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Abstract: (1) Background: Carboplatin (CBP) is a chemotherapeutic drug widely used in the treatment
of a variety of cancers. Despite its efficiency, CBP is associated with side effects that greatly limit
its clinical use. To mitigate these effects, CBP can be encapsulated in targeted delivery systems,
such as liposomes. Ensuring the adequate loading and release of CBP from these carriers requires
strict control in pharmaceutical formulation development, demanding modern, rapid, and robust
analytical methods. The aim of this study was the development of a sensor for the fast and accurate
quantification of CBP and its application on proof-of-concept CBP-loaded nanosomes. (2) Methods:
Screen-printed electrodes were obtained in-lab and the electrochemical behavior of CBP was tested
on the obtained electrodes. (3) Results: The in-lab screen-printed electrodes demonstrated superior
properties compared to commercial ones. The novel sensors demonstrated accurate detection of CBP
on a dynamic range from 5 to 500 µg/mL (13.5–1350 µM). The method was successfully applied on
CBP loaded and released from nanosomes, with strong correlations with a spectrophotometric method
used as control. (4) Conclusions: This study demonstrates the viability of electrochemical techniques
as alternative options during the initial phases of pharmaceutical formulation development.

Keywords: carboplatin; nanosomes; in-house screen-printed electrodes; electrochemical detection

1. Introduction

Cancer therapy is one of the mainstays of medical research, due to the increasing inci-
dence of the disease, but also thanks to technological advances that create new possibilities
for treatment. Different strategies for cancer therapy have been developed in recent years,
such as vaccines [1], immunotherapy [2], intestine-inspired delivery systems [3], flexible
electrohydrodynamic pumps [4], and targeted drug delivery systems such as liposomes,
dendrimers, metallic particles, polymeric particles, or others [5]. The latter aims at reducing
the systemic side effects of chemotherapeutic drugs, by delivering them strictly in the
proximity of the tumor. This could lead to improved safety profiles and better patient com-
pliance. Although liposomal formulations containing certain drugs, such as doxorubicin,
are already present on the market [6], there remains a lack of commercial availability for
other drugs in this particular form.

One such drug is carboplatin (CBP), a second-generation platinum-based chemothera-
peutic used in the treatment of advanced ovarian cancer [7], small cell lung carcinoma [8],
and head and neck cancers [9]. CBP is known for its systemic side effects such as myelo-
supression, nephrotoxicity, ototoxicity, cardiotoxicity, and peripheral neurotoxicity [10].
The onset of these side effects could be postponed or eliminated by the encapsulation of
CBP in drug delivery systems such as PEGylated niosomes [11], bovine serum albumin
nanoparticles [12], gelatin nanoparticles [13], chitosan nanoparticles [14], graphitic carbon
nitride [15], or polymer-functionalized metal-organic frameworks [16].
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Given the ongoing development of numerous CBP formulations, it is essential that
analytical methods for the quantification of CBP advance in tandem. The accurate quantifi-
cation of CBP is crucial to guarantee optimal loading and release profiles in/from these
formulations, especially in the initial phases of pharmaceutical formulation development,
where numerous tests need to be performed, this being the main objective of this study.

Apart from pharmaceutical formulation development, the quantification of CBP is also
important in the clinical setting. The detection and monitoring of CBP concentrations in
biological fluids can help ensure treatment safety and prevent the onset of side effects [17].

Different methods, such as liquid chromatography [18], liquid chromatography cou-
pled with tandem mass spectrometry [19,20], micellar and microemulsion electrokinetic
chromatography [21], capillary zone electrophoresis [22], and fluorescence after deriva-
tization [23], have been employed for CBP detection in pharmaceutical formulations or
biological fluids. Although these methods offer high accuracy, they often require sub-
stantial sample volumes, which may not be readily accessible during the initial phases of
pharmaceutical formulation development. Furthermore, they entail significant costs and
require specialized personnel.

An alternative to these is represented by electrochemical methods. They are accurate,
fast, portable and, once optimized, can be used with minimum training [24]. Among elec-
trochemical methods, voltammetric techniques are commonly used for the direct detection
of small molecules, due to their high sensitivity. They involve scanning the potential and
measuring the current generated by the oxidation/reduction in the analyte. A disadvantage
of voltammetric methods is electrode fouling and surface contamination [25]. To mitigate
this, single-use electrodes can be developed through a variety of techniques, such as screen
printing. Screen printing involves the deposition of conductive inks with different compo-
sitions (carbon, gold, silver) onto plastic or ceramic substrates to produce electrodes that
present advantages such as flexibility, reproducibility, ease of manufacture, ease of surface
functionalization, low costs, and capacity for mass production [26].

The direct electrochemical detection of CBP was performed by using platinum [27,28]
or carbon paste electrodes [28]. Indirect detection approaches consisted in the detection
of CBP using DNA-modified glassy carbon electrodes [29] or carbon nanotube-epoxy
composite electrodes in the presence of adenine or guanine [30]. In these approaches, the
electrochemical detection was carried out by following the changes in the oxidation signal
of DNA bases in the presence of CBP.

