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Abstract: As the backup power supply of power plants and substations, valve-regulated lead-acid
(VRLA) batteries are the last safety guarantee for the safe and reliable operation of power systems,
and the batteries’ status of health (SOH) directly affects the stability and safety of power system
equipment. In recent years, serious safety accidents have often occurred due to aging and failure of
VRLA batteries, so it is urgent to accurately evaluate the health status of batteries. Accurate estimation
of battery SOH is conducive to real-time monitoring of single-battery health information, providing a
reliable guarantee for fault diagnosis and improving the overall life and economic performance of
the battery pack. In this paper, first, the floating charging operation characteristics and aging failure
mechanism of a VRLA battery are summarized. Then, the definition and estimation methods of
battery SOH are reviewed, including an experimental method, model method, data-driven method
and fusion method. The advantages and disadvantages of various methods and their application
conditions are analyzed. Finally, for a future big data power system backup power application
scenario, the existing problems and development prospects of battery health state estimation are
summarized and prospected.

Keywords: backup power supply; VRLA batteries; aging failure mechanism; state of health; evaluation
methods

1. Introduction

Direct current (DC) power supply systems play a very important role in power plants
and substations. VRLA batteries are widely used as backup power to ensure normal opera-
tion of power plants and substations. Once alternating current (AC) suddenly loses power,
the VRLA batteries immediately start to supply power to important DC load equipment,
such as relay control and protection devices, automation devices, opening and closing
mechanisms of high-voltage circuit breakers, communication equipment, emergency light-
ing lamps, etc. [1,2]. The abnormal failure of a VRLA battery as the backup power supply
for a DC power supply system, seriously affects the safe operations of the DC power supply
system. Therefore, the battery is considered the most core component of the DC power
supply system, and it is an important guarantee for the safe and stable operation of power
plants and substation systems [3].

In recent years, major accidents have occurred in power plants and substations due
to VRLA battery failures, which has caused considerable security risks to the safe and
stable operation of power grids. In 2013, AC an circuit was out of power due to a lightning
strike at a substation of a power grid company in China. Due to the failure of the battery
pack, some circuit breaker switches could not work normally, which eventually led to a
serious accident of voltage loss in the whole substation. Cause analysis revealed that some
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negative plate straps of VRLA batteries in the substation were seriously corroded. When
faced with heavy load impact, the output voltage of the battery pack dropped considerably
and therefore could not meet the requirement of the minimum voltage of switching action.
As a result, some switches could not work normally, and the breakdown could not be
isolated in time, which eventually led to total substation voltage loss [4]. In June 2016, a
fire broke out due to equipment failure, and the lead-acid battery failed to supply power
in time due to failure, resulting in an accident of voltage loss in a 330 kV substation in the
western suburb of Xi’an, China [4]. Similar serious accidents due to VRLA failure have also
occurred in substations in other areas [5,6].

Therefore, analysis of the causes of battery failure and estimation and prediction of
the state of health (SOH) of batteries are helpful to identify malfunctioning batteries in a
timely manner and make maintenance plans. This is of great significance for prolonging
the service life of the battery, reducing the maintenance cost of the system and ensuring the
safe operation of the power system.

Many studies have been conducted on the SOH of lithium-ion power battery [7], but
few comprehensive reviews have been conducted on the SOH of batteries for standby
power supply [8]. Cuma et al. [9] conducted a comprehensive review of various estimation
strategies used in hybrid and battery electric vehicles, focusing on battery fault diagnosis,
state of charge (SOC) and state of health (SOH) estimation. However, in this study included
few applications involving lead-acid batteries. Waltari et al. [10] introduced fault classifica-
tion and state-of-health monitoring methods for lead-acid batteries. Battery failures are
classified into three categories: high impedance, low impedance (short circuit) and dete-
rioration of capacity. Battery health monitoring methods including string-voltage-based,
cell-voltage-based, current-based and impedance-based methods were reviewed. However,
the article was published in 1999, and the reviewed methods of battery health monitoring
are simple and outdated. Ouyang et al. [11] reviewed capacity forecasting technology for
VRLA batteries. They divided the capacity forecasting methods into open-circuit voltage
measuring, Coulomb counting and internal resistance methods. However, the study did
not highlight the influencing factors of SOH.

In view of the lack of summary of the estimation approaches to estimate SOH for
VRLA batteries for standby power supply, a detailed and up-to-date summary is necessary.
In this paper, the research progress of the decay mechanism of VRLA batteries and the
method of estimating SOH are reviewed. First, we introduce the working mode and
failure mechanism of the standby VRLA floating charge mode. Then, we describe the
principles of SOH estimation methods, practical application cases and the advantages and
disadvantages of these estimation methods. This review can provide a decision-making
basis for the operation, maintenance and scientific management of standby power supply.

