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Abstract: One-dimensional silicon carbide (SiC) nanomaterials hold great promise for a series of
applications, such as nanoelectronic devices, sensors, supercapacitors, and catalyst carriers, attributed
to their unique electrical, mechanical, and physicochemical properties. Recent progress in their design
and fabrication has led to a deep understanding of the structural evolution and structure–property
correlation. Several unique attributes, such as high electron mobility, offer SiC nanomaterials an
opportunity in the design of SiC-based sensors with high sensitivity. In this review, a brief introduc-
tion to the structure and properties of SiC is first presented, and the latest progress in design and
fabrication of one-dimensional SiC nanomaterials is summarized. Then, the sensing applications of
one-dimensional SiC nanomaterials are reviewed. Finally, our perspectives on the important research
direction and future opportunities of one-dimensional SiC nanomaterial for sensors are proposed.
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1. Introduction

Silicon carbide (SiC), as a third-generation semiconductor material, has characteristics
such as large bandgap, high breakdown voltage, and fast electron saturation drift speed.
It also exhibits high-temperature resistance, oxidation resistance, acid–alkali corrosion
resistance, and radiation resistance, properties that give rise to the preparation of electronic
devices for use in extreme environments (such as high temperature, high radiation, and
corrosive environments). It has demonstrated promise for applications such as aerospace,
nuclear industry, geological exploration, and environmental monitoring [1]. At present,
commercial applications of microelectromechanical system (MEMS) high-temperature
sensors based on SiC semiconductor wafers have been realized. However, due to the low
effective contact area between commercial SiC wafers and gases, the gas sensing response
time can reach tens of seconds [2], which poses an application limitation in real-time gas
monitoring and high-temperature gas leakage detection. Using nanotechnology to prepare
SiC nanomaterials with high specific surface area and utilizing their abundant effective
active sites are expected to solve the problem of a slow response time of commercial MEMS
sensors. SiC nanomaterials are divided into zero-dimensional, one-dimensional, two-
dimensional, and three-dimensional nanomaterials. One-dimensional SiC nanomaterials
have unique morphology and physicochemical properties compared to zero-dimensional
and two-dimensional SiC nanomaterials, which have excellent mechanical properties,
anisotropic electronic transport properties, and are not prone to agglomeration, while
having diverse preparation methods. It is currently the most widely studied and applied
SiC nanomaterial.
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Recently, one-dimensional SiC nanostructures (wires, rods, fibers, belts, and tubes)
have become the focus of intensive research, owing to their unique application in the
fabrication of electronic, optoelectronic, and sensor devices on a nanometer scale. They
possess novel properties intrinsically associated with low dimensionality and size confine-
ment, which make “bottom-up” construction of nanodevices possible [3]. In particular, SiC
nanostructures are used for the reinforcement of various nanocomposite materials or as
nanocontacts in harsh environments, mainly due to their superior mechanical properties
and high electrical conductance. Hence, research on one-dimensional SiC nanomaterials
is highlighted, both from the fundamental research standpoint and for potential applica-
tion in nanodevices and nanocomposites [4]. This review focuses on the latest progress
in one-dimensional SiC nanomaterials, covering the techniques for preparation and its
applications in the field of sensors (Figure 1). First, a brief introduction to the structure and
properties of SiC is presented. Second, the main principles and methods for designing and
fabricating one-dimensional SiC nanomaterials are summarized. Third, the applications of
different types of sensors are discussed. Finally, current challenges in one-dimensional SiC
nanomaterial for sensors are proposed.
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Figure 1. Overview of the applications of one-dimensional SiC nanomaterials in sensors.

2. SiC Structure and Properties

As the only stable compound of silicon and carbon, SiC has many excellent physical
and chemical properties. The crystalline structure of SiC can be considered to consist of the
close-packed stacking of double layers of Si and C atoms (Figure 2b). Each C or Si atom is
surrounded by four Si or C atoms in strong tetrahedral sp3 bonds (Figure 2a). SiC has a high
covalent bond energy and stable structure, but the stacking energy of C/Si double-atom
layers is low, making it prone to stacking dislocation. Depending on the stacking sequence
and interlayer distance, there are more than 200 polytypes in existence [5]. Polytypes
can be defined by the number of stacking layers in a unit cell; the atom arrangements of
popular polytypes are 3C, 4H, and 6H, and the only cubic polytype is 3C-SiC, and 4H-SiC,
consisting of an equal number of cubic and hexagonal bonds. Two-thirds of 6H-SiC is
composed of cubic bonds and one-third of hexagonal bonds. Only 3C-SiC is referred to
as β-SiC, other 4H- and 6H-SiC are called α-SiC. In general, β-SiC, which often appears
at low temperatures, is easy to nucleate and grow. However, 4H-SiC and 6H-SiC are
known as high-temperature stable polytypes, which need relatively high temperatures to
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grow [6]. Typical properties of SiC and other semiconductors are summarized in Table 1. As
compared to silicon-based semiconductor materials, SiC has a wide band gap, high carrier
mobility, high electron saturation drift rate, high thermal conductivity, and high breakdown
voltage. It can be used in harsh environments such as high frequency, high power, strong
radiation, high-temperature corrosion, etc., which silicon-based semiconductors cannot
withstand, and can meet the demand for new semiconductor materials in the military and
nuclear industry.
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Table 1. Typical properties of SiC and other semiconductors [6].

