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Abstract: Bacterial infections and resistance to antibiotic drugs represent the highest challenges to
public health. The search for new and promising compounds with anti-bacterial activity is a very
urgent matter. To promote the development of platforms enabling the discovery of compounds
with anti-bacterial activity, Fourier-Transform Mid-Infrared (FT-MIR) spectroscopy coupled with
machine learning algorithms was used to predict the impact of compounds extracted from Cynara
cardunculus against Escherichia coli. According to the plant tissues (seeds, dry and fresh leaves, and
flowers) and the solvents used (ethanol, methanol, acetone, ethyl acetate, and water), compounds with
different compositions concerning the phenol content and antioxidant and antimicrobial activities
were obtained. A principal component analysis of the spectra allowed us to discriminate compounds
that inhibited E. coli growth according to the conventional assay. The supervised classification
models enabled the prediction of the compounds’ impact on E. coli growth, showing the following
values for accuracy: 94% for partial least squares-discriminant analysis; 89% for support vector
machine; 72% for k-nearest neighbors; and 100% for a backpropagation network. According to the
results, the integration of FT-MIR spectroscopy with machine learning presents a high potential to
promote the discovery of new compounds with antibacterial activity, thereby streamlining the drug
exploratory process.

Keywords: antimicrobial; Cynara cardunculus; machine learning; MIR-Spectroscopy; PCA; PLS-DA;
SVM; KNN; BPN

1. Introduction

As a consequence of the rise in antibiotic resistance, it is imperative to develop fast
and affordable systems for discovering bioactive compounds with antimicrobial activity
that are also non-cytotoxic to the human host [1]. Antibiotic-resistant bacteria present a
formidable and concerning issue in contemporary medicine, which is compounded by the
dwindling progress in new antibiotic development and the escalating spread of multi-drug-
resistant determinants, exacerbating the problem. Plant extracts are important sources of
biologically active compounds and are indispensable for the development and synthesis
of many drugs, including antibiotics. Cynara cardunculus (Cardoon), for example, has
been used in traditional medicine [2], namely, extracts of its rhizomes are characterized by
antioxidant and antimicrobial activities [3], while its leaves show diuretic, choleretic, and
hepatoprotective properties [4], in addition to in vitro anti-proliferative potential against
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breast cancer [5,6] and cervical cancer uterus [7]. Despite the promising potential of these
plant extracts, evaluating their antimicrobial activity typically involves expensive and
time-consuming techniques that demand significant sample quantities [8,9]. The current
study investigates how Fourier-Transform Infrared (FTIR) spectroscopy, when coupled
with machine learning (ML) and neural network modeling, can overcome these limitations
and enhance its capabilities. FTIR spectroscopy, particularly in the mid-infrared region
(MIR), captures the vibrational signatures of key biomolecules like proteins, carbohydrates,
lipids, and nucleic acids [10]. As a result, these spectra serve as metabolic fingerprints for
biological samples, offering high sensitivity and specificity [11]. This technique has been
applied to classify bacteria [12], differentiate between cell death mechanisms such as apop-
tosis and necrosis [13], conduct studies and diagnoses related to cancer [14], monitor the
effects of drugs on Helicobacter pylori [15,16], and characterize cell metabolism in bioreactor
cultures [17,18]. This demonstrates the versatility and effectiveness of FTIR spectroscopy in
diverse biomedical and biotechnological applications.

In untargeted analyses, FTIR spectra have been proven instrumental in identifying
specific phenotypes. They have been utilized to uncover the antimicrobial properties
of novel extracts [19], differentiate the effects of various surfactants on E. coli cells [20],
compare how E. coli responds to diverse stress conditions [21], and develop bioassays
for toxicity testing in yeasts [22], among other applications. Compared to various omics
techniques, FTIR spectroscopy offers valuable insights with less data intensity and minimal
impact on metabolic sensitivity [23]. This underscores its significance and potential for
further advancements in research across different fields. Given the significant amount
of information present in the obtained spectra, their analysis must be carried out using
multivariate statistical methods, such as ML, in which the classification and discrimination
methods used allow the development of mathematical models capable of discriminating
the samples.

Machine learning (ML) is commonly categorized as a subset of artificial intelligence
(AI), relying on mathematical frameworks to enable computers to learn autonomously and
discern patterns and structures within both structured and unstructured datasets. This
process eliminates the need for explicit programming instructions, thereby empowering
machines to adapt and improve their performance over time [24]. In ML, two main types
of techniques are used: supervised and unsupervised learning. Concerning unsupervised
learning, hidden patterns or intrinsic structures in the input data are identified and subse-
quently grouped correctly [25]. Unsupervised methods usually serve exploratory purposes,
aiding in the development of models that facilitate data clustering in a manner not explicitly
specified by the user. Supervised learning methods are employed to construct training
models that predict future values of data categories or continuous variables. Examples
of supervised techniques include partial least squares-discriminant analysis (PLS-DA),
k-nearest neighbors (kNNs), and support vector machines (SVMs). Other techniques in-
clude artificial neural networks (ANNs) such as backpropagation networks (BPNs) and
counter-propagation networks, which are multilayer networks based on the combinations
of the input, output, and clustering layers [26].