The remainder of this paper is arranged as follows: Section 2 summarizes the floating
charge operation characteristics and failure mechanism of backup VRLA batteries. Section 3
introduces the definition of battery SOH. Section 4 introduces the classification and charac-
teristics of different SOH estimation methods for VRLA batteries. Finally, in Section 5, the
conclusions are summarized.

2. Operation Characteristics and Failure Mechanism of VRLA Floating Charge
2.1. Operating Characteristics of Standby VRLA

The operation mode of a valve-regulated lead-acid battery for standby power supply
includes initial charging before operation, floating charging in normal operation, balanced
charging every three months, emergency power supply in case of AC interruption, constant
current and constant voltage charging after AC recovery, etc., as shown in Figure 1. VRLA
is in the cycle mode of floating charge and equalizing charge for a long time. Once AC
power is lost, VRLA is used as the standby DC emergency power supply. After the AC
power returns to normal, the charger charges the battery with constant current and voltage.
Then, VRLA switches to floating charge and equalizing charge cycle mode [12].
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Figure 1. Charging and discharging operation mode diagram of a VRLA battery [12]. Adapted with
permission from Ref. [12]. 2022, Chinese Journal of Power Sources magazine.

2.2. Aging Mechanism of VRLA in Floating Charge Operation

VRLA is widely used in the power industry because it has the advantages of low
price, mature technology, safety, reliability and easy maintenance. In power plants and
substations, VRLA operates in floating charge mode for a long time. Various processes
promote the aging of VRLA batteries, such as positive grid corrosion, irreversible sulfation,
softening of positive active material, negative plate strap corrosion, water loss, etc., as
shown in Table 1 [13,14].

Table 1. VRLA battery failure modes.

Failure Mode Failure Reason Phenomena

Positive grid corrosion

In the environment of strong acid, strong
oxidation and high potential, the positive
grid alloy is thermodynamically ustable,

and oxidation corrosion is inevitable

Capacity reduction and ncrease in
internal resistance

Irreversible sulfation of negative
electrode

When the floating charge voltage is too
low, PbSO4 crystals with coarse particles
and poor chemical activity are formed on

the negative electrode surface.

The battery capacity is significantly
reduced; the voltage rises quickly when

charging and drops rapidly when
discharging

Softening and shedding of positive active
material

In the positive active substance, the
composite structure of α-PbO2/β-PbO2

crystal and PbO2-PbO(OH)2 gel is
destroyed, which leads to a decrease in

the binding force between active
substance particles

During the initial stage of use, the battery
capacity is reduced

Corrosion of negative plate strap
The metal lead of the negative bus bar is

slowly corroded over a long time and
transformed into powder PbSO4 crystal

The open-circuit voltage and floating
charge voltage are low, and the internal

resistance is high
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Table 1. Cont.

Failure Mode Failure Reason Phenomena

Battery leakage The battery is not tightly sealed or the
shell is broken

Sulfuric acid leakage, pole corrosion and
pole temperature rise

Thermal runaway

High voltage and current cause a large
amount of heat to accumulate in the

battery, causing the battery temperature
to rise rapidly

Increase in the floating charge current,
temperature rise and battery swelling

(1) Corrosion of positive grid

Corrosion of the positive grid is one of the most common failure modes of VRLA
batteries, which refers to the process by which the lead alloy of the positive grid is oxidized
to lead dioxide. Under strong oxidation and a high-potential environment, the thermody-
namic instability of lead and lead alloys is the fundamental cause of positive grid corrosion.
At the end of charging, the positive grid is usually in the potential range of 1.3~1.4 V, which
is much higher than the protection potential of lead alloy. The following electrochemical
reactions occur:

Pb + 2H2O→ PbO2 + 4H+ + 4e− (1)

In the case of overcharge, the acidity near the positive plate increases due to oxygen
evolution reaction [15,16]. The composition of the grid alloy is the main factor affecting
the corrosion rate of the positive plate, in addition to environmental temperature, floating
charge voltage, casting process and other factors [17]. Corrosion of the positive plate may
reduce the mechanical strength of the grid, break the grid, increase the ohmic internal
resistance and rapidly increase the voltage during charging [18].

(2) Irreversible sulfation of the negative electrode

The main active substance of a VRLA battery cathode is sponge lead. During discharge,
spongy Pb is converted into crystal PbSO4, and PbSO4 is reversibly converted into Pb during
charging [19]. When the battery is in the state of deep discharge, undercharge, open-circuit
or low-rate discharge for a long time, the PbSO4 crystal of the battery anode cannot be
completely converted into spongy Pb [20]. The coarse PbSO4 crystal gradually covers the
negative plate surface, and the inert PbSO4 no longer participates in the chemical reaction,
that is, irreversible sulfation. Irreversible sulfation affects the recombination of H2 and O2
into H2O in the battery, resulting in the inability of active substances in the electrode plate
to participate in the reaction, which increases the battery internal resistance and causes
premature battery failure [21].