Si GaAs 3C-SiC 4H-SiC 6H-SiC Diamond

Lattice (Å) 5.43 5.65 4.36 3.08 3.08 3.567
Lattice (Å) 5.43 5.65 4.36 15.12 10.05 3.567
Bond length (Å) 2.35 2.45 1.89 1.89 1.89 1.54
TEC (10−6 K) 2.6 5.73 3.0 4.5 0.8
Density (g cm−3) 2.3 5.3 3.2 3.2 3.2 3.5
Thermal conductivity (W cm−1 K−1) 1.5 0.5 5 5 5 2
Melting point (°C) 1420 1240 2830 2830 2830 4000
Mohs hardness 9 9 9 10
Eg (eV) 1.1 1.43 2.3 3.3 3.0 5.4

Different polytypes of SiC have unique properties, such as breakdown electric field
strength, saturated drift velocity, and impurity ionization energies. In the microelectronics
industry, β-SiC is a significant material due to its high electron carrier mobility and the
smallest bandgap of approximately 2.4 eV when compared to α-SiC [6]. These excellent
properties make SiC a perfect material for the electronics industry, with wide applications in
high-temperature, high-frequency, and optoelectronics, including rectifiers, power switches,
and microwave power devices.

3. Preparation of One-Dimensional SiC Nanomaterials

At present, the methods for preparing one-dimensional SiC nanomaterials mainly
include template, chemical vapor deposition (CVD), electrospinning, and carbothermal
reduction methods. The SiC nanomaterials prepared by different methods and their appli-
cations are shown in Table 2. The various methods are described in detail below:
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Table 2. Fabrication methods and application of one-dimensional SiC nanomaterials.

Methods Materials Nanostructure Applications Reference

Template

CNT + SiO Nanowhisker -- [7]
CNT + SiO(SiCl4) Nanorod Composites [8]

CNT+ SiO Nanotube Hydrogen storage [9]
Silicon nanowires + propylene Nanoarray Photoluminescence [10]

CVD
C + SiO2 Nanofiber -- [11]

l-PCS + carbon powder Nanowire Electronics [12]

Electrospinning
CNF + SiO Nanowire Electronics [13]
CNF + Si Nanofiber Photocatalysis [14]

PCS + PVP Nanofiber Microwave absorber [15]

Carbothermal

TEOS + carbon black Nanowire Flame-retardant [16]
Electronic waste Nanowire Photocatalysis [17]

Silicone oil Nanorod Hydrogen storage [18]
Ethanol + SiCl4 + lithium Nanobelt Photoluminescence [19]

SiC + carbon Nanorod -- [20]
TEOS + sugar + aluminum Nanowire Photoluminescence [21]

3.1. Template Method

According to the reaction mechanism, the one-dimensional SiC nanomaterials pre-
pared by the template method can be divided into two types: one is to prepare SiC
nanomaterials by in situ chemical reaction of carbon or silicon nanomaterials with silicon
source or carbon source, respectively. In 1994, Zhou et al. [7] first reported the use of carbon
nanotubes (CNTs) as templates to react with SiO gas for preparing SiC nanowhiskers. The
results show that the unique nanostructure and high surface activity of CNTs are decisive
for the growth of SiC nanowhiskers. The schematic of SiC nanowhisker fabrication by
the template method is shown in Figure 3. Lieber et al. [8] and Fan et al. [22] also used
CNTs with different silicon sources to prepare SiC nanorods, and the mechanical properties
and optical luminescence of SiC nanorods were studied. In 2001, Ehret et al. [23,24] and
Lee et al. [25] first synthesized SiC nanotubes (SiCNTs) with multiple lattice structures by
precisely controlling the reaction conditions and using the shape memory effect of CNTs.
Subsequently, theoretical calculations and experimental results showed that SiCNTs had
a broad application prospect in hydrogen storage, gas sensing, and catalysis, etc. [26–28].
Recently, Ye et al. [13] fabricated a SiC@C core-shell structure by using carbon nanofibers
(CNF) as a template, and then reacted with SiO at high temperatures. Afterwards, high-
purity SiC nanowires were obtained by etching the CNF template.
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Another template method is first to prepare SiC on an existing ordered porous nano-
material substrate, forming the SiC/template composite structure [29]. Subsequently, the
template is etched through an acid or other solution (Figure 4). For example, by using
ordered porous alumina as a template, SiC nanoarrays can be synthesized by reacting
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propylene [10], SiO vapor in nanopores and then etching the template (Figure 4a). A similar
method is used to prepare SiCNTs, where different forms of ZnO and ZnS are used as
templates to deposit SiC nanolayers on the surface through CVD [30,31]. The intermediate
templates are then removed by acid etching to obtain hollow SiCNTs, as shown in Figure 4b.
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The advantage of the template method is that the SiC nanomaterial with uniform
morphology and diameter can be controlled by template design. However, this method is
limited by the chemical reaction, and it is difficult to obtain single-crystal SiC. In addition,
the process of etching and removing the template not only increases the complexity of the
process but also may damage the structure of the SiC nanomaterials.

