium-ion batteries in recent years [3–8]. Although the electrochemical reaction mechanism
of the two battery electrode materials is similar, applying already-developed LIB electrode
materials to SIBs is not always effective due to the large radius of Na+ ions (0.102 nm for
Na+ and 0.076 nm for Li+) [9–11]. Therefore, the development of high-performance anode
materials for SIBs is an important task and the key to large-scale applications. Among anode
materials for SIBs, embedded/detached materials, such as hard carbon [12], molybdenum-
based materials [13] and titanium-based materials [14], are considered strong contenders for
SIB anode materials due to their stable structural properties, excellent kinetic characteristics
and a suitable sodium ion insertion potential [15,16].

TiO2 has attracted significant scientific interest as an enhanced salt storage system
because of its high theoretical capacity (335 mAh g−1), acceptable insertion potential (0.7 V),
negligible volume expansion and low cost [17–22]. However, the low intrinsic electron
conductivity and application of SIBs are still constrained by ionic conductivity [23–25].
Currently, several solutions have been presented to improve the electrical conductivity
of TiO2 anodes in conjunction with rigorous structural designs, so as to attain excellent
sodium storage performance.

The incorporation of the guest element into the matrix to form a solid solution can
effectively lower the energy potential barrier for sodium ion diffusion, increasing conduc-
tivity. In addition, the composition of solid solutions can be more easily adjusted, and their
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easy adjustment properties further lead to a diversity of active materials. Previous research
has shown that, with the development of substituted solid solutions, electrochemical per-
formance can be effectively enhanced by altering interatomic interactions [26,27]. Sheng
et al. introduced vanadium with a high electrochemical activity into the TiO2 lattice to form
substituted solid solutions with titanium, and when applied to a mixed magnesium–lithium
battery a capacity of 265.2 mAh g−1 was provided at the current density of 50 mA g−1 with
a good performance [28]. However, solid solutions still suffer from low conductivity when
used as anode materials for SIBs. Numerous investigations have demonstrated that het-
eroatom doping has significant potential benefits as a very effective means to improve the
electrochemical properties of metal oxides. The electrical conductivity of TiO2 is increased
through doping by redistributing charge around the doping sites [29–32]. For example,
M. M. S. Sanad reported on mesoporous TiO2 introduced by noble metal nanoparticles
with enhanced electrical conductivity [33]. Guo et al. found that, through Ru doping,
the resistance can be effectively reduced while increasing the electron transfer rate, and
meanwhile the material structural stability is improved [34]. Thus, enhancing the electronic
conductivity of solid solutions through Ru doping can be attempted.

Herein, a new-type ruthenium-doped anatase type VTi2.6O7.2 ultrafine nanocrystal
(Ru-VTO) anode material was designed and prepared by a straightforward hydrothermal
synthesis procedure, followed by annealing, for the first time. By incorporating vanadium
into the TiO2 lattice to form a replacement solid solution and simultaneously doping the
above solution with ruthenium, the high electrochemical activity of the solid solution is
ensured while maintaining its structural stability. The well-designed Ru-VTO exhibits an
excellent capacity of 297 mAh g−1, as well as a high rate capability and cycling stability
(104 mAh g−1 at 1000 mA g−1 after 2000 cycles) when used as SIB anode material.

2. Materials and Methods
2.1. Sample Preparation

There was no additional purification required because all chemicals and reagents were
analytical grade. V(IV)O(acac)2 (99%), K2TiO(C2O4)2 (99%), ruthenium chloride (RuCl3,
99%) and hydrogen peroxide solution (30%) were purchased from Aladdin (Shanghai,
China) and Macklin (Shanghai, China).

Ru-VTO was synthesized as follows: in 70 mL of deionized water, 2 mmol of V(IV)O(acac)2
blue-green crystal and 2 mmol of K2TiO(C2O4)2 white crystalline powder were dissolved
by vigorously swirling for about 30 min. Then, to the aforementioned solution, ruthenium
chloride solution (0.6 mL, 0.1 mol L−1) and hydrogen peroxide solution (5 mL, 30%) were
added. The resultant solution was then put into a stainless steel autoclave lined with Teflon,
which was heated to 200 °C for 10 h. The products were regularly rinsed in ethanol and
deionized water, and then dried for 12 h at 70 °C in a vacuum. The as-prepared samples
were annealed at 450 °C for 3 h in an Ar atmosphere.