(3) Negative plate strap corrosion

D. Pavlov [22] et al. thought that the oxygen generated by the positive electrode
partially gathered at the upper part of the electrode group, which caused the negative
electrode tab and bus bar to lose cathodic protection. If the anode tab and bus bar are
farther away from AGM/H2SO4 system, the potential of the anode bus bar is higher than
the equilibrium potential of PbSO4/Pb, and metallic lead slowly corrodes and transforms
into powdered PbSO4 crystal [23]. When the corrosion is serious, the surface and even the
inside of the bus bar are seriously pulverized, resulting in the reduction in its mechanical
strength. Under the action of stress, the bus bar breaks, resulting in the failure of the battery
due to the open circuit inside.

(4) Softening and shedding of positive active material

During charging and discharging, the structure of the positive active material of the
battery is damaged, which leads to a reduction in the binding force between the active
material and the grid and ultimately leading to the active material falling off. Pavlov
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believed that in a gel–crystal system, with the charge–discharge cycle, the oxygen evolu-
tion reaction in the battery destroys the polymer chain in PAM (positive active material),
resulting in an increase in the crystallinity of PAM. D Pavlov thought that the positive
active material was a gel–crystal system and that its smallest active material unit was
composed of α-PbO2/β-PbO2 crystal and PbO2-PbO(OH)2(OH)2 gel, which were in a state
of mutual balance. With the charge–discharge cycle, the amorphous state in the active
material gradually crystallizes, and the crystal area with poor binding force increases. This
reduces the binding force between the active material units and ultimately leads to the
softening and shedding of the positive active material [24,25].

Zhong et al. [26] classified the main failures of VRLA batteries during floating charging
into three categories: positive grid corrosion, negative busbar corrosion and negative
sulfation. The positive grid first undergoes electrochemical corrosion, which intensifies the
oxygen evolution reaction on the anode. The large amount of oxygen released from the
positive electrode increases the oxygen recombination reaction at the negative electrode
of the battery and intensifies the corrosion of the negative busbar. At the same time, the
process of anode grid corrosion and oxygen release requires water consumption, which
increases the oxygen transmission channel. The oxygen recombination reaction is further
intensified inside the battery, which also causes the risk of thermal runaway of the battery.
In addition, there are other failure modes, such as micro-short circuit, shell rupture, etc. [27].
The aging mechanism of a VRLA battery is often dominated by one failure mode, and the
others coexist and interact with each other. Therefore, the degradation of VRLA battery
capacity is the result of the interaction of various aging factors [14].

2.3. Aging Mechanism Analysis Method

The methods for analyzing the aging mechanism of batteries can be divided into three
categories, namely external characteristic analysis (electrical testing), disassembly analysis
and in situ online analysis [28]. External characteristic analysis, such as charge–discharge
curve and electrochemical impedance spectroscopy (EIS), incremental capacity analysis
(ICA), differential voltage analysis (DVA), etc., are used to extract the aging characteristics
of the battery by properly processing the external characteristics (voltage, capacity, internal
resistance, etc.) of the battery. The disassembly analysis method is also called material
physical and chemical property testing and analysis. First, the aged battery is disassembled
in a suitable environment to determine the internal materials of the battery, including
grids, separators, positive and negative active substances, electrolytes, etc. Then, these
materials are tested by analytical techniques such as scanning electron microscope (SEM),
X-ray diffraction technology (XRD) and inductively coupled plasma technology (ICP) to
obtain material information such as microscopic morphology, crystal structure and element
distribution [29]. The in situ online analysis method involves the use of in situ analysis
equipment to monitor the change of the internal physical characteristics of the battery
during the cycle and analyze the evolution of the internal material of the battery during the
aging process.

The advantages and disadvantages of the three methods for analyzing the aging
mechanism of batteries are compared in Table 2, and the main test technologies in each
analysis method are listed. The disassembly analysis method and in situ test technology
method usually require expensive experimental equipment and cannot analyze the aging
behavior of the battery online, so their application is limited. The external characteristic
analysis method is based on the battery charge and discharge or impedance spectrum to
analyze and extract the aging characteristics of the battery without damage to the battery
sample, so it is suitable for online estimation of the aging behavior of the battery.
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Table 2. Comparison of three methods for analyzing aging mechanisms of batteries.

