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Abstract: With rising energy demand and depleted traditional fuels, solar cells offer a sustainable and
clean option. In recent years, and due to its acceptable band gap, high absorption coefficient, and inex-
pensive cost, iron pyrite (FeS2) is a popular material for solar cells. Earth abundance and nontoxicity
further boost its photovoltaic possibilities. The current study examined the influence of sulfurization
at 350–400 ◦C on iron pyrite layers fabricated using spray pyrolysis. The morphology and size
from TEM confirmed the XRD results of synthesizing a pyrite FeS2 with an average particle size of
10–23 nm at 350–400 ◦C, respectively. The direct band gap calculated by DFT as a function of temper-
ature was found to be consistent with the experimental findings, 0.87 eV (0.87) and 0.90 eV (0.95) at
350 ◦C and 400 ◦C, respectively. We found high-performing photovoltaic cells on ITO/ZnO/FeS2/
MoO3/Au/Ag, obtained with an excellent quality of nanoparticles and nanostructures of FeS2 pyrite,
which improved with the method of preparation and growth parameters.

Keywords: iron pyrite; band energy; organic photovoltaic cells

1. Introduction

In the last decades, transition metals experienced a renewal of interest due to their
excellent electrical, transport, magnetic, and optical properties [1–3]. In general, FeS2 pyrite
is an ideal material for the fabrication of solar cells and photovoltaic devices [4–9] due to
its high absorption coefficient (α > 105 cm−1 f or hν > 1.3 − 1.4 eV) [5], its small band gap
(about 0.95 eV) [10], high photocurrent quantum efficiency (> 90%) [6], and low material
cost [4–11].

FeS2 pyrite was one of the first crystal structures that resulted from Bragg, in 1914 [12],
with his XRD system. It has a simple cubic structure similar to that of rock salt.

FeS2 pyrite is a good option for thin film photovoltaic. Considering its potential and
current importance [4–9], many experimental [4–9,13–40] and theoretical works [41–60]
have been interested to FeS2. Schlegel et al. [33] determined the transition and reflectivity
spectrum of a single crystal of FeS2. They showed that FeS2 pyrite has an empty 3d eg band
at 300 K, a completely filled 3 d t2g, and an indirect band gap equal to 0.95 eV. Kou et al. [25]
found a band gap at 297 K of about 0.84 eV. Karguppikar et al. [40] reported that pyrite
can be an indirect semiconductor from its conductivity properties, Hall effect data, and
optical gap of 0.92 eV. Sun et al. [37] determined an FeS2 pyrite thin film by sulfurizing
oxide precursor films. From their UV-vis absorbance spectroscopy and X-ray photoelectron
spectroscopy (XPS), they showed a direct band gap of about 0.75 eV, an indirect band gap
of about 1.19 eV, and a high absorption efficiency (α > 105 cm−1). Yu et al. [39] used the
chemical bath deposition (CBD) method. They reported that the band gap of FeS2 can be
increased from 0.86 to 1.31 eV when doped by Mn.
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Many other preparation methods, such as spray pyrolysis, metal organic chemical
vapor deposition (MOCVD), and ion beam sputtering have been declared for the synthesis
of nanocrystals, nanowires, and crystallites of FeS2.

Mostly all experiments found a band gap between 0.84 and 1.03 eV. For theoretical
study, Bullet [42] used the first principle local density approximation (LDA) calculation to
investigate the optical properties of iron pyrite. He found an indirect band gap of 0.4 eV for
marcasite and 0.7 eV for pyrite. This value is smaller by 0.25 eV when compared to the ex-
perimental indirect band gap (0.95 eV). Zhoa et al. [59] performed the self-consistent linear
combination of atomic orbital (LCAO) formalism to determine the electronic properties of
iron pyrite. Their smallest theoretical direct band gap was about 0.64 eV, and they found
an indirect band gap of 0.59 eV. Additionally, Opahlele et al. [53,54] determined the elec-
tronic properties of FeS2 utilizing an LDA potential parameterized by the Perdew-Zunger
(LDA-PZ). Their calculated band gap was about 0.85 eV. Muscat et al. [52] employed the
periodic LCAO method with the CRYSTAL 98 package and pseudopotential technique
with CASTEP Software package.