The main objective of this study was to show the advantage of FT-MIR spectroscopy
and machine learning methods to screen for and, consequently, discover promissory bioac-
tive molecules as antimicrobial agents. The extracts, obtained with different solvents, from
the seeds, dry and fresh leaves, and flowers of C. cardunculus were evaluated. This study
evaluated if the spectra of Escherichia coli could be used to predict the impact of rapid
exposure to various compounds on cells. For this purpose, diverse unsupervised and
supervised machine-learning algorithms were evaluated over the obtained E. coli spectral
data. This approach serves as a tool in targeted exploration for novel compounds with
antimicrobial activity.
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2. Results and Discussion
2.1. Analysis of C. cardunculus Extracts

The compounds were extracted with diverse solvents from C. cardunculus flowers,
seeds, and fresh and dried leaves. The following extracts presented antimicrobial activity
against E. coli: seeds subjected to extraction with water and ethanol, leaves processed with
methanol, dry leaves treated with water, and flowers subjected to extraction with ethanol
and methanol (Figure 1). Previously, Ibrahim et al. [27] also observed that seed extracts
showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus
sprophyticus, and Klebsiella pneumoniae species.
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Figure 1. Antimicrobial activity of different assays using C. cardunculus extracts in E. coli cells in
solid culture medium: seeds extracted with ethanol; seeds extracted with methanol; seeds extracted
with acetone; fresh leaves extracted with acetone; fresh leaves extracted with ethyl acetate; and fresh
leaves extrated with water.

Methanol, ethanol, and water were the most suitable solvents to extract compounds
characterized by significant antioxidant activity. The extracts obtained from seeds showed
significant antioxidant activity (AA): 75% AA for methanol and 60% AA for water. Fresh
leaves also demonstrated significant antioxidant activity (76% AA for methanol and 86%
AA for water). The extracts obtained from fresh leaves and seeds using a methanol
and water mixture revealed substantial antioxidant activity. The antioxidant level most
probably reflects the specific nature of the tissues and their respective functions in terms
of plant defense. The highest phenol concentrations were registered for the aqueous
extracts from flowers and seeds (8.03 µg gallic acid equivalent (GAE)/g and 3.93 µg
GAE/g, respectively), most probably due to the high temperatures used during extraction
(~100 ◦C). The extracts obtained with methanol and ethanol also presented high phenolic
compounds, most probably due to the affinity of phenolic compounds with organic solvents.
The extracts obtained with ethyl acetate (0.80 µg GAE/g) and acetone (1.22 µg GAE/g)
presented low values, suggesting that these solvents presented low affinity for the extraction
of these compounds. The present results are in accordance with the results reported
by other authors, showing that extracts from C. cardunculus L. presented polyphenolic
compounds, specifically flavonoids and phenolic acids [28]. Phenolic compounds are the
main plant antioxidants and may act through their hydrogen-donor and metal-chelating
capacities. Indeed, it was observed that there was a high correlation between the phenol
content and antioxidant levels for the extracts obtained with ethanol (r2 = 0.63) and with
methanol (r2 = 0.96). This was in accordance with Fu et al. [29], who also observed a
positive correlation between the content of phenolic compounds and antioxidant activity.

The phenolic contents of plant extracts have been associated with beneficial effects on
health, which include anti-allergic, anti-atherogenic, anti-inflammatory, antimicrobial, and
antithrombotic effects, as well as acting as cardiovascular protectors and vasodilators [30].
The pronounced lipophilic nature of phenolic compounds enhances their antimicrobial
activity, most probably through diverse mechanisms [3,5,31,32]. This antimicrobial activity
can affect the permeability of cell membranes. Moreover, interactions with cell membranes
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can lead to changes in cell wall rigidity, resulting in a loss of integrity and ultimately
inhibiting microbial proliferation [33].