Aging Analysis Method Pros Cons Testing Technique

External characteristic
analysis

The studied battery is not damaged;
the evolution of battery aging at

different life stages can be studied

The aging mechanism is
analyzed based on

speculation and needs to be
verified by the disassembly

analysis method

ICA, DVA, EIS

Disassembly analysis

The physical and chemical
properties of the internal materials

of the battery can be directly
characterized; internal causes of

aging can be determined, and
different failure modes can be

distinguished

The studied battery is
inevitably damaged SEM, XRD, ICP

In situ online analysis

The studied battery is not damaged;
the evolution of the material inside
the battery is characterized in situ

at different life stages

Requires complicated
devices

In situ XRD, neutron
diffraction

A VRLA battery is a complex electrochemical system, and its capacity decay is non-
linear. The aging mechanism of a battery is complex and is influenced by many factors.
The analysis of battery decay failure mechanisms is helpful to determine the health factors
that can best characterize battery SOH. Battery performance is tested by a variety of testing
technologies to detect the battery failure mode and obtain aging information. On this basis,
combined with various models, the battery SOH can be accurately predicted to ensure the
safe operation of the battery.

3. Definition of Battery SOH

SOH represents the ability of a current battery to store electric energy compared with
that of a new battery. With the increase in service time, the internal resistance of the battery
increases, and the maximum usable capacity decreases. Therefore, capacity and internal
resistance parameters are often used to define battery SOH in the industry.

According to the definition in terms of capacity, the SOH can be expressed as

SOH =
Ccurr

Crated
× 100% (2)

where Crated is the nominal capacity, and Ccurr is the present maximum available capacity,
which can be measured by discharging the battery at a fixed current (usually 0.1 Crated) and
air temperature (usually 20 ◦C to 30 ◦C).

According to the definition in terms of resistance, the SOH can be expressed as

SOH =
REOL − Rcurr

REOL − Rnew
× 100% (3)

where Rnew represents the initial internal resistance of the new battery, Rcurr represents the
actual internal resistance under the current cycle and REOL represents the internal resistance
at the end of the battery life [30]. Another parameter used to describe the state of a battery
is the SOC, which is defined as

SOC =
Cremain

Ccurr
× 100% (4)

where Cremain is the remaining capacity of the battery. According to Formulas (2) and (4),
SOC and SOH are closely linked through Ccurr. Therefore, the accurate estimation of SOH
must be related to SOC.
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According to the IEEE 1188-2005 standard, when the actual capacity of a VRLA is
less than 80% of the rated capacity, that is, the SOH is less than 80%, the battery must be
maintained or replaced [31].

4. SOH Estimation Methods

At present, battery SOH estimation methods include the experimental method, the
model method, the data-driven method and the fusion method. In this study, the different
SOH estimation methods are classified into four different categories: experimentally based,
model-based, data-driven and fusion methods. Figure 2 shows the classification of the
different SOH estimation methods.
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4.1. Experimentally Based Methods

Experimental methods are usually carried out in the laboratory because they require
specific equipment and are time-consuming. Experimental methods estimate the SOH by
collecting data and measurements that can be used to understand and evaluate the battery
aging behavior. The experimental methods usually require less computation and are easy
to implement. Therefore, these methods are among the earliest methods used to estimate
the SOH of VRLA batteries [23].

4.1.1. Ampere-Hour Counting Method

The ampere-hour counting method is one of the classical methods to estimate the bat-
tery SOH [32]. The common procedure of this method is to measure the present maximum
capacity of the battery. In order to measure the current maximum capacity of the battery,
the battery is first fully charged and then fully discharged; the current of the battery is then
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recorded. Then, the maximum capacity of the battery can be calculated by integrating the
discharge current.

Ccurr =
∫ t2

t1

Idt (5)

where I is the discharging current, and t1 and t2 are the starting and ending times of the
discharge process, respectively.

The initial maximum capacity of a battery (Cinitial) is usually provided by the manu-
facturer (referred to as nominal capacity); then, the SOH is determined using Equation (5).

The ampere-hour counting method is easy to implement under experimental condi-
tions, and its estimation result is usually regarded as the true value of SOH, which can be
used to verify the accuracy of other SOH estimation methods. At present, in power plants
and substations, the ampere-hour discharge method is used to check the SOH of the battery
pack every 1–2 years. When maintenance staff find a failed battery, they should replace it
immediately to maintain the battery in good working condition. The ampere-hour counting
method has some disadvantages. For example, it takes too long to test for the battery to
be fully charged and discharged, so it is not suitable for online SOH estimation. The full
discharge test is also harmful to the battery because deep discharge shortens the service life
of the battery [33].

4.1.2. Open-Circuit Voltage Method

The open-circuit voltage (OCV) of the battery has long been known to have a functional
relationship with the battery SOH. If the open-circuit voltage of the battery is measured,
the battery SOH can be estimated [34].

James H. Aylor et al. [35] proposed a new technology for estimating battery SOH. The
technique employs coulometric measurement under loading conditions and open-circuit
voltage under no-load conditions in order to predict the change of the battery SOH. This
technique was developed to enhance the accuracy and to reduce the required rest period of
open-circuit voltage measurement.