In this work, the direct electrochemical detection of CBP based on its electrochemical
oxidation signal obtained on in-lab screen-printed carbon electrodes is reported for the first
time. The electrodes were screen-printed using conductive carbon and silver inks and the
electrochemical behavior of CBP was analyzed on the in-house screen-printed surface. The
influence of the pH and the scan rate were identified and a differential pulse voltammetry
(DPV) method was optimized for CBP detection. The second objective of this study was the
application of the developed method for the analysis of CBP-containing pharmaceutical
formulations. To this scope, nanosomes were loaded with CBP, followed by the release
of the drug in different conditions. The developed electrochemical method was applied
for the quantification of the loaded/released CBP and the results were in good correlation
with the UV–Vis spectrophotometric method used as control. The optimized DPV method
was also applied for the detection of CBP from commercial artificial saliva, artificial tears,
and commercial human serum, which were used as model complex matrices to expand
the practical application of the analytical method and the developed sensor. The robust-
ness of the DPV method was evaluated by ANOVA statistical analysis to assess the CBP
concentration in real samples, serving as intra-assay validation for the optimized method.

The present work demonstrates the potential applicability of electrochemical methods
both in the early stages of pharmaceutical formulation development and in the detection
of CBP in biological complex matrices for diagnosis and treatment monitoring. The in-
lab screen-printed electrodes demonstrated better performances compared to commercial
ones, while also presenting lower manufacturing costs. The analysis time is short and
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requires low sample volumes, compared to other methods described in the literature
such as liquid chromatography. Moreover, the direct electrochemical oxidation of CBP is
reported, thus avoiding the need for unstable reagents such as DNA or DNA bases for
indirect electrochemical detection.

2. Materials and Methods
2.1. Materials

CBP was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). 23.5 mg/mL
CBP stock solutions were prepared in 0.1 M H2SO4, aliquoted and stored at −20 ◦C for
maximum one month. Lipo-N type nanosomes (100 nm) were purchased from Nanovex
Biotechnologies (Asturia, Spain) and used for CBP loading and release studies. All
other reagents were purchased from Sigma Aldrich (Saint Louis, MO, USA), were of
analytical grade, and were used without further purification. All solutions were pre-
pared in ultrapure water (18 MΩ cm−1) obtained using a Millipore Simplicity device
(Sigma Aldrich, Saint Louis, MO, USA).

2.2. Methods
2.2.1. Electrochemical Cell Printing and Characterization

The electrochemical cells were fabricated according to a previously published proce-
dure [31]. A stainless-steel stencil was utilized to print the contacts and electrodes. Initially,
an Electrodag PF-410 silver conductive ink (Henkel, Dusseldorf, Germany) was employed
to print the contacts and reference electrodes. The printed silver layer was then allowed to
dry for 15 min at 60 ◦C. Subsequently, the working and counter electrodes were printed
using an Electrodag 423 SS© carbon-based ink (Henkel, Dusseldorf, Germany), followed
by drying at 60 ◦C for 15 min. Finally, an insulating layer was applied to prevent short
circuits, and the electrochemical cells were left to dry overnight at 60 ◦C to ensure complete
polymerization of the ink monomers and thorough drying. After imprinting, the electrodes
were electrochemically pre-treated using amperometry at a constant potential of +1.2 V for
600 s in a 1 M Na2CO3 solution.

The electrode surface underwent electrochemical characterization after printing, em-
ploying electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in
a 10 mM [Fe(CN)6]3−/4− solution prepared in 0.1 M KCl. EIS was conducted over
61 frequencies ranging from 0.1 to 100,000 Hz with an amplitude of 0.01 Hz at the open-
circuit potential. CV involved scanning the potential between −0.4 and +1 V for 2 cycles at
a scan rate of 100 mV/s.

2.2.2. Electrochemical Measurements

An Autolab MAC80100 multichannel potentiostat/galvanostat (Metrohm, Utrecht,
The Netherlands) operated with Nova 1.10.4 software was used to perform the electrochem-
ical tests. Commercial carbon electrodes (Metrohm DropSens, Oviedo, Spain) and in-house
screen-printed carbon electrodes were used to analyze the electrochemical behavior of CBP
and the best surface was chosen for further tests. To analyze the influence of the pH on
the detection of CBP, 100 µg/mL CBP solutions were prepared in Britton–Robinson buffer
(BRB) with pH values ranging from 2 to 10. The solutions were tested using a CV procedure
as follows: scan between 0.2 and +1.4 V, scan rate 100 mV/s.

The influence of the scan rate was determined using 100 µg/mL CBP by CV by cycling
the potential between 0.2 and +1.5 V with scan rates between 5 and 500 mV/s.

The influence of CBP concentration on the analytical signal was determined using
DPV on a concentration domain between 5 and 500 µg/mL, on lab-made screen-printed
electrodes. The optimized DPV conditions were as follows: scan between 0 and +1 V with
a scan rate of 100 mV/s and a step potential of 5 mV.