The samples prepared through the hydrothermal method followed by annealing with
RuCl3 are identified as Ru-VTO, and those without RuCl3 after annealing are identified
as VTO.

2.2. Electrochemical Measurements

The half 2016 coin-type cells with sodium metal as the counter electrode were used to
investigate the electrochemical performance. Working electrodes were created by combin-
ing active components (VTO and Ru-VTO), acetylene black, polyvinylidene fluoride and
solvent N-methyl-2-pyrrolidinone at a weight ratio of 7:2:1. The active mass loading range
of electrodes is from 1.4 to 1.6 mg cm2. A Whatman glass fiber (GF/A) was employed as
the separator, and meanwhile propylene carbonate, fluoroethylene carbonate (95:5) and
propylene carbonate were all mixed together to form a solution containing 1M NaClO4. In
a LAND CT2001A (Wuhan, China) testing system, galvanostatic charge–discharge experi-
ments were carried out within 0.005–3 V (against Na/Na+). An electrochemical workstation
Autolab PGSTAT 302 (Herisau, Switzerland) was used to acquire cyclic voltammetry (CV)
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curves and electrochemical impedance spectra (EIS). A GITT test was conducted using
20 mA g−1 current pulses, lasting for a 10 min and a 30 min rest period.

2.3. Characterizations

A Bruker D8 Discover (Billerica, MA, USA) X-ray diffractometer with a planar detector
was used in still mode to capture the XRD signals every 120 s. A JEOL-7100F (Tokyo,
Japan) microscope was used to gather SEM pictures and energy dispersive spectrometer
(EDS) data at an acceleration voltage of 15 kV. An ESCALAB 250Xi (Waltham, MA, USA)
apparatus was used to conduct X-ray photoelectron spectroscopy (XPS).

3. Results

The overall fabrication process of Ru-VTO is briefly illustrated in Figure 1a. First of all,
based on the previous work [28], ruthenium-doped VTi2.6O7.2 precursors were obtained
by adding ruthenium chloride (RuCl3) followed by a hydrothermal reaction. Indirect
evidence of the effective introduction of ruthenium was obtained by observing that the
color of the precursor powder changed from dark green to black-brown following the
ruthenium doping. Figure 1b shows the XRD profiles of VTi2.6O7.2 and Ru-VTO. The
main diffraction peaks of VTO matched well with the standard anatase TiO2 (JCPDS
No. 01-084-1285), which is consistent with the previous report [28], suggesting the pure
phase of VTi2.6O7.2 and that the crystal structure is an anatase structure. The prepared
Ru-VTO crystallized well, exhibiting the standard diffraction peaks of standard anatase
TiO2 with a slightly lower crystallinity compared to that of VTi2.6O7.2, but the diffraction
peaks remained consistent. Additionally, the XRD profile (Figure S2) of the Ru-VTO
precursor was evaluated, and its very poor crystallinity was shown by its very faint peak
intensity. We calculated the crystallite size of Ru-VTO to be 10.66 nm by applying the
Scherrer equation (Equation (S1), see Supplementary Materials) to the XRD profile [35].
The morphology and microstructure of Ru-VTO were characterized through SEM, and as
is seen in Figures 1c and S1a the sample consists of many micrometer blocks with rough
surfaces and a large number of nanoparticles wrapped around them. The SEM of VTO is
seen in Figure S1b. The elemental distribution of Ru-VTO was further observed through
EDS-mapping, and the results revealed that V, Ti, O and Ru were consistently distributed
in the sample (Figures 1d, S12 and S13). According to EDS data, Ru has been effectively
doped into the VTO sample.

The redox state of V, Ti and Ru in the Ru-VTO sample was investigated by measuring
XPS. In Figure 2a, the signal of Ru was observed in the Ru-VTO sample and the successful
incorporation of Ru into VTO was further demonstrated. The peaks at 517.54 eV and
524.74 eV in the V 2p nuclear level spectrum (Figure 2b) were connected to V 2p3/2 and
V 2p1/2 of V4+, respectively [36,37]. The peaks at 458.92 eV and 467.72 eV in the Ti 2p
nuclear level spectrum (Figure 2c) were Ti 2p3/2 and Ti 2p1/2 of Ti4+, respectively [38,39].
The existence of Ru4+ was attributed to the presence of the Ru 3d5/2 band at 281.0 eV
(Figure 2d) [40]. The XPS spectra of O 1s for TiO2, VTO and Ru-VTO are shown in
Figure S11. Based on an elemental content analysis of XPS (Table S1), it could be concluded
that the atomic content of Ru was 1.54%.
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EDS-mapping of Ru-VTO.