2.2. PCA of FT-MIR Spectra of E. coli

The FT-MIR spectra of E. coli cells incubated with these extracts were pre-processed
by different algorithms, such as multiplicative scatter correction (MSC), straight normal
variate (SNV), the first derivative, and the second derivative. The impact of these spec-
tral pre-processing methods was evaluated using PCA (Figure 2A). The most effective
pre-processing methods for clustering scores in the PCA score plot according to the an-
timicrobial activity were MSC and the use of the second derivative. The second derivative
allowed us to resolve overlapped spectral bands, while MSC minimized the effect of light
scattering (Figure 2B).
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Figure 2. PCA of FT-MIR spectra of E. coli exposed to extracts from C. cardunculus tissues (S—seeds;
F—flowers; FH—fresh leaves; FS—dry leaves) obtained by different solvents (AE—ethyl acetate,
EtOH—ethanol; Ac—acetone; MeOH—methanol, and H2O—water) (A), and the corresponding
loading vectors (B). Spectra were pre-processed by MSC and 2nd derivative. Cluster A is defined by
samples characterized by antimicrobial activity. Cluster B is constituted by samples characterized by
low antimicrobial activity.
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The scores were clustered according to the extracts’ antimicrobial activity, as ob-
served according to the conventional assay (based on counting colonies on agar plates)
(Figure 2A,B). The clusters of the extracts with antimicrobial activity included extracts
from seeds (extracted with water and ethanol), leaves (extracted with methanol), dry leaves
(extracted with water), and flowers (extracted with ethanol and methanol). These extracts
also presented significant antioxidant activity. According to the results obtained, 14 samples
showed a residual antimicrobial activity, while 6 samples showed significant antimicrobial
activity. Meanwhile, the PCA loadings highlighted the spectral regions that contributed to
the resolution of scores between the two clusters characterized by high and low antimicro-
bial activity, especially PC2 loading, which had a strong contribution from the following
regions: 1000 to 1800 cm−1, and 2700 to 3000 cm−1 (Figure 2B). The spectral regions ranging
from 1600 to 1700 cm−1 primarily arose from amide I and amide II absorptions associated
with proteins, typically constituting the most prominent bands in a bacterial infrared spec-
trum. This prominence is attributed to proteins accounting for approximately half of the
bacterial cell composition on average. The peak registered at 1740 cm−1 is related to the
ester C=O stretching of phospholipids. At wavenumbers around 1080 cm−1 and 1240 cm−1,
there is a significant presence of the P=O bond characteristic of phosphate groups found
in molecules such as nucleotides (like ATP), nucleic acids, phosphorylated proteins, and
lipids. Between 1000 and 1100 cm−1, there is a broad contribution from bonds such as C–O,
C–C, C–OH, and C–O–C, which are commonly found in carbohydrates. The spectral region
between 2700 and 3000 cm−1 exhibits a notable intensity in the stretching vibrations of
C-H bonds, particularly from lipids. This resonance is particularly pronounced in bacterial
membranes (as outlined in Table 1).

Table 1. Vibrational frequencies of some functional groups in biomolecules (adapted from Sales et al. [17]).

Wavenumber
(cm−1)

Vibrational Mode in the
Functional Group

Commonly Assigned
Biochemical Component

3300 ν(N-H) Amide A: peptides, proteins

3100 ν(N-H) Amide B: peptides, proteins

2960 νas(CH3) Lipids

2929
2870
2850

νas(CH2)
νs(CH3)
νs(CH2)

Lipids

1740 ν(C=O) Phospholipid esters

1655 [80% ν(C=O) and 20% ν(CN)]
in O=C-N Amide I in peptides and proteins

1550 ν(C-C) in O=C-N Amide II in peptides and proteins

1450 νas(CH3) Lipids, proteins

1395 νs(CH3) Lipids, proteins

1380 νs(CH3) Phospholipids, fatty acids, triglyceride

1240 νs(PO2
−)

Phosphodiesters in nucleic acids,
phospholipids, and phosphorylated proteins

1160 & 1111 νs(C-O) Ribose in RNA

1078 νs(PO2
−) Phosphodiesters

1055 νs(C-O-P) Phosphate esters

1032 def(C-OH) Glycogen
Vibration type: νs—symmetric stretching; νas—asymmetric stretching; def—deformations.

2.3. Analysis of Spectral Bands

The spectral second derivative presents bands that, on average, are different be-
tween E. coli subjected to compounds with antimicrobial or low antimicrobial activity
(Figure 3A,B). To further identify spectral bands that exhibit significant differences between
bacteria exposed to inhibitory and non-inhibitory compounds, several ratios between the
bands, as highlighted by the PCA loading vector, were examined. Twelve ratios between
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the spectral bands were analyzed, where “A” followed by a number represents the ab-
sorbance at that wavenumber (Table 2). From the twelve ratios evaluated, the following
nine ratios were statistically different at the 5% significance level between the two clus-
ters: A2856/A1705, A1740/A1656, A1740/1545, A2847/1545, A1617/A1545, A1476/1545,
1215/1179, A1215/1545, and A1244/1230. These ratios reflect the compounds’ impact
on bacterial metabolism related to protein synthesis (as indicated by the ratio between
amides I and II, i.e., A1617/A1545, and various ratios involving the amide I peak). Addi-
tionally, changes in the composition of the cell membrane are highlighted by the CH3/CH2
ratio (i.e., A2912/A2856), as well as the ratios incorporating the bands at 1740 cm−1 and
1179 cm−1 corresponding to carbonyl vibrations of esters of phospholipids, and the bands
at 2856 cm−1 and 1476 cm−1 originating from methyl and methylene groups. Figure 4
presents the box plots for the ratios of spectral bands that are statistically different. These
findings underscore the remarkable sensitivity of FT-MIR spectroscopy in capturing the
influence of compounds on E. coli metabolism.
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Figure 3. Average of second-derivative spectra of E. coli exposed to antimicrobial (gray line) and
non-antimicrobial (black line) compounds. The arrows highlight spectral bands that are different
between the two bacterial populations (A,B).