Mchrnoosh Shahriari [36] presented an online method for the estimation of the state
of health (SOH) of VRLA batteries based on the state of charge (SOC) of the battery. The
SOC is estimated using an extended Kalman filter and a neural network model of the
battery. Then, the SOH is estimated online based on the relationship between the SOC and
the battery open-circuit voltage using fuzzy logic and the recursive least squares method.
Experimental results show good estimation of the SOH of VRLA batteries.

The open-circuit voltage of the battery cannot be directly detected in the floating
charge mode. In order to accurately measure the open-circuit voltage of the battery, it is
necessary to keep the battery offline for a long time to reach a stable state. In addition, in
order to improve the estimation accuracy of the open-circuit voltage method, it needs to be
used in combination with other methods.

4.1.3. Resistance/Impedance Method

The internal resistance of the battery is considered an important index of SOH because
it is seriously affected by the degradation of battery performance. When the SOH of the
battery decreases, the internal resistance increases. With the increase in internal resistance,
the SOH of the battery decreases. Considering the strong correlation between internal
resistance and SOH, internal resistance is regarded as a good tool to estimate SOH [37].
The two main methods used to evaluate battery SOH are the internal resistance method
and the electrochemical impedance method [38].

The internal resistance method usually establishes the corresponding relationship
between the internal resistance and SOH and then evaluates the battery SOH according
to internal resistance. To measure the internal resistance, a sudden current change (∆I) is
exerted on the battery, and the consequent voltage change (∆U) is measured. The internal
resistance can be calculated as R = ∆U/∆I. The next step is to perform a regression analysis
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of the resistance/impedance and SOH. Finally, using the regression function, The SOH of
the batteries is estimated [23].

The internal resistance method only needs to obtain the voltage and current, making it
suitable application in online estimation of battery SOH. Generally, the internal resistance
of the battery has a certain relationship with SOC and SOH, and maintenance personnel
can use these relationships to monitor the battery status in real time [39]. However, due to
the uncertainty of the relationship between internal resistance and SOC, the error of SOH
estimation is slightly larger [40]. In addition, when the capacity of a lead-acid battery is
greater than 60%, the internal resistance changes slightly. Therefore, the internal resistance
method is only used to roughly judge the battery SOH.

EIS is a kind of electrochemical measurement method whereby a low-amplitude sine
wave voltage (or current) disturbance signal is imposed on the battery. EIS has no effect on
the internal state of the battery and provides more rich information on electrode process
dynamics and electrode interface structure details than other conventional electrochemical
methods. Based on the circuit model, the relationship between the EIS curve and SOH can
be established to accurately analyze the SOH of the battery. However, EIS measurement
requires sophisticated and professional test equipment, which has high requirements for
the test environment. As the circuit model itself is a technical difficulty, the process of
EIS measurement and SOH calculation is relatively complex, which leads to the time-
consuming and high cost of the impact method to estimate SOH. Therefore, a simpler and
more general method for obtaining EIS parameters online requires further research.

4.1.4. Coup de Fouet Method

After being fully charged, the battery is discharged with a constant current. In the first
few minutes, the discharge voltage reaches the peak voltage and then rises to the discharge
platform voltage [41–43]. This phenomenon is referred to as coup de fouet (Figure 3).
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Several studies have applied the “coup de fouet” phenomenon to estimation of battery
SOH. Phillip E. Pascoe et al. [44] found that the valley voltage and peak voltage in the coup
de fouet phenomenon are linearly related to the actual available capacity of the battery;
therefore, the SOH can be estimated according to the peak voltage and the platform voltage.
A series of experimental studies revealed that the discharge rate and temperature have
effects on the peak voltage and the platform voltage. Yuan et al. [45] assumed that the
peak voltage and plateau voltage would be impacted under different discharge conditions
(temperature and discharge rate). According to the coup de fouet phenomenon of the
battery, the SOH is taken as the output variable, with the peak voltage, plateau voltage,
discharge rate and temperature as input variables; accordingly, a battery SOH estimation
model based on a BP neural network was built. The results show that the model based on a
BP (backpropagation) neural network can effectively predict battery SOH. Due to the short
discharge time during the test, the current working state of the battery is not be affected,
and SOH can be estimated online. Compared with the traditional discharge test method,
the coup de fouet method is more convenient and efficient and is very suitable for online
detection of battery SOH as a backup power supply.

4.2. Model-Based Methods

Model-based methods use indirect measurement methods to predict the SOH of the
battery. Empirical models, electrochemical models and equivalent circuit models can
be applied.