The selectivity of the method was tested using the optimized DPV method on CBP
solutions in the presence of common interferents present in pharmaceutical formulations or
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biological fluids, such as dopamine, ascorbic acid, citrate, Ca(II), Na(I), Mg(II), Li(I), NH4(I),
Cl−, Br−, SO4

2−, NO3−.
For real sample analysis, artificial saliva (Sigma Aldrich, St Louis, MO, USA) and

artificial tears (Systane® ULTRA, Alcon®, Geneva, Switzerland) were diluted and spiked
with appropriate concentrations of CBP. In the case of serum samples, a 4 M ammonium
sulfate solution was used for protein precipitation from commercial human serum (Sigma
Aldrich, Saint Louis, MO, USA). The samples were centrifuged for 5 min at 10,000 rpm
and the obtained supernatant was diluted ten times with PBS and then spiked with CBP.
The concentration of the spiked samples was determined using the calibration curve. The
recoveries and relative standard deviations were calculated for all measurements and the
robustness of the assay was validated using ANOVA statistical analysis.

For the analysis of proof-of concept pharmaceutical formulations, Lipo-N nanosomes
were loaded with CBP and the amount of loaded CBP was determined electrochemically
with the optimized DPV method, as well as by UV–Vis spectrophotometry used as a control
method. The release of CBP from the nanosomes was monitored using the same techniques.

2.2.3. Carboplatin Loading

A total of 100 mg of nanosomes were accurately weighted in Eppendorf tubes and a
2 mg/mL CBP solution prepared in 0.1 M phosphate-buffered saline (PBS) pH 5 was put in
contact with the nanosomes for 24 h at room temperature. The suspensions were placed
on a HulaMixer (Invitrogen) under continuous shaking, using the following parameters:
orbital shaking 3 rpm (90 s), reciprocal shaking 1◦ (10 s), and vibration movement 1◦ (10 s).
After 24 h, the suspensions were centrifuged for 10 min at 12,000 rpm and 350 µL of the
supernatant was sampled and tested using either electrochemical or spectrophotometric
methods. For the electrochemical method, a 1:1 dilution with 0.1 M PBS pH 5 was performed
before testing, while for the spectrophotometric method no dilution was required. The
CBP concentration was determined using the corresponding calibration curves and the
encapsulation efficiency (EE%) and loading capacity (LC%) were calculated using the
following equations [32]:

EE (%) = ((V × Ci − V × Cf)/(V × Ci) × 100);

LC (%) = ((V × Ci − V × Cf)/mnanosomes-CBP × 100)

where V—volume of the release media, Ci—initial CBP concentration, Cf—final CBP
concentration (after loading), and mMCPs-carboplatin—weight of the loaded nanosomes.

2.2.4. Carboplatin Release

A total of 100 mg of loaded nanosomes was accurately weighted in Eppendorf tubes
and suspended in 0.1 M PBS pH 5, pH 6, and pH 7.4, respectively. The release experiments
were performed at 37 ◦C for three days, under continuous shaking in a ThermoMixer (Ep-
pendorf®, Hamburg, Germany). The samples were centrifuged to separate the nanosomes
from the supernatant and 350 µL of supernatant was sampled at precise time intervals, as
follows: at 15 min intervals in the first hour, at 1 h intervals in the first 6 h, and then at 24 h
intervals for three days. After each sampling, 350 µL of the corresponding fresh buffer was
added to the samples. All release experiments were performed in triplicate.

CBP concentration in the release media was determined using both the spectrophoto-
metric method and the optimized electrochemical method. The cumulative mass of released
CBP and the cumulative release was determined using the following equations [32]:

mn = (Cn × V) + Vs (C1 + C2 + C3 +. . .+ Cn−1)

Crn = (mn/mload × 100)

where mn—cumulative mass at a certain time point, Cn—CBP concentration in the release
media at a certain time point, V—volume of the release media, Vs—volume sampled for
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analysis (350 µL), C1,2,. . .n−1—CBP concentration at previous testing times, Crn—cumulative
release, mn—cumulative mass, mload—mass of CBP loaded in the nanosomes.

2.2.5. Spectrophotometric Measurements

UV–Vis spectrophotometric measurements were conducted utilizing a SPECORD
250PLUS spectrophotometer (Analytik Jena, Jena, Germany) controlled by the WinAspect
4.2.0.0. software. Various concentrations of CBP were dissolved in different buffers, and
their spectra were recorded within the range of 200–500 nm. The wavelength corresponding
to maximum absorbance (λmax) was determined, and calibration curves were built for CBP
in each buffer tested. These curves were then used to quantify the amount of CBP loaded
into and released from the nanosomes.

2.2.6. Statistical Analysis

ANOVA statistical analysis was performed using the Excel 2016 software.

3. Results and Discussions
3.1. Electrochemical Cell Development

The in-house screen-printed carbon electrochemical cell was developed, and its perfor-
mance was compared to that of commercially available carbon screen-printed electrodes
(results presented in Table 1 and Figure 1). The comparison was performed using CV and
EIS in a 10 mM [Fe(CN)6]3−/4− solution prepared in 0.1 M KCl solution. The in-house
screen-printed cell consisted of silver contacts, a carbon working and counter electrode,
and a silver reference (see Inset in Figure 2). The diameter of the working electrode was
4 mm and the height of the screen-printed surface was 0.15 mm. The dimensions of the
whole electrochemical cell, including contacts, were 5 × 1 cm (length vs. width).