Wadia et al. [61,62] showed a complete research study a few years ago and investigated
23 potential materials for photovoltaics and found that FeS2 pyrite was the best one, beating
all materials in terms of cost. It was confirmed that the extraction cost of silicon was 57 times
more than that of FeS2 (USD 1.7 for silicon compared to USD 0.03 for FeS2). Additionally,
the silicon energy output for extractions was 12 times bigger than that of FeS2 (24 KWh kg−1

vs. 2 KWh kg−1 for 24 KWh kg−1). Rahman et al. [62] showed that FeS2 is much more
cost-effective than silicon if they are produced with taxation and the same regulations
in the same country. All these beneficial and interesting features make FeS2 an excellent
candidate for photovoltaic performance.

We included the prepared structure to show the real effect of the structure on band
gap for devices that are not photovoltaic. The biggest dilemma for iron pyrite is attributed
to the structure of pyrite, for which we complete studied to include the impact of the
nanoparticles of iron pyrite on photovoltaic performance. This work aimed to improvise a
new progress in the use of iron pyrite in photovoltaics.

2. Experimental
2.1. Materials and Method

We used spray pyrolysis for the fabrication of our sample. Amorphous iron oxide
films were placed on normal glass substrates by spray pyrolysis. Then, the found films
were heated under a sulphur atmosphere. We started by cleaning the glass substrates. The
process was as follows: first, we put the films in an acidic solution for 3 h. After that, they
were kept in a detergent solution and washed with distilled water. Then, they were kept in
a solution of methanol and washed utilizing an ultrasonic cleaner for 15 min. Finally, the
substrate was cleaned with distilled water and dried under a stream of nitrogen. In the
second procedure, we chose to spray FeCl3·6H2O (0.05M) for 5 min in an aqueous-based so-
lution onto glass substrates. After we dissolved FeCl3·6H2O in deionized water (ionization
reaction: 2H2O → H3O+ + OH−), a dark amorphous iron oxide layer was obtained. The jet
flow rate and the distance nozzle-substrate were about 7 mL/min and 45 cm. Carrier gas
was used by compressed air. We obtained dark layers. Then, it was heated under a sulphur
atmosphere (∼10−6 torr) at two sulfurization temperature (350 ◦C–400 ◦C). However, we
succeeded in obtaining FeS2 pyrite via spray pyrolysis.

2.2. Characterization

The crystal structure of the FeS2 pyrite was analyzed by powder X-ray diffraction
(XRD) using a Siemens D500 diffractometer (Siemens Bruker, Germany) (CuKα radiation
λ = 1.54201 Å). The parameter lattice and crystal structure were obtained using the
Reitveld method by utilizing the PDXL program. Raman spectra were determined to
further study the phase evolution with increasing temperature. The morphology and size
of nanocrystals were recorded using transmission electron microscopy (TEM) using JEOL
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2010 (200 KV) microscopy. Optical absorption was investigated using a SHIMADZU 3100s
spectrophotometer (SHIMADZU, Columbia, MD, USA).

2.2.1. X-ray Diffraction:

XRD patterns of the FeS2 pyrite sample are shown in Figure 1. Typical diffraction
peaks at 2θ = 28.71◦, 33.43◦, 37.25◦, 40◦, 57.79◦, 59.98◦, 61.89◦, and 64.31◦ are attributed re-
spectively to plan (111), (200), (210), (211), (220), (311), (222), (230), and (321), corresponding
with the norm diffraction data of the FeS2 (JCPDS card n◦028-0076; space group Pa3). No
other impurities, such as marcasite, pyrrhotite, or greigite compounds, were detected in the
XRD patterns, confirming the high purity of the obtained sample. Powder XRD patterns
appeared in a cube of crystalline in a pyrite structure, where the disulfide ions localized in
octahedral, coordinated with Fe metal ions within a space group symmetry of T6