4.2.1. Empirical Model-Based Method

The experience model-based method is used to simulate the aging process of the
battery and test the effects of temperature, discharge depth, charge and discharge current
on the battery life. The equivalent circuit model or a mathematical model are established
with temperature, charging/discharging current and voltage as independent variables and
SOH as a dependent variable. Then, the SOH and other battery parameters are calculated
based on the model parameters.

Empirical models include the impedance empirical model and the capacity empirical
model. The empirical model is used to first test the impedance (or capacity) of batteries
in different life stages; then, the change trend of battery impedance (or capacity) over
the whole life is obtained. Finally, the SOH of the battery is estimated according to the
relationship between impedance and capacity [46].

John Wang et al. comprehensively studied the influence of battery temperature,
discharge rate and SOC on battery capacity decay and established an Arrhenius model of
capacity decay under the combined influence of temperature and discharge rate.

Compared with the equivalent circuit model, the empirical model is much more
complicated, and it can explain many battery phenomena that the equivalent circuit model
cannot. However, the empirical model lacks an explanation of the corresponding physical
meaning, and its reliability and accuracy of estimating battery SOH often depend on the
authenticity of the obtained experimental data. As a result, this method is not very common
for SOH estimation.

4.2.2. Electrochemical Model-Based Method

The electrochemical model-based method is also called the battery mechanism model.
In the electrochemical model-based method, a series of partial differential equations and
algebraic equations is used to describe the physical and chemical processes inside the
battery. The parameters in the model can represent the physical and chemical characteristics
of the battery and can accurately reflect the changes thereof. Therefore, the electrochemical
model-based method can be applied to the analysis of the VRLA performance decay
mechanism and SOH estimation and provide theoretical support for prediction of the
remaining life of batteries [47–49].
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Chao Lyu et al. [50] presented a new method for battery SOH prediction by incor-
porating an electrochemical model into the particle filtering framework. A simplified
electrochemical model of a lead-acid battery was introduced based on the theory of porous
electrodes and the theory of diluted solution, which involve the charge conservation, elec-
trode dynamics, liquid phase diffusion, liquid phase equilibrium and potential equilibrium
of the solid phase. Figure 4 shows the schematic diagram of lead acid battery. The experi-
mental results show that the model has the advantages of fast calculation speed, minimal
damage to the battery and short detection time, making it suitable for SOH estimation and
residual life prediction of backup VRLA battery packs in power systems.
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Evaluation of battery SOH using an electrochemical model has the advantages of clear
physical meaning, high accuracy, universality, etc.; however, an electrochemical model
includes many internal parameters of the battery, the control equation is complex, and
many calculations are required, so its practical application is difficult.

4.2.3. Equivalent Circuit Model Method

The equivalent circuit model (ECM) is widely used in battery management systems
because it comprises few parameters and is a simple mathematical model [51]. The ECM is
composed of a voltage source, inductance, resistance, capacitor and other circuit compo-
nents, which describe the charging and discharging characteristics of the battery through
different combinations and simulate the dynamic characteristics of the battery. The general
equivalent circuit model is shown in Figure 5. Generally, the basic equivalent circuit models
of lead-acid batteries include the Rint model, the Thevenin model, the second-order RC
(resistor–capacitor) model, etc. [52–55]. In the equivalent circuit model, a battery equiv-
alent circuit is first established, and the model parameters are identified to estimate the
SOH using algorithms, such as the least square method, Kalman filtering and artificial
neural network.

According to the chemical principle of VRLA, Zhang et al. [56] established an equiva-
lent model of a second-order reactive RC circuit to simulate the charging and discharging
process. Based on the model, the open-circuit voltage and internal resistance of VRLA
could be derived. The parameters of the model are estimated by the least recursive double
algorithm with forgetting factor through system identification. Analysis and comparison
show that the error of battery parameters identified by this algorithm is very small, and
the second-order RC model simulation of the VRLA battery charging and discharging
process is very accurate and efficient. Zhang et al. [57] built a second-order RC circuit
model and used the terminal voltage comparison method to verify the rationality of the
circuit model and the accuracy of identification parameters. In the model, the relationship
between the ohmic internal resistance (R0) and SOH is established, and the SOH of the
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battery is estimated. Experimental verification shows that the relative error between the
SOH of a VRLA battery estimated by the model and the SOH determined by the definition
method is about 3%.
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The ECM is a model for the external characterization of VRLA batteries. The ECM
has advantages such as concise structure, easy parameter identification, simple calculation
processes and clear physical meanings and is therefore widely used in SOC and SOH
estimation [58]. Because the equivalent circuit model often needs approximate equiva-
lent treatment, when the key parameters of the battery cannot be obtained, some model
prediction errors are expanded.