Table 1. Peak potentials and intensities for the oxidation/reduction in [Fe(CN)6]3−/4− on different
electrode surfaces.

Electrode Type Eox (V) Iox (µA) Ered (V) Ired (µA)

Carbon Dropsens® electrode (d = 4 mm) 0.256 164 0.027 −191
In-house screen-printed carbon electrode (d = 4 mm) 0.542 209 −0.274 −208

In-house screen-printed carbon electrode, after
activation (d = 4 mm) 0.252 402 0.040 −380
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Figure 1. Surface characterization in 10 mM [Fe(CN)6]3−/4− via CV for the commercially available
carbon electrode (green, in-lab screen-printed carbon electrode (black), activated in-lab screen-printed
carbon electrode (orange) (A); Surface characterization in 10 mM [Fe(CN)6]3−/4−via EIS for the
commercially available carbon electrode (green), in-lab screen-printed carbon electrode (black),
activated in-lab screen-printed carbon electrode (orange) (B).
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Figure 2. Differential pulse voltammograms indicating the electrochemical behavior of CBP on
the in-house screen-printed electrode (red) compared to a blank solution—0.1 M PBS pH 5 (black).
Inset: Image of the in-lab screen-printed electrochemical cell.

It can be observed in Table 1 that there were no significant differences between the
oxidation and reduction current intensities obtained on the commercial and the in-house
screen-printed carbon surfaces. However, in the case of the in-house screen-printed elec-
trode, a peak-to-peak separation of about 800 mV was registered, compared to just 200 mV
for the commercial electrode (Table 1, Figure 1A). This prompted the use of a surface
activation procedure already described in the literature [31], consisting of amperome-
try at +1.2 V for 600 s in a 1 M Na2CO3 solution. After the pretreatment procedure,
both the oxidation and reduction signals increased by almost 100%, while the peak-to-
peak separation decreased to 200 mV, as in the case of the commercially screen-printed
electrode (Table 1, Figure 1A). The data obtained by CV were also confirmed by EIS anal-
ysis (Figure 1B). It can be observed that the highest resistance to charge transfer was
registered in the case of the in-house screen-printed, inactivated electrode (Rct = 5744 Ω).
After activation, a sharp decrease to 147 Ω was observed. In the case of the commercial elec-
trode, the registered Rct was 2227 Ω, indicating that the activated in-house screen-printed
electrode presents a better surface conductivity compared to the commercial one. This
demonstrates that adequately pretreated in-house obtained electrodes can be successfully
used as an alternative to commercially screen-printed electrodes, offering higher current
intensities with the same peak-to-peak separation.

The electroactive area of the in-house screen-printed electrodes was calculated based
on the analysis of [Fe(CN)6]3−/4− behavior and the Randles–Sevcik equation [33]:

Ip =
(

2.69·105
)
·n·

√
α·nα·C·

√
D·

√
v·S

where Ip—intensity of the peak current; n—number of electrons involved in the electro-
chemical process; α—transfer coefficient; C—concentration of the redox species in mol/cm3;
D—diffusion coefficient in cm2/s; v—scan rate (V/s); S—surface area of the working
electrode (cm2).

The calculated electroactive area was S = 0.308 cm2, which explains the differences
obtained between the in-house screen-printed sensor and the commercially available one,
which has an electroactive area of S = 0.126 cm2. The difference in area leads to the
differences observed in Table 1 and Figure 1.

3.2. Electrochemical Behavior of CBP

The electrochemical behavior of CBP was analyzed on the in-house screen-printed
electrodes and in DPV two oxidation peaks were observed at around −0.375 V and
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+0.6 V (Figure 2). The oxidation of cisplatin, another platinum-based chemotherapeutic,
was previously reported in the literature at negative potentials around −0.5 V [34]. Despite
this, in this work the oxidation of CBP was followed at +0.6 V, due to the higher intensity
of the oxidation signal at this potential, this having an approximately threefold higher
intensity compared to the signal at −0.375 V.

The oxidation of CBP on the in-house screen-printed electrodes was irreversible
(see Figures 3 and 4).
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Figure 4. Cyclic voltammograms registered for the 100 µg/mL CBP solution between +0.2 and +1.5 V
with scan rates between 5 and 500 mV/s in 0.1 M PBS pH 5 (A); Variation in the intensity of the
oxidation current for CBP with the scan rate (B); Variation in the intensity of the oxidation current for
CBP with the square root of the scan rate (C); Variation in the logarithm of the current intensity for
CBP with the logarithm of the scan rate (D).
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3.2.1. Influence of the pH