Table 2. Ratios between spectral bands of E. coli exposed to biocompounds with and without
antimicrobial activities.

Ratio between Bands (cm−1)
Average Standard Deviation

p-Value
Antimicrobial Non-Antimicrobial Antimicrobial Non-Antimicrobial

A2912/2856 1.359 1.356 0.114 0.162 0.472

A2912/1740 3.921 4.121 1.086 1.114 0.263

A2856/1705 2.601 1.334 0.753 0.248 <0.0001

A1740/1656 0.261 0.114 0.089 0.038 <0.0001

A1740/1545 0.434 0.218 0.151 0.082 <0.0001

A2847/1545 0.977 0.537 0.253 0.124 <0.0001

A2847/1740 2.395 2.720 0.657 0.966 0.102

A1617/1545 1.129 1.035 0.124 0.131 0.008

A1476/1545 0.304 0.146 0.167 0.081 <0.0001

A1215/1179 1.269 2.950 0.605 2.314 0.004

A1215/1545 0.942 0.708 0.174 0.082 <0.0001

A1244/1230 1.312 1.158 0.180 0.027 <0.0001
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Figure 4. Box plots of ratios of spectral bands of E. coli cells exposed to compounds with (A) and
without (NA) inhibitory activities.

2.4. Classification Models

To assess the feasibility of predicting the impact of compounds on E. coli inhibition,
based on the spectral data from bacterial cells, several supervised classification machine
learning algorithms were evaluated, including PLS-DA, k-NN, SVM, and BPN. For all
models, 70% and 30% of the spectra were used as the training data (n = 42) and test
data (n = 18), respectively (Table 2). The calibration and cross-validation performances
of the tested models were compared in terms of classification parameters, such as non-
error rate (NER) and accuracy, with an analysis of confusion matrices, thus providing a
comprehensive overview and a rational means of selecting the best model.

2.4.1. PLS-DA Model

The most appropriate PLS-DA model was developed through the implementation of
the spectra after MSC pre-processing, explaining a total variance of 99% for 11 LVs (Table 3).
The error for the validation procedure was 11%. The model presented sensibility, specificity,
precision, and accuracy of 86%, 92%, 96%, and 88%, respectively.

Table 3. Performance of the prediction models of the impact of compounds on inhibiting E. coli,
based on the FT-MIR spectra of E. coli, after diverse pre-processing methods. Data are shown for the
training and cross-validation dataset.

Model
Calibration Cross-Validation Test

NER ER Accuracy NER ER Accuracy NER ER Accuracy
PLS-DA 100 0 100 88 22 86 92 8 89
PLS-DA msc 100 0 100 89 11 88 96 4 94
PLS-DA snv 97 3 95 89 11 88 92 8 89
PLS-DA 1st 100 0 100 78 22 81 50 50 72
PLS-DA 2nd 100 0 100 50 50 100 0 100 0

kNN 70 30 76 69 31 69 52 48 67
kNN msc 82 18 83 93 7 90 65 35 67
kNN snv 79 21 83 85 15 86 65 35 67
kNN 1st 87 13 88 91 9 90 50 50 72
kNN 2nd 74 26 76 69 31 71 50 50 28
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Table 3. Cont.

Model
Calibration Cross-Validation Test

NER ER Accuracy NER ER Accuracy NER ER Accuracy
SVM 77 23 83 58 42 55 72 28 78
SVM msc 91 9 93 80 20 81 92 8 89
SVM snv 87 13 90 80 20 81 92 8 89
SVM 1st 92 8 95 79 21 83 50 50 28
SVM 2nd 100 0 100 68 32 79 50 50 28

BPN:1:10 100 0 100 60 40 62 68 32 72
BPN:1:10 msc 96 4 95 90 10 90 81 19 71
BPN:1:10 snv 98 2 98 77 23 79 68 32 72
BPN:1:10 1st 100 0 100 73 27 80 62 38 72
BPN:1:10 2nd 85 15 87 51 49 52 47 53 50

BPN:1:20 100 0 100 68 32 71 100 0 100
BPN:1:20 msc 100 0 100 78 22 81 86 14 89
BPN:1:20 snv 100 0 100 86 14 86 81 19 87
BPN:1:20 1st 100 0 100 60 40 74 67 33 88
BPN:1:20 2nd 96 4 94 63 37 69 43 57 53

BPN:2:10 98 2 97 74 26 79 82 18 83
BPN:2:10 msc 98 2 98 86 14 87 78 22 76
BPN:2:10 snv 100 0 100 77 23 80 72 28 78
BPN:2:10 1st 84 16 85 72 25 82 75 25 80
BPN:2:10 2nd 100 0 100 62 38 60 66 34 78

BPN:2:20 100 0 100 60 40 64 50 50 72
BPN:2:20 msc 100 0 87 87 13 88 82 18 83
BPN:2:20 snv 100 0 100 72 28 78 68 32 72
BPN:2:20 1st 100 0 100 53 47 58 58 42 75
BPN:2:20 2nd 100 0 100 58 42 68 53 47 50

NER—non-error rate; ER—error rate.