h (Pa3).
The significant effect of temperature can be observed on the position of sulfur (S). The sulfur
position changed when the temperature increased. The X-ray diffraction (XRD) patterns of
two samples exhibit a notable degree of similarity, with minor discrepancies observed in
the intensity of diffraction peaks. This resemblance is primarily attributed to the identical
material composition of both samples, namely, iron pyrite. Moreover, it is imperative to
note that the XRD patterns for these two samples share congruent structural characteristics,
resulting in the consistent norm of diffraction data as specified in the ASTM file.
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Figure 1. XRD pattern of FeS2 pyrite. The X-ray diffraction (XRD) patterns of two samples exhibit a
notable degree of similarity, with minor discrepancies observed in the intensity of diffraction peaks.
This resemblance is primarily attributed to the identical material composition of both samples, namely,
iron pyrite. Moreover, it is imperative to note that the XRD patterns for these two samples share
congruent structural characteristics, resulting in the consistent norm of diffraction data as specified in
the ASTM file.

The output parameters are listed in Table 1.
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Table 1. Cells parameters.

Tempurature 350 ◦C 400 ◦C

Cubic lattice a 5.409 Å 5.417 Å

ν (Position paramater) 0.113 0.111

u (Suffer position) 0.387 0.389

2.2.2. Raman Spectra

The Raman spectra of the FeS2 pyrite are presented in Figure 2. As shown, sulfurization
was conducted at different times and temperatures (350 ◦C and 400 ◦C ). We identified that
the increase of the sulfurization time and temperature reduced the perfection of formation
of other phases, and this resulted in a pure pyrite structure. We observed two strong typical
Raman peaks at 342 cm−1 and 403 cm−1, corresponding to Elow and EHigh modes and
generated by Fe-Fe and S-S vibrations, respectively. We used long sulfurization times for
two temperatures to find the growth condition for high throughput and low-cost processing.
In the past literature, time sulfurization ranged between 90 and 120 min [63,64] and was
still considered short sulfurization between 3 h and 8 h [65,66].
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Figure 2. Raman spectra for thin film obtained after sulfurization for time = 14 h and at two
sulfurization temperatures.

From our Raman analyses, we calculated the intensity ratio of Elow and EHigh, which
are related to sulfur distribution versus the crystallinity of the FeS2 sample. Table 2 presents
the difference in the contribution of sulfurization at different temperatures. It can be noticed
that sulfurization increased with temperature, and the increase of the band gap highlights
the influence of the sulfur position on the formation of intermediate levels in the band gap
of the MS2 transition metal.
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Table 2. The intensity of the Elow mode and the intensity ratio of (Elow/EHigh) modes of the FeS2

sample at different temperatures.

Temperature (◦C) 350 ◦C 400 ◦C

I
(

Elow
)

0.66 0.79

I
(

Elow
)
/I

(
Elow

)
0.73 0.83

2.2.3. Transmission Electron Microscopy

Besides the variation nanoparticle size conforming to the results from transmission
electron microscopy (TEM), as in Figure 3, the nature of sulfurization using this method af-
fects the morphology of the resulting FeS2 pyrite. For logical statistics, around 100 particles
of a representative sample section were studied. Particle diameters were calculated, assum-
ing an ideal spherical particle shape based on the measured area. In case of FeS2 pyrite at
400 ◦C Figure 3a–c, the smallest particles in the range of 7–15 nm. Overall, average particle
sizes were between 10 nm and 23 nm, and highest size was 39 nm. However, for FeS2 pyrite
at 350 ◦C (Figure 3d,e), we obtained only particles between 10 nm and 23 nm.

 

 

Figure 3. (a, b, c): TEM image of FeS_2 at 400℃. (d, e): TEM image of FeS_2 at 350℃. Figure 3. (a–c): TEM image of FeS2 at 400 ◦C. (d,e): TEM image of FeS2 at 350 ◦C.

At higher magnification (Figure 3b,c), the surface of layers appeared granular with
different grain sizes, and this enabled us to confirm the good crystallinity, showing its
photovoltaic performance.