To study the influence of the pH on the electrochemical behavior of CBP, 100 µg/mL
solutions were prepared in BRB with pH values between 2 and 10. The obtained voltam-
mograms are presented in Figure 3. It can be noticed that, in all cases, the oxidation of CBP
is irreversible, which is consistent with previous data published in the literature [27]. A
cathodic shift in the oxidation peak can be observed with the increase in the pH (Figure 3A).
This can be explained by the involvement of protons in the oxidation mechanism of CBP [28].
The intensity of the oxidation peak increases on the pH 2–4 domain, registering a maximum
value at pH 4, followed by a decrease to pH 5 and a further decrease to a plateau that
remains relatively constant up to pH 10 (Figure 3B). This behavior also suggests the involve-
ment of protons in the oxidation mechanism of CBP. A possible oxidation mechanism for
CBP was proposed by Mebsout et al. [28] and suggests the addition of H2O or Cl− ligands
to the oxidized platinum (IV) center. The type of ligand is determined by the Cl− concentra-
tion of the buffer used. In this case, Cl− ions were absent from the Britton–Robinson buffer,
which determines that the most likely structure for the oxidation product is the one with
water molecules as ligands. A similar mechanism was proposed for the electro-oxidation
of cisplatin, a chemotherapeutic similar in structure to CBP [34].

While the maximum current intensity was observed at pH 4, the pH selected for
further tests was 5, given its proximity to the pH of the tumor tissue and the maintenance
of a sufficiently high current intensity.

The variation in the oxidation potential with the pH is represented in Figure 3C and
proved to be linear on the pH domain between 4 and 10. The correlation was expressed
by the equation E(V) = −0.023 × pH + 0.712 and had a correlation coefficient of 0.97. The
slope obtained for this equation corresponds to a number of two electrons, confirming the
mechanism proposed in the literature for the electrochemical transformation of CBP [28].

3.2.2. Influence of the Scan Rate

Considering the previously presented results, the influence of the scan rate on the
electrochemical oxidation of CBP was tested in 0.1 M PBS pH 5. This medium was chosen
to assess the behavior of CBP in the environment in which the release of the drug will be
tested. The results obtained in CV for scan rates between 5 and 500 mV/s are presented
in Figure 4A.

The increase in the scan rate led to an increase in the oxidation current intensity
as well as to a slight cathodic shift (Figure 4A). A scan rate of 100 mV/s was chosen
for further experiments as this value provided a high enough current intensity and was
slow enough to capture the electrochemical transformation of CBP. The variation of peak
current intensity with the scan rate (Figure 4B) and with the square root of the scan
rate (Figure 4C) were represented to determine whether the electrochemical process was
diffusion or adsorption-controlled.

For the variation in the peak current intensity with the scan rate, the following equa-
tion was obtained: Iox (µA) = 0.185v (mV/s) + 4.350, while for the variation in the peak
current intensity with the square root of the scan rate, the equation was Iox (µA) = 4.29v1/2

(mV/s)1/2 − 14. It can be seen that a better linear correlation was obtained for the variation
of the current intensity with the scan rate (R2 = 0.980), than with the square root of the
scan rate (R2 = 0.862), indicating an adsorption-controlled process. This is in contradiction
with previously published results, which identified a diffusion-controlled behavior of CBP
on platinum [27] or carbon paste electrodes [28]. To better understand the kinetics of the
electro-oxidation process, the variation in the logarithm of the current intensity with the
logarithm of the scan rate was represented for CBP in 0.1 M PBS pH 5 (Figure 4D). A linear
correlation (log(Iox (µA)) = 0.52 log (v (mV/s)) − 0.40 with a slope coefficient of 0.52 was
obtained, which is close to the theoretical value of 0.5 for diffusion-controlled processes.
This is in agreement with previously published data [27,28] and indicates that, overall,
the electro-oxidation process in this case is controlled by both diffusional and adsorptive
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processes. This phenomenon may be due to the nature of the in-lab screen-printed electrode
surface, which may present roughness and irregularities.

3.3. Analytical Parameters

Based on the previous results, an optimized method was developed for the detection
of CBP based on DPV, using the following parameters: scan rate 100 mV/s, 0.1 M PBS pH 5
as electrolyte media, potential scan between 0 and +1 V. The voltammograms obtained for
increasing concentrations of CBP between 5 and 500 µg/mL are presented in Figure 5A.
A linear variation was observed between the oxidation current intensity of CBP and its
concentration across the entire tested range (Figure 5B).
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Figure 5. Voltammograms obtained following the testing of CBP solutions at various concentrations
(5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500 µg/mL) prepared in 0.1 M PBS at pH 5 over
the potential range from 0 V to 1 V (A) Calibration curve obtained for the tested CBP concentrations (B).

For the linear variation between the peak current and concentration, an equation of
the form Iox (µA) = 0.145 [CBP] (µg/mL) − 1.946 was obtained, displaying a correlation
coefficient R2 = 0.9914. All tests were performed in triplicate and the average standard
deviation was ±1.69%. A detection limit (LOD) value of 1.6 µg/mL was estimated based
on the signal-to-noise (S/N) ratio of 3, and a limit of quantification (LOQ) of 5 µg/mL was
established, representing the lower limit of the concentration range of CBP tested in this
study. The sensitivity of the optimized DPV method for CBP detection is 0.145 µA mL/µg,
which was determined based on the slope of the calibration curve.

The inter-electrode variability was tested on five different electrodes produced in
different batches and the calculated RSD was 4.15%.

The obtained results were compared with data from the literature and presented in
Table 2 (results from this work written in bold).
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Table 2. Comparison of the present study with previously published data.