4.3. Data-Driven Methods

With the rapid development of big data and machine learning technology, data-driven
technology has broken through the shackles of complex nonlinear systems that are difficult
to model and has become the main research direction of battery health. Data-driven
methods include artificial neural networks, support vector machines and Gaussian process
regression. The general flow of the data-driven prediction method is shown in Figure 6 [59].
First, a large amount of battery information (such as voltage, current, temperature and
impedance) is collected, which may come from past historical data or real-time data.
Secondly, the battery degradation characteristics are extracted. The third step is to train a
machine learning model to showing the relationship between the extracted characteristics
and the SOH of the battery. Finally, once the machine learning model is determined, it is
applied to evaluate the battery SOH.

4.3.1. Artificial Neural Network Method

An artificial neural network (ANN) is a network formed by the interconnection of
neurons in a certain way, and a prediction model is obtained by training the thresholds and
ratios of neurons through a large amount of data. Its typical structure consists of an input
layer, a hidden layer and an output layer, as shown in Figure 7. Common neural networks
for predicting battery SOH include BP neural networks, Elman neural networks and RBF
(radical basis function) neural networks [60,61].
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Talha et al. [62] proposed a simplified method to estimate the SOC and SOH of VRLA
battery online using NN. Firstly, Terminal voltage (Vt) and open-circuit voltage (OCV) were
measured for different charging currents (Ich) and discharging currents (Idch). Ich/Idch and
Vt were used as NN input variables and OCV was output. Then, the SOC was calculated
using an empirical function that described the relationship between SOC and OCV. Finally,
the slope of SOC and current were used as training inputs, and the SOH was estimated
by the NN. Mei et al. [63] built a wavelet neutral network (WNN) model for prediction of
the operating life of a substation VRLA battery. First, a WNN model of battery operating
life was established. Then, the experimental data were trained to obtain a WNN model for
battery operating life prediction. The predicted results of the WNN model and actual data
were compared. The experimental results show that the average relative error of prediction
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is only 1.49%. The WNN model can quickly and accurately predict the working life of
batteries in substations.

An ANN has the advantages of self-organization, self-adaptation, fault tolerance,
self-learning evolution, high prediction accuracy and the ability to be applied to a variety
of nonlinear prediction fields. However, the prediction ability of an ANN algorithm for a
small dataset is poor, and the estimation error is affected by the training data.

4.3.2. Support Vector Machine Model

As a supervised machine learning algorithm, support vector machine (SVM) is used
to solve classification and regression problems. Support vector machine constructs a
hyperplane or a group of hyperplanes in high-dimensional or infinite dimensional space,
which maximizes the isolation edge between positive and negative examples. Its principle
diagram is shown in Figure 8. Similar to ANN, SVM is usually used to determine the
relationship between input characteristics and SOH [23].
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In view of the battery damage caused by checking discharge in substations, Cao [64]
proposed a support vector machine algorithm to assess the health of substation batteries.
In the study, the voltage, internal resistance, cycle times and activation time of a substation
battery pack were taken as the feature vectors of the evaluation model. The experimental
results show that the classification accuracy of the model is as high as 97.45%. Chang
et al. [65] presented an approach using a Kalman filter (KF) based on SVM to estimate the
battery SOH. The basic idea of a Kalman filter based on SVM is that the SVM time series
model is first formed based on the measured data, and Kalman filter detection is combined
with SVM prediction to estimate the SOH. Experimental results show that the estimation
error of SOH was below 3%.



Coatings 2023, 13, 485 15 of 20

4.3.3. Fuzzy Logic Method

A complete fuzzy logic system (FLS) includes four main components, namely fuzzifi-
cation, a knowledge database, a rules processor and defuzzification. The structure of a FLS
is illustrated in Figure 9. The FIS involves four steps. First, fuzzification: the input values
are fuzzified into the fuzzy language variables through the definition of a membership
function. Second, knowledge database: a knowledge database is established to describe the
membership functions for the input and output variables. Third, rules processor: according
to the constraint conditions formulated by the rule base, a reasoning mechanism executes
the inference procedure. Finally, defuzzification: the fuzzy output sets are converted to real
output values [66].
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When the fuzzy logic method is implemented in SOH estimation, the output of the
fuzzy logic model is the battery SOH, and the inputs are extracted features that are related
to the battery SOH. To implement this method, a rule base that describes how each extracted
feature contributes to the SOH should first be built based on the training dataset. The rule
base may be described by an expert or generated using neutral network algorithms [67].
Each set of data in the training dataset is a fuzzy set, and all the input values are then
fuzzified into fuzzy membership functions. Next, the fuzzy output is calculated based
on the rule base. Finally, according to the SOH of each fuzzy set, the estimated value of
the SOH can be calculated using the weighted average of the SOH based on the fuzzy
output [68].