Cyclic voltammetry was used to examine the sodium storage behavior of Ru-VTO
(CV). The strong cathodic peaks at about 1.1 V and 1.8 V disappeared after the initial scan,
as is shown in Figure 3a, which was ascribed to solid electrolyte interphase (SEI) layer de-
velopment and irreversible sodium intercalation [41,42]. A couple of reduction/oxidation
peaks (0.913/0.690 V) with a peak deviation (∆E) of 0.223 V were visible following the
preliminary scan of the almost-overlapping CV curves of Ru-VTO, which contrasted well
with that of VTO (∆E: 0.424 V) (Figure S6). The enhanced electronic conductivity and diffu-
sion kinetics brought about through Ru-doping were likely responsible for the decreased
overpotential of Ru-VTO. Figure 3b shows the first charge/discharge curves of Ru-VTO
and VTO at 50 mA g−1. Galvanostatic charge and discharge voltage profiles of Ru-VTO
and VTO under different current densities are seen in Figure S5a,b. The SEI layers and
certain secondary reactions (irreversible reactions) between electrolyte and electrodes were
observed to coincide with a bright outflow plateau with a slope extending from 1.31 to
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0.9 V [43–46]. The original discharge/charge ratio capacity of Ru-VTO and VTO anodes
was 602/303 and 600/244 mAh g−1, corresponding to the initial Coulomb efficiency of
50.3% and 40.6%. The irreversible breakdown of the electrolyte, the restricted reversibility
of the sodalization/desodalization process and other secondary effects all contributed to
the initial capacity reduction. Apparently, Ru-VTO delivered a higher reversible capacity
and initial Coulomb efficiency than the VTO sample, which was mostly ascribed to the
enhanced electronic conductivity and diffusion kinetics brought forth via ruthenium dop-
ing. According to the cycling performance of Ru-VTO, VTO and pure TiO2 at 50 mA g−1

(Figures 3c and S8), Ru-VTO had a higher discharge capacity and more excellent cycling
stability, while VTO and pure TiO2 exhibited poor cycling performance. It can be found
that the Ru-VTO has the highest capacity at 3% ruthenium content and excellent cycling
stability (Figure S9). Therefore, Ru doping was particularly successful in enhancing the
electrochemical characteristics of VTO nanoparticles. Figure 3d shows that the current
density gradually increases with the charge/discharge curves at rate stages 50, 100, 200, 500,
1000, 2000 and 5000 mA g−1. The charge/discharge curve of Ru-VTO remains stable, with
the charge capacity decreasing from 297 mAh g−1 to 237, 194, 166, 138 and 83 mAh g−1,
respectively. Additionally, the capacity returned to 240 mAh g−1 after a protracted period
of high-speed cycling when the current density was turned to 50 mA g−1, which unequiv-
ocally proved that the Ru-VTO sample had an exceptional rate capacity. Ru-VTO was
further subjected to cycling at a current density of 1000 mA g−1 (Figure 3e), whose capacity
remained at 104 mAh g−1 even after 2000 cycles. Moreover, the Coulomb efficiency was
close to 100% in each cycle.
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performance at a different density, and (e) long-term cycling stability at 1000 mA g−1 for Ru-VTO
and VTO.

Based on the equation i = avb [47], the surface type (capacitive contribution) of the
electrochemical behavior (i) is estimated with the current (v) as a function of the scan
rate. The log(i)-log(v) curve can be utilized to determine the value of b. In more specific
terms, b = 1 implies that the storage of Na+ is totally dominated during the capacitive
process, whereas b = 0.5 suggests that the storage of Na+ is completely dominated during
the diffusive process.