2.2.4. Optical Properties:

The mathematical equation for the optical band gap was given by Tauc et al. [67], and
we used it in these studies as well [68,69]:

αhν = A(hν − Eg)n

where
{

n = 2 → f or an indirect transition
n = 1

2 → f or an direct transition
.
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where α is the absorbance coefficient, A is a constant, and hν is the photon energy. The

variation (αhν)
1
2 vs. photon energy hν suggest an indirect band gap and for (αhν)2 vs.

photon energy hν, depicting a direct experimental transition. Notice that pyrite may have
an indirect or direct transition [70,71]. The question is: will the band gap of our sample be
indirect or direct? In fact, if iron pyrite layers have a direct band gap, it is very important
for them to apply multispectral photovoltaic cells, because a direct band gap means a
direct transition.

(αhν)
n
2 were plotted as functions of photon energy hν, with n = 4 and n = 1, and it

is presented in Figure 4a–c. Only the plot of (αhν)2 vs. hν has a straight line, indicating
that FeS2 pyrite film has a direct band gap energy for different temperatures of fabrication.
Table 3 gives the acquired values of the band gap of FeS2 pyrite film according to the two
temperatures. FeS2 pyrite had a low band gap when heat treated at 350 ◦C. Figure 4d
shows the absorption coefficients, which were always high, and they were greater than
1.2 × 105 cm−1.
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Table 3. Exprimental band gap.

Temperature 350 ◦C 400 ◦C

Band gap (eV) 0.89 0.95
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3. Band Structure
3.1. Computational Details

Density–Functional Theory [72,73] was used within the linear muffin-tin orbital
method in the atomic-sphere approximation (LMTO-ASA). The LMTO ASA method was
explained in detail in several reports [74–76]. In our calculations, we employed the self-
consistent band calculations because they are the first principles of calculations utilizing
density functional theory (see [72]), utilizing the local density approximation (see [77]),
and utilizing numerical techniques based on the treatment of electron ion interaction in
the pseudopotential approximation [78]. Moreover, the Hamiltonian Atomic Spheres Ap-
proximation is totally specified by the potential parameters. It generates moments from
the eigenvectors of the Hamiltonian. Regarding specified potential, there is an individual
correspondence between the energy Eν of the wave function φ and the logarithmic deriva-
tive Dv at the sphere radius. In essence, it is possible to specify either one. The potential P
becomes simple because [79,80]:

P(ε) = const
D(ε) + l + 1

D(ε)− l
≈

(
∆l

ε− Cl
+ γl

)−1

where γ1, ∆1, and C1 are the “potential parameters” that parameterize P. C1 defines the
band “center of gravity”, ∆1 is the “band width” parameter, which correlates with the
bandwidth of l channel if it were uncoupled from the other channels, and γ1 is the “band
distortion parameter”, which describes the deformations relative to a universal shape.
Generally, small parameterization is a perfect method to study band structure.

First, we obtained the potential parameters for all atomic spheres. The muffin-tin
potential constant VMTZ was the crossing point of muffin-tin potential around Fe and S,
and it is listed in Table 4. We had 24 symmetry operations. The initial sphere packing was
equal to 82.2%, and it was scaled to 92.9%. The role of these empty spheres is to reduce the
number of iterations in this system and to reduce the overlap between the spheres centered
at Fe and S.

Table 4. The muffin-tin potential constant.

Temperature 350 ◦C 400 ◦C

VMTZ −0.679772 −0.737209

3.2. Pyrite Crystal Structure

FeS2 pyrite has a cubic crystal structure and the space group number 205 (with space-
group T6

h (Pa3)). In these structure, there are eight S atoms located in eight positions and
four Fe atoms in four positions. The lattice parameters for FeS2 pyrite are listed in Table 5.

Table 5. Pyrite cell parameters.