The PLS-DA model’s performance could be affected by outliers, as predicted by several
parameters such as leverages, Q residuals, and Hotelling’s T2. The samples exhibited low
residual Q and Hotelling’s T2 values, suggesting minimal variance between the actual
and predicted outputs of the model [34]. Figure 5A illustrates the response of cluster A
(exhibiting antimicrobial activity) for the training samples. The classification threshold to
distinguish cluster A (antimicrobial activity) from cluster B (low antimicrobial activity) was
set at 0.210 (depicted by the dotted red line).
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Figure 5. Representation of samples in the group with antimicrobial activity (blue) and the group without
antimicrobial activity (red) of plant extracts (A) for the PLS-DA model developed using E. coli spectra with
MSC pre-processing. Score plot obtained during the development of the PLS-DA model (B).

Misclassified samples were evident in our analysis, with samples from cluster A being
mistakenly categorized in cluster B (false negatives), and samples from cluster B erroneously
assigned to cluster A (false positives) (Figure 5A). The score plot indicates a discernible
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pattern in the distribution of samples, with a noticeable degree of overlap between them.
The first latent variable explains 39% of the variance, suggesting it captures a significant
portion of the underlying structure in the data. However, the second latent variable explains
only 12% of the variance, indicating that there is still substantial variability not accounted
for by the model (Figure 5B). In Figure 5B, it is evident that samples belonging to cluster A,
which are characterized by antimicrobial action, exhibit higher scores for the first latent
variable (LV) compared to samples from cluster B, which have low antimicrobial activity.
This suggests that the first LV effectively discriminates between the two clusters based
on their antimicrobial properties. Concerning the second LV, samples from cluster B are
represented by negative scores, while samples from cluster A exhibit positive scores. This
distinction demonstrates a significant resolution between the two types of plant extracts,
further highlighting the efficacy of the model in distinguishing between them based on
their characteristics. In the validation step, it was observed that the samples utilized in
the test phase for both groups were placed close to the samples utilized in the training
set. This finding indicates that the model exhibits high accuracy, thereby adding value to
the classification process facilitated by the PLS-DA technique. The studies conducted by
Pellegrini et al. (2017) showed the advantages of PLS-DA models as classification models
for different essential oils extracted from B. latifolia, Buddleja globosa, Solidago chilensis, and
Aloysia polystachia, which showed antimicrobial activity against Paenibacillus larvae [35].

2.4.2. K-Nearest Neighbor (KNN)

The KNN-optimized models, developed based on the spectra with MSC pre-processing,
showed a high accuracy value (90%) and a low classification error (12%), with a cross-
validation error rate of 20% (Table 3). The training model was characterized by an error
of 13%, and sensitivity, specificity, and accuracy of 90%, 85%, and 88%, respectively, in
predicting antimicrobial activity. For the cross-validation dataset, we obtained an error of
10% and sensitivity and specificity of 92% and 90%, respectively, in predicting antimicrobial
activity (Table 3). For the test dataset, the accuracy, specificity, and sensitivity in predicting
antimicrobial activity were 72%, 100%, and 0%, respectively. The performance of KNN
revealed that for the classification of samples characterized by antimicrobial activity, the
classification rate was 88% and 90% for the training and validation process.

2.4.3. Support Vector Machine (SVM)

The SVM model, based on the E. coli spectra with MSC pre-processing, was developed
after the fine-tuning of several parameters and was characterized by a radial basis function
SVM-kernel, with C = 100. The model showed significant fitting accuracy (90%), with
a 12% classification error and a 20% cross-validation error rate (Table 3). The training
model was characterized by excellent accuracy (93%) and a low calibration error (9%).
The sensitivity and specificity for cluster A (antimicrobial activity) were 97% and 85%,
respectively. In terms of the calibration model, the specificity and sensitivity for cluster A
were 80% and 85%, respectively. In terms of cross-validation, the accuracy and validation
error were, respectively, 81% and 20%, being characterized by excellent specificity and
sensitivity (92% and 93%) in predicting cluster A (Table 3). In terms of prediction, the
model presented an accuracy value of 89%, with values of 80% and 85% for specificity and
sensitivity, respectively, in predict clustering A. The SVM model combined with the MIR
spectral data, therefore, was a robust model for predicting antimicrobial activity.