A VRLA battery is a complex electrochemical system. With the charging and discharg-
ing process, there are many uncontrollable factors, such as the structural change of lead
ions in electrolytes, the evolution of oxygen and hydrogen and the variation of ambient
temperature, which affect the internal resistance, life and residual capacity of the battery.
These uncontrollable factors bring many uncertainties and difficulties to VRLA battery
SOH prediction, and the fuzzy logic system is just the means to solve the SOH estimation
of this uncertain and complex electrochemical system.

Some researchers have applied the fuzzy logic method to estimate the SOH of VRLA
batteries. FAN et al. [69] developed a fuzzy logic method to estimate the SOH of a VRLA
battery in a substation online. According to the linear relationship between the amount of
charge (Q) and the open-circuit voltage (OCV) of the battery, a fuzzy logic system based on
Q-VOC slope and an SOH rule base was established. The input variable of the fuzzy system
is the slope of the Q-VOC diagram, and the output is the SOH. The SOH of the battery was
estimated in both online and offline states. The experimental results showed that the SOH
error of online method was only 2% compared with the traditional check discharge method,
demonstrating that this online SOH estimation method has the advantages of simplicity
and short test time. Pritpal [70] described how impedance measurements, combined with
fuzzy logic data analysis, have been used to estimate the SOH of lead-acid batteries. In the
present method, the combination of fuzzy logic and EIS provided a powerful estimation
method for SOH prediction of VRLA batteries. The fuzzy logic method is highly precise,
offers good reliability and strong adaptability and can be used in a cheap microcontroller
to provide low-cost cell surveillance systems.
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4.4. Fusion Methods

In recent years, model fusion technology has received extensive attention from many
researchers. The idea of the fusion method is to integrate multiple models, including
experimental methods, model-based methods and data-driven methods, to give full play
to their respective advantages and achieve accurate, reliable and robust battery health
state estimation. Fusion-based methods usually include different model-based mutual
integration, the merging of model methods and data-driven methods and the convergence
of different data-driven methods.

Zhong et al. [71] proposed SOH estimation based on a fusion model for lead-acid
batteries used in substations. Two models were established to estimate the SOH of a VRLA
battery. The first model evaluates the relationship between the average resistance and SOH.
The other model assesses the decline rate of battery voltage and SOH. According to the
proportion of the influence of the nuclear discharge and floating charge state on SOH, a
fusion model was established to estimate the SOH of a lead-acid battery in a substation. An
accelerated life test was used to verify the proposed arithmetic, and the experimental results
showed that the arithmetic was accurate and reliable and can realize real-time estimation
the SOH of lead-acid batteries used in substations. Therefore, timely detection of poor SOH
can greatly improve the safety and reliability of the battery pack.

The fusion estimation method overcomes the shortcomings of the single-model method
or data-driven method, such as low prediction accuracy, poor reliability or misjudg-
ment. It is an important method for battery SOH estimation in the future and has good
application prospects.

5. Conclusions

Due to the complexity of electrochemical systems, the accurate estimation of SOH for
VRLA batteries is still a challenge. Scholars at home and abroad have carried out a lot of
research on the estimation of battery SOH and made many research advancements. Some
research methods have been preliminarily applied. However, there is still a lack of a more
complete theoretical system for battery SOH prediction, especially under actual operating
conditions of backup power supply.

In this paper, the latest developments of SOH estimation methods for VRLA batteries
in power system were reviewed. The basic principles, advantages and disadvantages of
various methods were introduced. The main SOH estimation methods include experimental
methods, model-based methods, data-driven methods and fusion methods. The traditional
single model has poor accuracy in estimating battery SOH, and some SOH estimation
methods can only be obtained offline and therefore cannot meet the future demand for
high-precision and rapid battery SOH estimation in smart power plants and substations. For
instance, although the ampere-hour counting method is simple, deep discharge damages
the battery to some extent. The open-circuit voltage method requires a long standing,
making it difficult to apply in the online estimation environment. The data-driven method
can avoid the establishment of complex battery models. However, the establishment of
databases, the selection of characteristic factors and the updating of estimation models
are also considerable challenges. At present, the combination of model-based methods
and data-driven methods has been widely used and achieved remarkable results. In
particular, fusion methods are accurate and reliable for practical applications for electric
power backup lead-acid batteries, effectively avoiding the adverse effects of systematic
error and accidental error on SOH estimation.

The future development of VRLA battery SOH estimation may focus on the following
aspects. First, in order to improve the accuracy of the model, efficient and accurate pa-
rameter identification methods should be further studied and developed. Second, various
factors affecting battery SOH should be considered. By comparing the size of various
factors, a more accurate battery model should be established to achieve accurate SOH
estimation. Finally, with the development of artificial intelligence and big data technol-
ogy, the integration of data and models, the complementary coordination of offline and
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online methods and the realization of online application requirements will also be also an
important research direction to improve battery SOH estimation.
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Abbreviations
AC alternating current
ANN artificial neural network
BP backpropagation
DC direct current
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