Electrode Method Linear Range (µM) LOD (µM) Matrix Ref

Pt electrode LSV, direct 50–1000 30 Cell culture supernatant [27]
Pt electrode CPE CV, direct 10–300 8 Aqueous solutions [28]

GCE-DNA DPV, indirect 5.7–40 5.7 Human serum [29]
GCE-CNT-epoxy DPV, indirect 0–100 0.014 Aqueous solutions [30]

SPCE DPV, direct 13.5–1350 4.5

Loading and release buffers
containing CBP
Artificial saliva
Artificial tears

This work

LSV—linear sweep voltammetry; CPE—carbon paste electrode; CV—Cyclic voltammetry; GCE—glassy carbon
electrode; DPV—differential pulse voltammetry; CNT—carbon nanotubes; SPCE—screen-printed carbon electrode.
Results from this work presented in bold.

Compared with other direct electrochemical detection methods, this study presents the
lowest LOD and the widest linear range. Moreover, the LOD is comparable to that obtained
for an indirect detection strategy that was also applied on human serum samples [29].
However, the indirect method relies on DNA for electrode functionalization, which could
lead to potential stability and reproducibility issues. The detection of CBP was achieved
by Phairatana et al. [30], using a microfluidic system which integrated a glassy carbon
electrode modified with a carbon nanotube-epoxy composite. While this allows for CBP
detection at very low concentrations, the experimental setup is complex, and the detection
of CBP is also indirect, based on changes in the electro-oxidation signal of adenine. The
obtained results indicate that the present method represents a simple, fast, and cost-efficient
strategy for CBP detection.

3.4. Selectivity Studies

The detection of CBP was performed in the presence of different possible interferents
from pharmaceutical formulations (Ca(II), Na(I), Mg(II), Cl−), biological fluids (dopamine,
ascorbic acid), loading and release media. The tested interferents were chosen based
on a literature study, which proposed these compounds as possible interferents in the
electrochemical detection of cisplatin, a drug with structural similarities with CBP [35].
Single-component solutions of varying concentrations of the following compounds were
tested: dopamine, ascorbic acid, citrate, Ca(II), Na(I), Mg(II), Li(I), NH4(I), Cl−, Br−,
SO4

2−, NO3−, as well as mixtures of CBP with the aforementioned compounds at equal
concentrations. The results were compared with the peak oxidation current values obtained
for CBP from single-component standard solutions of the same concentration. The tested
concentration values and the recovery rates calculated for the CBP signal in the presence of
interferents compared to the signal obtained when it is alone in solution are presented in
Table 3. All tests were performed in triplicate and the relative standard deviations (RSDs)
are presented in Table 3.

Table 3. Selectivity studies for the electrochemical detection of CBP on in-house screen-printed electrodes.

Sample Concentration (µg/mL) Recovery (%) RSD (%)

CBP + Cisplatin
25 2.04 2.30

100 - -
200 1.06 1.60

CBP + Dopamine
25 95.79 0.75

100 101.68 3.51
200 108.93 1.80

CBP + Ascorbic acid
25 104.51 1.43

100 87.81 1.65
200 100.01 1.87
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Table 3. Cont.

Sample Concentration (µg/mL) Recovery (%) RSD (%)

CBP + Ca(NO3)2

25 99.56 1.17
100 108.17 2.04
200 98.87 1.22

CBP + Na3C6H5O7

25 113.55 1.24
100 118.85 2.48
200 101.33 0.87

CBP + MgCl2
25 118.49 0.67

100 93.83 3.22
200 112.70 0.71

CBP + Li2SO4

25 101.75 1.38
100 103.22 2.23
200 105.11 1.75

CBP + NH4Cl
25 109.61 1.33

100 109.92 2.45
200 108.78 1.72

CBP + MgBr2

25 141.54 0.79
100 128.38 1.54
200 107.89 1.89

No interferences were observed in the case of dopamine, ascorbic acid, Ca(NO3)2,
sodium citrate, MgCl2, Li2SO4, and NH4Cl at all tested concentrations, with acceptable
recovery rates ranging from 87.81% to 111.72%. Slight interferences could be observed in
the case of lower concentrations of MgBr2. The electrochemical analysis of cisplatin (CIS), a
similar platinum-based chemotherapeutic agent, led to the formation of an oxidation peak
at a higher potential compared to that for the oxidation of CBP. When the mixture of the
two compounds was tested, the oxidation peaks merged into one, making the detection of
CBP in the presence of CIS impossible. However, this interference does not present clinical
relevance, as the two compounds are not administered together, being representatives
of the same chemotherapeutic class. In general, associations of multiple drugs from the
same class are avoided, due to the increased risk for synergic negative effects, with no
improvement in therapeutic efficiency.

3.5. Real Sample Analysis

The detection of CBP in biological fluids is justified as the optimized method developed
in this study could be implemented as a monitoring technique during chemotherapy
to assess treatment safety. Plasma concentrations of CBP are used in clinical practice
to evaluate clinical exposure to the drug and determine the right dosage, especially in
vulnerable populations such as neonates [36]. Apart from serum or plasma samples,
less invasive biological fluids such as tears, saliva, or sweat, could also be employed,
considering patient non-compliance with invasive serum sampling methods.