3.2. CVD Method

The principle of CVD growth of SiC nanomaterials is to vaporize silicon and carbon
sources under specific pressure and temperature, and transport them to the substrate
surface at a suitable speed through a certain flow of carrier gas to nucleate and grow SiC
nanomaterials. As early as 1999, Zhou et al. [32] synthesized β-SiC nanowires on silicon
substrates using hot-wire CVD (HFCVD) with silicon powder and graphite powder as raw
materials. The nanowires had a SiC/SiO2 core-shell structure with a diameter of 10–30 nm
and a length of less than 1 µm. Subsequently, Yang et al. [33] used CH3SiCl3 and H2 as
reactants to prepare 3C-SiC nanowires grown along the {111} crystal plane by gas–solid
(V-S) growth mechanism using CVD. The schematic diagram of the mechanism for growing
SiC nanowires is shown in Figure 5a. The V-S mechanism is a classic growth mechanism
commonly used to explain the growth of uncatalyzed whiskers and is now commonly used
in the preparation of one-dimensional nanomaterials. At present, centimeter-scale ultra-
long SiC nanowires [34], serrated nanowires [35], twin SiC nanowires [36], β-SiC/SiO2
nanowires [37], etc., have been synthesized and processed through the V-S mechanism.
Although SiC nanowires prepared without catalysts have high purity, the morphology,
scale, and crystallization direction of SiC nanowires are difficult to control, and the reaction
rate is relatively slow with a low yield [38].

Unlike the V-S growth mechanism of SiC nanowires prepared without catalysts, the
reaction rate is increased with the assistance of catalysts, and the nucleation and growth
of nanowires follow the gas–liquid–solid (V-L-S) mechanism. Currently, various types
of nanowires have been synthesized using catalyst-assisted CVD methods based on the
V-L-S mechanism. In the general V-L-S process, the reaction begins with the dissolution of
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gaseous reactants in the catalyst metal nanodroplets (Fe and Ni, etc.), followed by the nucle-
ation and growth of one-dimensional single-crystal nanostructures. The catalyst droplets
play a crucial role as templates for the growth of nanowires, which can effectively control
the synthesis of high-quality SiC nanowires with uniform diameter and crystallinity [39–42].
Li et al. [12] mixed liquid polycarbosilane (l-PCS), ferrocene, and carbon powder, and then
pyrolyzed the mixture in an inert atmosphere at 1300 ◦C to prepare centimeter-length SiC
nanowires by the V-L-S growth mechanism (Figure 5b). Thereby, CVD became the main
method for preparing SiC nanowires, and various one-dimensional SiC nanomaterials have
been synthesized using this method. Some SiC nanowires have excellent luminescent, sens-
ing, and wave-absorbing properties, providing important references for the preparation of
new structures and morphologies of SiC nanowires and the development of new functional
SiC nanodevices.

Nanomaterials 2024, 14, x FOR PEER REVIEW 6 of 25 
 

 

Unlike the V-S growth mechanism of SiC nanowires prepared without catalysts, the 
reaction rate is increased with the assistance of catalysts, and the nucleation and growth 
of nanowires follow the gas–liquid–solid (V-L-S) mechanism. Currently, various types of 
nanowires have been synthesized using catalyst-assisted CVD methods based on the V-
L-S mechanism. In the general V-L-S process, the reaction begins with the dissolution of 
gaseous reactants in the catalyst metal nanodroplets (Fe and Ni, etc.), followed by the nu-
cleation and growth of one-dimensional single-crystal nanostructures. The catalyst drop-
lets play a crucial role as templates for the growth of nanowires, which can effectively 
control the synthesis of high-quality SiC nanowires with uniform diameter and crystallin-
ity [39–42]. Li et al. [12] mixed liquid polycarbosilane (l-PCS), ferrocene, and carbon pow-
der, and then pyrolyzed the mixture in an inert atmosphere at 1300 °C to prepare centi-
meter-length SiC nanowires by the V-L-S growth mechanism (Figure 5b). Thereby, CVD 
became the main method for preparing SiC nanowires, and various one-dimensional SiC 
nanomaterials have been synthesized using this method. Some SiC nanowires have excel-
lent luminescent, sensing, and wave-absorbing properties, providing important refer-
ences for the preparation of new structures and morphologies of SiC nanowires and the 
development of new functional SiC nanodevices.  