2.4.4. Backpropagation Network (BPN)

The success of an artificial neural network depends on the size and quality of the
training data, as well as its structure and the learning algorithms used. The samples were
randomly assigned to a training set (65%) and a test set (35%). To optimize the network,
an appropriate learning rate and different numbers of input nodes (10 and 20) and hidden
layer neurons (1 and 2) were evaluated. According to the test set values obtained for the
different models, the BPN algorithms (1:10; 1:20; 2:10, and 2:20) presented the best results
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when compared to the other algorithms (Table 3). Based on the MSE value, the model
developed with one layer and 20 nodes was more suitable for the classification process.
For each condition, 20 neurons per layer were considered, with a learning rate = 0.01,
1000 iterations, and a momentum term of 0.5, which allowed for faster convergence with
the use of smaller learning coefficients. A two-layer BP model was developed at last,
with the sigmoid transfer function. The scores of the first 15 PCs were applied as the
input variables in the BP-ANN models. The epoch number was set at 1000, and after the
multi-training step, the optimal number of nodes in the hidden layer and the learning rate
were defined as 20 and 0.01, respectively. The optimized BPN model, based on the spectra
with MSC pre-processing, showed an excellent fitting accuracy of 90%, a low classification
error of 12%, and a cross-validation error rate of 20% (Table 3). The training model was
characterized by an accuracy of 100% and a calibration error of 22%. Sensitivity was 100%
and specificity was 100% in predicting the antimicrobial effect (Table 3). For the test dataset,
the error rate was 14% and the accuracy value was 89%, showing sensitivity of 92% and
specificity of 80% for cluster A.

The BPN 1:20 model was the one with the best classification results in terms of the
test conditions, followed by the BPN model with two layers and 10 nodes and the BPN
model with two layers and 20 nodes. Based on these results, the BPN algorithms provide
the best guarantee for the development of classification models to predict extracts with
antimicrobial activity (Figure 6). These neural networks have an advantage over conven-
tional mathematical methods for modeling complex biological systems because (1) they
are based only on an actual measured set of input and output variables, without requiring
prior information about the interrelationship between the variables, and (2) they possess
strong generalization and prediction ability. The principal advantages of artificial neural
network (ANN) techniques include their capacity for data learning and generalization, fault
tolerance, and an innate ability to process contextual information, alongside their rapid
computational capabilities [36]. According to Badura et al. (2021), ANNs serve as excellent
tools to support researchers in laboratory work, enabling the estimation of whether a tested
compound possesses the desired antimicrobial activity [37]. It is also noteworthy that the
primary advantage of ANNs is their ability to streamline the work of researchers who aim
to uncover the intricate relationships among the physicochemical properties of compounds.
This approach enables researchers to target the chemical synthesis of compounds with
the desired activity by leveraging theoretical models obtained through computational
chemistry [37]. According to the studies conducted by Cabrera et al. (2010), artificial neural
networks serve as reliable, fast, and cost-effective tools, paving the way for predicting the
antioxidant activity of essential oils [38].
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3. Materials and Methods
3.1. Extraction Process

The plant materials, including the flowers, seeds, and fresh and dried leaves of C.
cardunculus, were subjected to maceration using a mortar and pestle. Subsequently, the
macerated materials were transferred to a flask containing the respective solvent (water,
ethanol, acetone, methanol, and ethyl acetate) at a concentration of 5% (w/v). The mixture
was stirred at room temperature for 16 h. The extracts were then filtered under vacuum,
and the solvents were evaporated using a rotavapor at 60 ◦C. The resulting dry extract
was weighed, and a suitable volume of H2O was added to achieve a final concentration
of 10 mg/mL. In the case of aqueous extraction, the material was boiled at approximately
100 ◦C for 10 min (Figure 7).
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Figure 7. Experimental procedure carried out from selecting the plant material to extract classification
based on E. coli FTIR spectra and machine learning methodology.

3.2. Antioxidant Activity

The antioxidant activity was determined according to the procedure developed by
Mensor et al. [39], with slight adaptations as follows: the samples were diluted in methanol
at concentrations of 10, 50, and 200 µg/mL. A total of 1 mL of alcoholic solution of
2,2-diphenyl-1-picryl-hydrazyl (DPPH) (50 µg/mL) was added to 2.5 mL of the sample.
The mixture was maintained in the dark for 30 min. Absorbance was evaluated using a
spectrophotometer at 518 nm (Shimadzu, Japan). The percentage of free radical scavenging
(%FRS) was evaluated according to Equation (1): Ac–control absorbance; As–sample ab-
sorbance. The blank was prepared by replacing DPPH with ethanol in the reaction mixture.
The negative control was prepared by adding 1 mL of DPPH in 2.5 mL of ethanol.

FRS (%) =
(Ac − As)

Ac
× 100 (1)

3.3. Total Phenols

The spectrophotometric determination of phenolic compounds was conducted ac-
cording to the method developed by Slinkard and Singleton [40]. The calibration curve
was obtained using different concentrations of gallic acid (0–1000 mg/L). Each sample
(1 mL) was transferred to a 25 mL flask, while the blank was prepared with distilled H2O.
Subsequently, 1 mL of Folin–Ciocalteu reagent was added, and the mixture was stirred and
then left to rest for 5 min. To this mixture, 7 mL of (0.2 g/L) Na2CO3 solution was added,
and the resulting mixture was kept in the dark for 2 h. The absorbance of the samples was
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determined at 765 nm, and the values were consequently converted to gallic acid equivalent
(GAE) per gram of sample.