As shown in Figures 4a and S3b, the anode peak shift of Ru-VTO is much smaller than
that of the original VTO as the scan rate increases, demonstrating a notable improvement
in the Na ion diffusion. The higher b value of Ru-VTO (0.89/0.83) is determined by
the cathode/anode, indicating a more favorable surface capacitance domination of Ru-
VTO (Figure 4b). In addition, the behavior of the capacitive element was examined by
Dunn’s approach. Diffusion-dominated charges and capacitive-dominated charges can
be separated from the overall charge storage volume at a certain rate (0.1–1 mV s−1) in
accordance with the equation i(v) = k1v + k2v

1
2 [48,49]. With a capacitive contribution of

88.4% at 0.8 mV s−1 (shaded region), Ru-VTO outperformed VTO, which contributed 80.1%
of the overall capacity (Figure S3a), explaining the fundamental reason for the outstanding
rate performance of Ru-VTO (Figure 4c). The capacitive contribution of Ru-VTO became
increasingly clear as the scan rate rose, peaking at 93% when the scan rate was increased to
1 mV s−1, as seen in Figure 4d–e. Such an excellent capacitive performance of Ru-VTO was
mainly related to the improved conductivity after Ru doping. It can enhance the storage
of the surface charge and effectively improve the fast pseudo-capacitance process at the
interface between Ru-VTO and electrolyte. The electrochemical impedance spectra (EIS)
curves of Ru-VTO and VTO are shown in Figure S7; Ru-VTO electrodes have a lower
charge transfer resistance (845Ω) than VTO electrodes (1488Ω). The Rct and charge transfer
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resistance of Ru-VTO were decreased compared with those of VTO, which was related to
the augmentation in diffusion dynamics and electrical conductivity caused by Ru-doping.
The EIS of the cells after the galvanostatic tests is shown in Figure S10. The diffusion
kinetics in Ru-VTO and VTO were studied using a constant-flow intermittent titration
technique (GITT). The Na+ diffusion coefficient (DGITT) can be calculated according to this

equation: DGITT = 4
πτ

(
mBVM
MBS

)2( ∆Es
∆Eτ

)2
[50]. The potential difference during the constant

current pulse is denoted as ∆Eτ, and the potential difference during the open circuit is
denoted as ∆Es. DGITT (cm2 s−1) is the Na+ diffusion rate, and mB, MB, VM, τ, and S
are mass, molar mass, molar volume, constant current pulse time and electrode area,
respectively. The results of the GITT test are shown in Figure 4f; the average diffusion rate
of Na+ in the Ru-VTO electrode during discharge is 5.9 × 10−9 cm2 s−1, while VTO is only
1.7 × 10−9 cm2 s−1 and Ru-VTO delivers a theoretical discharge capacity of 343 mAh g−1,
while VTO is only 256 mAh g−1 (Figure S4a,b). Ru-VTO demonstrated a higher diffusion
coefficient than VTO, further demonstrating the enhanced electrochemical reaction kinetics
brought on by Ru-doping.
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4. Conclusions

In summary, based on a straightforward hydrothermal synthesis procedure and subse-
quent heat treatments, a ruthenium-doped anatase-type VTi2.6O7.2 ultrafine nanocrystal
was synthesized. The electronic conductivity of VTO can be enhance through Ru-doping,
which greatly facilitates the electronic/ionic transport mechanism during the sodium stor-
age process. As an anode material for sodium-ion batteries, Ru-VTO provides a reversible
capacity of up to 297 mAh g−1 at 50 mA g−1 and maintains a capacity of 104 mAh g−1

when cycled at a high current density of 1000 mA g−1 for 2000 cycles, exhibiting an ex-
cellent rate cycling performance compared with VTO (51 mAh g−1 after 900 cycles). The
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great potential of Ru-VTO electrodes for SIB applications is described in this study, which
provides directions for the development of new excellent-performance electrode materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13030490/s1, Figure S1: SEM images of (a) Ru-VTO and
(b) VTO; Figure S2: XRD pattern of Ru-VTO precursor; Figure S3: (a) The contribution ratio of the
capacitive capacities at 0.8 mV s−1 for VTO. (b) CV curves of VTO at scan rates range from 0.1 to
1.0 mV s−1; Figure S4: Potential response during GITT measurements at 20 mA g−1 for (a) Ru-VTO
and (b) VTO; Figure S5: Galvanostatic charge and discharge voltage profiles of (a) Ru-VTO and
(b) VTO under different current densities; Figure S6: CV test result for the initial three cycles of
Ru-VTO at 0.1 mV s−1; Figure S7: EIS curves of Ru-VTO and VTO; Figure S8: Cycling performance
at 50 mA g−1 for TiO2, VTO and Ru-VTO; Figure S9: Cycling performance of Ru-doped samples
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