Commercial serum samples were treated with saturated ammonium sulfate solution
for protein precipitation and were diluted ten-fold with PBS to dilute the precipitation
agent. Artificial saliva and tears were also used as model complex matrices for the detection
of CBP, as the presence and persistence of CBP in saliva up to 24 h after administration was
demonstrated in previous studies [37].

Deproteinized serum, commercial saliva, and tear samples enriched with CBP were
tested in the study, for which recovery rates and RSD for the current signal were calculated
relative to the calibration curve data. The results are presented in Table 4, showing no
significant matrix effect for samples reconstituted in deproteinized serum, saliva, and
artificial tears at a 1:10 dilution. These results indicate the applicability of the method for
the detection of CBP from model biological matrices after minimal pretreatment.
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Table 4. Real sample analysis.

Sample Concentration (µg/mL) Recovery (%) RSD (%)

Deproteinized serum
Dilution 1:10

25 103.72 1.42
100 102.24 6.06
200 92.74 8.97

Saliva
Dilution 1:10

25 102.92 2.78
100 106.31 3.27
200 99.80 2.56

Artificial teras
Dilution 1:10

25 96.94 3.31
100 95.44 1.04
200 110.05 1.61

3.5.1. Evaluation of the Robustness of the Applied Electrochemical Method for CBP
Detection in Serum, Saliva, and Tears

Evaluation of robustness of the applied DPV method was assessed using ANOVA
statistical analysis to determine the amount of CBP found in real samples such as depro-
teinized serum, tears, and saliva (the intra-assay validation of the optimized method).
Recovery values were determined at three different concentrations, each with three repli-
cates, and the ANOVA statistical analysis revealed favorable robustness results, as depicted
in Table 5. Regression analysis across all experiments demonstrated high significance,
with no deviations observed in either parallelism or linearity (p = 0.279 > ptheoretical = 0.05).
Furthermore, all assays yielded results within the confidence interval, indicating a proper
execution of the assay system. Additionally, the optimized method exhibited significant
response differentiation between concentrations and notable sensitivity to the selected
concentrations, as summarized in Table 5.

Table 5. ANOVA statistical data obtained based on the recovery values of CBP estimated based on
DPV tests.

Source of Variation SS Df MS F p-Value F Crit

Between Groups 26.7 1 26.7 2.71 0.279 3.28
Within Groups 383.4 54 44.51

p-value theoretical
Total 410.1 55 0.05

3.5.2. Comparison between DPV and UV–Vis Methods

To compare the DPV method proposed in this study with the UV–Vis method, both
techniques were utilized for the analysis of human deproteinized serum, saliva, and tears
containing CBP concentrations ranging from 25 to 200 µg/mL (with three replicates for
each concentration). The t-test (two-sample assuming equal variances) was also conducted,
revealing no significant difference between the datasets (p = 0.211 > ptheoretical = 0.05).
The correlation between the CBP concentrations determined by the DPV assay and those
obtained from the UV–Vis assay in real samples was then assessed.

3.6. Spectrophotometric Studies

UV–Vis spectrophotometry was used as a control method to verify the results obtained
from DPV studies for the loading and release of CBP. The spectrophotometric behavior of
CBP was tested in all buffers that were used in this study, the wavelength corresponding to
the maximum of absorption was determined in each case, and a calibration curve was built
using increasing concentrations of CBP dissolved in each buffer. The obtained parameters
are presented in Table 6.
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Table 6. Parameters obtained for the spectrophotometric analysis of CAR in different buffers.

Media λmax (nm) Calibration Curve Equation R2

0.1 M PBS pH 5.0 231 A = 0.007[CBP] − 0.027 0.999
0.1 M PBS pH 6.0 230 A = 0.007[CBP] + 0.0016 0.999
0.1 M PBS pH 7.4 231 A = 0.007[CBP] − 0.0298 0.999

3.7. Application of the Electrochemical Method for the Characterization of
Pharmaceutical Formulations
3.7.1. Evaluation of the CBP Loading Process

CBP loading was performed from 2 mg/mL solutions prepared in 0.1 M PBS pH 5.
Table 7 shows the EE% and LC% values obtained using the concentration of CBP determined
in the supernatant using the UV–Vis and the DPV methods, respectively.

Table 7. Comparison of the loading data obtained using the UV–Vis and the DPV methods.

Loading Solution Quantification Method EE (%) LC (%)

2 mg/mL CBP in 0.1 M PBS pH 5 DPV 32.76 1.15
UV–Vis 34.37 1.11

The variability between the two methods was calculated and a ±2.38% variability
was obtained for EE% and ±1.76% for LC. The low variability between the two methods
indicates that the DPV method can be successfully used for loading studies.