3.4. Antimicrobial Activity

The extracts obtained from different tissues of C. cardunculus, using diverse solvents,
were tested on agar plates against E. coli cells. The bacteria were grown at 37◦ C with a
stirrer (200 rpm) for 16 h. Then, 100 µL of the extracts was incubated with a similar volume
of culture medium containing a specific concentration of cells. After an incubation period
(2 h at 37 ◦C), 100 µL of this mixture was plated on a solid culture medium containing 2%
(w/v) of agar. The plates were incubated at 37 ◦C for 16 h before counting the number of
colonies.

3.5. FTIR Spectral Analysis
3.5.1. Acquisition of Spectra

The samples containing E. coli cells were subsequently diluted to obtain a similar
optical density (OD = 0.2) for each assay. All assays were performed in triplicate. The
plant extracts (100 µL) were incubated with the cells in the culture medium for 2 h at
37 ◦C. After that, the microtubes were centrifuged at 10,000 rpm for 3 min. The pellet was
resuspended in 100 µL of 0.9% (w/v) NaCl. Then, 30 µL of these final suspensions was
pipetted, in triplicate, into Zn-Se plates and, subsequently, dried under a vacuum system
for 3.5 h at room temperature. The spectra were obtained with an HTS-XT system (Vertex,
Bruker Optics, Mannheim, Germany) equipped with an FTIR spectrometer (Bruker Optics,
Mannheim, Germany) between 4000 and 400 cm−1 with a resolution of 4 cm−1 (Figure 7).

3.5.2. Spectral Pre-Processing

The spectra were pre-processed by baseline correction, multiplicative scatter correction
(MSC), standard normal variate (SNV), and derivatives (1st and 2nd derivatives).

3.6. Chemometric Methods
Principal Component Analysis

The compression and classification of data can be performed using the principal
component analysis (PCA) technique. The goal is to reduce the dimensionality of a dataset
(sample) by identifying a new set of variables that is smaller than the original set but still
retains most of the information. This method groups the samples according to the existing
information so that individuals in a group are as similar to each other as possible and as
different from the remaining groups as possible (Figure 7).

3.7. Classification Methods
3.7.1. Partial Least Squares-Discriminant Analysis (PLS-DA)

Partial least squares-discriminant analysis (PLS-DA) is a linear classification tool used
to calculate predictive models. It employs the partial least squares regression algorithm to
identify latent variables that exhibit maximum covariance between the predictor variables
and the class labels [34,41]. The PLS-DA models were calibrated using a total of 42 samples
that were randomly selected: 29 samples with antimicrobial effect and 13 samples with no
antimicrobial effect (Figure 7). Cross-validation was conducted using randomly selected
training samples, with 5 data splits comprising 20% of the calibration samples each. This
process was repeated for 20 iterations to ensure the robustness and reliability of the results.
The test samples were constituted by 18 samples that were randomly selected: 13 samples
with antimicrobial effect and 5 samples with no antimicrobial effect. Prediction was
performed with the samples of the testing set. The evaluation of the prediction ability of
the models was conducted based on their sensitivity (Sn), specificity (Sp), and accuracy,
defined according to the true positives (tp), true negatives (tn), false positives (fp), and false
negatives (fn), as follows:
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Sensitivity (Sn):

Sn =
tp

tp + f p
× 100% (2)

Specificity (Sp):

Sp =
tn

tn + f p
× 100% (3)

Accuracy (Acc):

Acc =
tp + tn

tp + f n + tn + f p
× 100% (4)

3.7.2. K-Nearest Neighbors

The K-nearest neighbors (KNN) algorithm is a supervised machine learning algorithm
in which classification rules are derived from the neighborhood of training-set objects. Here,
‘k’ represents the number of neighbors surrounding the new data point, and classification is
based on the majority class among its nearest neighbors. Distance functions play a crucial
role in computing the distance between the new data point and its ‘k’ neighbors [42]. The
neighborhoods are determined by calculating either Euclidean distances or correlation
coefficients between the unknown object and the objects in the training set. For a training
set comprising n samples, n distances or correlations are computed. The unknown object
is assigned to the class to which the majority of the k objects with the smallest Euclidean
distances or the highest correlations among the training samples belong.

3.7.3. Support Vector Machine

Support vector machine (SVM) relies on identifying a hyperplane that effectively di-
vides a dataset into two distinct groups. However, when dealing with non-linear data, SVM
may struggle with separating the data using linear hyperplanes. In such cases, alternative
methods, known as kernel functions, are employed. Kernel functions are mathematical
functions that take data as input and transform them into a higher-dimensional space,
allowing SVM to effectively classify non-linear data by finding the optimal separating
hyperplane in the transformed feature space [43]. Kernel functions map data to a higher
dimension, enabling SVM classifiers to achieve optimal performance. The parameters and
kernels are fine-tuned to enhance SVM classifier performance. The regularization parame-
ter ‘C’ balances between minimizing training error and model complexity. Additionally,
the kernel parameter ‘γ’ determines the width of the kernel function and the degree of
generalization. These parameters are optimized using a grid-search procedure in SVM. In
this study, the optimal conditions were determined by testing a regularization parameter
‘C’ value of 100 and utilizing a linear kernel function.