Temperature 350 ◦C 400 ◦C

space group T6
h T6

h

cubic lattice 5.409 Å 5.417 Å

ν position parameter 0.113 0.111

sulfur position 0.387 0.389

Bond length ds−s 2.117 Å 2.083 Å

Bond length dFe−s 2.264 Å 2.259 Å

Bond angle Fe − S − Fe 115.21◦ 114.88◦

Bond angle Fe − S − S 102.82◦ 103.28◦

Bond angle S − Fe − S 100.09◦ 100.13◦
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In FeS2 pyrite, each S atom is coordinated with three Fe atoms, for which the dimer
pairs S_S are in tetrahedral sites, and each Fe atom is coordinated with six S atoms in
octahedral sites.

Moreover, these structures contain pairs of sulfur S2 molecules, contrary to individual
S atoms presented in the Figure 5a image of the overlapped unit cell of FeS2 pyrite. To
study the deviation from tetrahedral and octahedral geometries, we describe the correlation
of the S-S bond length and cubic lattice. The relationships between our cell parameters
are presented in Table 5. The structure ν of the pyrite is between 0.10 and 0.13 [81]. Our
work demonstrated that the value of ν ranges between 0.111 and 0.113, showing significant
effects of increased temperature conditioning FeS2 pyrite. We noticed that the Fe sites had
a small trigonal distortion, for which the S-Fe-S bond angles were 100.09◦ at 350 ◦C and
100.13◦ at 400 ◦C, and the three Fe-S-Fe bonds were between 114.88◦ and 115.21◦, for which
the S sites were distorted from tetrahedral symmetry.
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3.3. Energy Bands of FeS2 Pyrite

The DFT energy bands for samples at different temperatures are shown in Figure 5b,c.
The two figures provide the band structure on a form of energy that shows a general
electronic structure. These figures present the region around the Fermi energy, which
clearly depicts the details of a low conduction band and the highest valence band.

However, our band structure indicates that FeS2 has a band gap semiconductor. We
had four FeS2 units in each unit cell and accommodated 40 occupied valence bands. The
minimum conduction band was in Γ, and the maximum valence band was at Γ. The direct
transition was observed at Γ and had the values of o.87 eV and o.90 eV.

Our obtained results are different than those of Zhoa et al. [59] and Temmerman [58],
who found 0.59 eV and 0.64 eV. Their gap was smaller than the experimental gap of 0.95 eV.
Moreover, we were successful because our obtained gaps were significantly consistent with
our optical gaps.

The calculated gap, optical gap, minimum band conduction CBmax, maximum valence
band VBmax, and Fermi energy are summarized in Table 6. The bands are relative to bonding
and antibonding pairs of S2 orbitals. In the range between −14 and 8 eV corresponding
S3s, the structure of sulfur and these S3 states are predominant. The S 3p state is presented
with a small addition of an Fe 3d function, starting at approximately −6 eV. Basically, these
bands have Fe t2g hybridized with p orbitals, and they are below the Fermi energy. The
lowest conduction band contained a combination of Fe eg orbitals. They were above Fermi
energy. S3p Fe 3d is a preeminent character on the conduction band.

Table 6. Band structure of FeS2 Parameters.

Temperature 350 ◦C 400 ◦C

Calculated gap Eg 0.064 Ry = 0.87040 eV 0.06550 Ry = 0.90508 eV

optical gap Eg 0.89 eV 0.95 eV

minimum band conductionCCBmin −0.052792 Ry 0.066017 Ry

maximum band valence VBmax −0.116791 Ry −0.000533

Fermi enrgy Ef −0.116791 Ry −0.000533

Figure 6a,b presents the density of the states calculated, and it shows the states above
and below the Fermi level of iron pyrite. It discloses the importance of hybridization
between Fe and S states and the effect of temperature on the fabrication of pyrite.
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For the two graphs, level t2g lies between −0.1 Ry and 0, below the Fermi level, but
for FeS2 pyrite prepared at 400 ◦C, it is near 0 and near Fermi level, which implies the good
crystallite and electronic properties of iron pyrite prepared at 400 ◦C.

For both graphs, we noted that the conduction band was made entirely of Fe eg
with Sp, marking that the conduction band was pure Sp while the valence bands were
completely derived from the Fe t2g.