3.7.2. Evaluation of the CBP Release Process

CBP release was evaluated in 0.1 M PBS at pH 5, 6, and 7.4 to assess the influence
of the pH and to mimic biological conditions. The supernatant sampled during the re-
lease process was analyzed using both the optimized DPV and the UV–Vis method. The
cumulative release profiles obtained with both methods were represented (Figure 6) and
compared (Figure 7).
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Figure 6. The representation of the cumulative release variation for CBP from nanosomes in 0.1 M PBS
with pH 5, 6, and 7.4, using the optimized DPV procedure and the electrochemical activated graphite-
based sensor (A), respectively, through UV–Vis spectrophotometry (B). Error bars represent the
standard deviation of three tests.
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Figure 7. Comparison between the cumulative release obtained using the optimized electrochemical
method (■) and UV–Vis spectrophotometry (•) recorded for the release of CBP from nanosomes
loaded from a 2 mg/mL CBP solution prepared in 0.1 M PBS pH 5. The release was carried out in
0.1 M PBS pH 5 and tested with both methods for 72 h. Error bars represent the standard deviation
of three tests.

The highest release was obtained at pH 5, followed by pH 6 and 7.4. A greater release
at pH 5 proves advantageous in drug delivery applications, as tumor tissues are commonly
recognized to have a more acidic pH compared to healthy tissues [38–40]. Comparative
results regarding the release profiles are represented in Figure 7. An average correlation
of 102.99 (RSD 5.22%) was obtained considering a 72 h release process. The minimal
variance between the two techniques may be ascribed to variations in their sensitivity, with
DPV demonstrating superior sensitivity. Higher discrepancies between the two methods
were noticed at two specific time points (Figure 7). These can be explained by the higher
standard deviation of the DPV method compared to the UV–Vis one as well as by the
inter-electrode variability, due to the in-house screen-printed nature of the used electrodes.
However, the overall cumulative release profile remains highly similar for the two methods,
as demonstrated by ANOVA analysis.

Cumulative release was evaluated at three different pH levels using both electro-
chemical and control methods, with three replicates per test, although statistical analysis
was only conducted at pH 5 (Figure 8A). As evident from the presented data, there was
a dose-dependent correlation observed, and the difference between the evaluated meth-
ods was not statistically significant, demonstrating an acceptable regression coefficient of
0.984 (p < 0.001) and a slope of 0.837.

The agreement of the results obtained for the cumulative release of CBP from the
pharmaceutical product (nanosomes loaded with CBP) was assessed using the Bland–
Altman plot (Figure 8B), comparing the DPV and UV–Vis assays. The Bland–Altman plot
illustrates the differences between all datasets and the mean of the cumulative release
obtained by both methods. The mean difference in cumulative release between the two
procedures was 9.29%, with limits of agreement of 4.01 and 13.31 (Figure 8B), indicating
strong agreement between the methods for determining CBP release in 0.1 M PBS pH 5.
Approximately 95% of the differences fell within these limits. Thus, based on the Bland–
Altman plot, it can be concluded that the two analytical methods exhibit good agreement
and that the optimized electrochemical detection strategy demonstrates high accuracy and
robustness. The strong correlation observed in the results underscores the suitability of the
DPV method for monitoring CBP release from nanosomes.
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Figure 8. (A) The correlation between the measured cumulative release of CBP in 0.1 M PBS solution of
pH 5 determined by DPV and the UV–Vis control method was investigated (n = 11). (B) Bland–Altman
analysis was conducted to assess the agreement between the cumulative release of CBP obtained
using the optimized electrochemical method and UV–Vis spectrophotometry for the release of CBP
from nanosomes. The release was conducted in 0.1 M PBS of pH 5 and tested using both methods
over a period of 72 h. The plotted points depict the differences between the cumulative release (%)
calculated based on the data obtained from DPV and UV–Vis assays relative to the mean of the
cumulative release values. The medium dotted horizontal red line represents the estimated mean bias
of 9.29%, while the two dashed horizontal lines indicate the upper (green) and lower (blue) limits of
the 95% confidence interval for agreement determined by the mean standard deviation (SD = ±4.01).

4. Conclusions

In this study, in-house screen-printed carbon electrodes were developed for the de-
tection of CBP from a variety of samples such pharmaceutical formulations and biological
fluids. The in-house screen-printed surface demonstrated better performances compared
to commercial screen-printed electrodes, indicating its applicability as a useful alternative
for CBP detection from pharmaceutical formulations, especially in the early phases of
formulation when numerous tests are required.

The influence of the pH and scan rate on the electrochemical behavior of CBP were
studied, followed by method optimization. The optimized detection method was based on
DPV and had a linear range between 5 and 500 µg/mL, with a detection limit of 1.6 µg/mL.
This method successfully detected CBP loaded and released from lipid-based carriers. The
release of CBP was monitored at different pH values and proved to be Ph-dependent, with
higher release at a more acidic pH. UV–Vis spectrophotometry served as a control method,
showing strong correlations with DPV results and affirming the electrochemical method’s
suitability for CBP detection in pharmaceutical formulations. This highlights the potential
of electrochemical methods as cost-effective, sensitive alternatives for quality control in
pharmaceutical formulation development, offering improved sensitivity and lower costs
while maintaining accuracy. Moreover, the applicability of the method for monitoring CBP
in deproteinized serum, artificial saliva, and tears with good recoveries was also evaluated,
serving as proof-of-concept for the detection of CBP from complex matrices.
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