3.7.4. Backpropagation Network (BPN)

A backpropagation network (BPN) is highly regarded in data processing due to its
ability to model non-linear processes, leverage data-driven features for powerful parallel
computing, and demonstrate good fault tolerance and adaptability [44]. A backpropagation
network (BPN) utilizes a gradient descent-based delta learning rule, commonly known
as backpropagation, to train an artificial neural network [45]. This systematic method
efficiently adjusts the weights in the network with functional units to analyze a set of input–
output patterns. It aims to minimize the total squared error of the output, thus enabling
the trained supervised learning network to effectively balance its ability to accurately
respond to input patterns. A BPN algorithm minimizes prediction errors and yields
satisfactory results by adjusting each weight of the network. This method is employed
when establishing an artificial neural network (ANN) model [46]. During the optimization
step, the BPN consisted of either 10 or 20 neurons distributed across one or two hidden
layers. In the modeling process, 70% of the total samples were allocated and utilized as the
training dataset for constructing the model, comprising 42 samples. To mitigate the risk
of overfitting, 30% of the samples were set aside and employed as the validation dataset
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for implementing the early stopping methodology, consisting of 18 samples. Based on the
preliminary experiment, the divider and function were selected to randomly partition the
sample data in this study. The Mean Square Error (MSE) serves as a commonly used metric
in the field of machine learning and neural networks, including BPNs. MSE is a measure of
the average squared difference between the actual and predicted values. In the context of a
backpropagation network (BPN) model during the training process, MSE quantifies the
extent to which the model’s predictions deviate from the actual target values. The formula
for MSE is typically expressed as shown in Equation (5):

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (5)

where N is the number of data points in the dataset; yi represents the actual target value
for the ith data point; and ŷi.MSE is calculated by taking the average of the squared
difference between the actual and predicted values for all data points. The use of the
squared difference helps to penalize larger errors more significantly than smaller errors.
A BPN neural network is a kind of multilayer feed-forward neural network. The specific
topological structure of the BP neural network is shown in Figure 8. The BP-ANN model
was developed using the ANN tool of MATLAB 2023a software.
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Neurons are organized into layers within a neural network. The layers situated
between the input layer, where the input signal is applied, and the output layer, which
generates the output signal, are referred to as the hidden layers. The input layer comprises
a total of 1154 absorbances of the entire spectrum. Each hidden layer consists of 20 nodes.
The output layer represents the classification results of the extracts, which were categorized
as either having antimicrobial activity or no antimicrobial activity. During the training
process, the network learns each time a training pattern (comprising input and output data)
is presented to it. This learning occurs through the modification of connection weights,
and the process is repeated several times (iterations or epochs) until a satisfactory level of
error is attained. The MLP parameters were trained using backpropagation to minimize the
MSE, thereby optimizing the weights and biases for each neuron. Subsequently, the output
layer yielded the result of the hidden layers, which was indicative of the antimicrobial
activity. The training process was conducted with a learning rate of 0.001 for 500 epochs,
each comprising 1000 batches. Each batch contained 1154 absorbances. At each epoch, the
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MLP was evaluated using a validation set of the same size as the training set. The MLP
parameters corresponding to each epoch were recorded.

3.8. Other Statistical Analysis

Student’s t-test was performed using a data analysis tool package (Microsoft Office 365
Excel®) to evaluate differences in the ratios between the bands, at a 5% significance level.
Spectral pre-processing and processing were conducted with a classification toolbox (PLS-
DA, SVM, k-NN, and BPN) developed by Milano Chemometrics and QSAR Research Group
(http://michem.disat.unimib.it/chm (accessed on 1 September 2023)), using MATLAB®

2023a (The MathWorks, Natick, MA, USA).

4. Conclusions

The results obtained in this study suggest that the integration of FT-MIR spectroscopy
with machine learning methods represents a promising strategy to evaluate the impact
of biocompounds obtained from plant extracts as antimicrobial agents against bacterial
cells. This holistic approach holds the potential for efficiently classifying and discovering
new bioactive molecules, thereby streamlining the drug exploratory process. It is possible
to develop a model based on a backpropagation network for plant extract classification
based on the spectra of E. coli after rapid exposure to antimicrobial compounds. The
combination of FTIR spectroscopy and machine learning techniques creates the opportunity
for preliminary research of promising antimicrobial compounds, saving time and resources
compared to tests that require greater logistics in terms of consumables and laboratory
techniques. Data analysis employing artificial neural networks offers a powerful method to
optimize and minimize labor costs by streamlining the synthesis process, focusing only
on compounds with anticipated desired properties. This approach serves as an invaluable
tool in guiding the design of synthesis procedures and subsequent biological experiments,
particularly in the targeted exploration for novel compounds with significant potential as
antimicrobial agents.
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