4. Pyrite in Photovoltaics: Modeling the ITO/ZnO/FeS2/ MoO3/Au/Ag Device

The synthesized FeS2 pyrite samples were evaluated for the application of photode-
tector devices. We modeled ITO/ZnO/FeS2/MoO3/Au/Ag to study the improvement in
solar cell characteristics realized by the increase of temperature in two cases of preparation
of FeS2 pyrite. We chose this application because it holds numerous benefits due its ability
to be prepared at mild conditions, its low cost of chemicals, its mechanical flexibility, its
better tuning, and due to it being a suitable alternative to silicone-based solar cells [82,83].

The device structure is presented in Figure 7a. ITO film was cut mechanically to
obtain a 2.5 cm × 2.5 cm substrate. All substrates were cleaned in isopropanol, water, and
soap for 15 min. For layer parameters, a washed indium tin oxide (ITO) glass substrate
was managed by ultraviolet-ozone for 15 min. The ZnO layers were spin coated with
60 mg ml−1 ZnO/CHC3 solution annealed at 250 ◦C for 15 min in the air to form a ZnO
layer of 100 nm. The MoO3 (20 nm) Au (30 nm) Ag (90 nm) layers were placed successively
by thermal evaporation.
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Figure 7. (a): Device structure of ITO/ZnO/FeS2/ MoO3/Au/Ag. (b): Current density versus
voltage (J–V) characteristics of fabricated solid solar cells.

In recent years, ZnO has become the prime candidate for organic photovoltaic cells [84]
since its efficient improvement in stability. Here, we used the n-p layer heterojunction
p-type FeS2 pyrite solar cell using an n-type window layer. Additionally, MoO3 thin
film can react as an effective electron-blocking layer or hole transporting to reduce the
recombination of holes and electrons [85].

The schematic illustration characterization by exercising voltage from −1 to 2 V under
a dark current using the modeled ITO/ZnO/FeS2/MoO3/Au/Ag structure, as presented
in Figure 7b. The reported I-V characteristics and calculations for p-type FeS2 pyrite at
350 ◦C were similar [86], principally below the onset voltage and the I-V curves above 1.5 V.
However, the I-V curves for p-type FeS2 pyrite at 400 ◦C showed a large difference above
1.4 V, for which the onset voltage was around 1.3 eV. This result corresponds well with the
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fabrication of FeS2 pyrite, indicating that the nanostructures composed of FeS2 pyrite at
400 ◦C are excellent in building n-p junction ZnO/FeS2 pyrite.

We concluded that, to obtain high-performing photovoltaic cells on ITO/ZnO/FeS2/
MoO3/Au/Ag, it is necessary to focus on the quality of nanoparticles and nanostructures
of FeS2 pyrite, which improved by increasing the temperature of preparation (400 ◦C). We
also mentioned to the effect of sulfur position, distance sulfur–sulfur, and temperature to
band gap of FeS2 pyrite.

5. Conclusions

This work was an inclusive study of FeS2 pyrite. Our study reported on the increase
of temperature of preparation, characterization, and calculation of band gap of FeS2 pyrite.
Our experiment demonstrated the effect of temperature of preparation on the favorable
optical and electrical properties of FeS2 pyrite. Our results confirmed that p-type FeS2
pyrite is a good choice for fabricating solar cells. We also found the gap energy and
sulfur-sulfur distance for samples with different temperatures of preparation, which were
prepared by spray pyrolysis. We proved the correlation between growth parameters and
the calculated band structure. The optical gap energy obtained in this work is in good
agreement with the gap energy calculated by the LMTO-ASA method.

Our findings proved a significant powerful dependency between gap energy and dis-
tance sulfur–sulfur. Moreover, we concluded that the excellent crystallinity, nanoparticles,
and nanostructures of FeS2 pyrite confirm a more efficient photovoltaic application.

Finally, it is important to note that the high-performing photovoltaic cells on ITO/ZnO/
FeS2/MoO3/Au/Ag positively improved the quality of nanoparticles and nanostructures
of FeS2 pyrite.
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