In general, the purity of SiC nanowires prepared without catalysts is relatively good, 
but the preparation temperature is generally high and the yield is relatively low. The ad-
dition of catalysts can significantly reduce the preparation temperature of SiC nanowires, 
and increase the reaction rate and yield, but it is easy to introduce impurities into the SiC 
nanowires. In-depth research should be conducted on improving the purity and removing 
impurities of SiC nanowires, while also focusing on low-cost and large-scale preparation 
of nanowires. Relevant measures should be taken to regulate the microstructure of SiC 
nanowires, and to broaden the application fields of SiC nanomaterials. 

 
Figure 5. Schematic of SiC nanowires prepared by (a) V-S; (b) V-L-S mechanisms. 

3.3. Electrospinning Method 
At present, the preparation of one-dimensional SiC nanomaterials by electrospinning 

is mainly by preparing SiC nanofibers (SiCNF). A schematic diagram of the process for 
preparing SiCNF by different routes is shown in Figure 6. There are generally two meth-
ods, one is to use the CNF prepared by electrospinning as a template to carry out a 

Figure 5. Schematic of SiC nanowires prepared by (a) V-S; (b) V-L-S mechanisms.

In general, the purity of SiC nanowires prepared without catalysts is relatively good,
but the preparation temperature is generally high and the yield is relatively low. The
addition of catalysts can significantly reduce the preparation temperature of SiC nanowires,
and increase the reaction rate and yield, but it is easy to introduce impurities into the SiC
nanowires. In-depth research should be conducted on improving the purity and removing
impurities of SiC nanowires, while also focusing on low-cost and large-scale preparation
of nanowires. Relevant measures should be taken to regulate the microstructure of SiC
nanowires, and to broaden the application fields of SiC nanomaterials.

3.3. Electrospinning Method

At present, the preparation of one-dimensional SiC nanomaterials by electrospinning
is mainly by preparing SiC nanofibers (SiCNF). A schematic diagram of the process for
preparing SiCNF by different routes is shown in Figure 6. There are generally two methods,
one is to use the CNF prepared by electrospinning as a template to carry out a carbothermal
reduction reaction with a silicon source at high temperatures. For example, Qiao et al. [43]
first coated a uniformly polymethylsilane layer on the electrospun prepared CNF, and
then by curing at low temperature and pyrolysing at high temperature they obtained high
crystallinity SiCNF. Cheng et al. [44] used the electrospinning method to prepare hollow
CNF, and then reacted with silicon powder at high temperature to obtain hollow SiCNF.
Wang et al. [14,45] prepared the mesoporous and ordered SiCNF (Figure 7a,b) by using
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CNF reacted with silicon powder at high temperature, and the photocatalytic hydrogen
production performance of mesoporous SiCNF was carefully studied.
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The other way is to combine the electrospinning technology with the precursor con-
version method to obtain SiCNF by one-step pyrolysis. Since 1976, when Yajima et al. [46]
successfully prepared SiC fibers with polycarbosilane (PCS) as the precursor, the precur-
sor conversion method has become an important method for preparing SiC fibers. In
recent years, the preparation of SiCNF by the precursor conversion method combined
with electrospinning has been extensively studied [47]. Eick et al. [48] first blended poly-
carbomethylsilane and polystyrene (PS) in toluene and dimethylformamide solvent, after
electrospinning, UV curing, and pyrolysis, SiCNF with a minimum diameter of 20 nm was
obtained. However, the fiber morphology and composition are unstable. Liu et al. [49]
prepared SiCNF with a diameter of 1–2 nm by coaxial electrospinning using PS and PCS as
raw materials, but the fiber was brittle. To improve the mechanical properties of SiC fibers
prepared by electrospinning, the current measures are mainly to adjust the composition
of the solution and optimize the preparation process. Yue et al. [50] and Shin et al. [51]
successfully prepared micro/nano SiC fibers by increasing the ratio of low molecular
weight PCS in solution. The tensile strength of the fibers after heat treatment at 1100 ◦C
was about 1.2 GPa. Sarkar et al. [52] and Yu et al. [53] used polyaluminumcarbosilane as
a precursor solution to prepare flexible hydrophobic aluminum-containing SiC fiber by
the electrospinning method. Since then, studies have been ongoing to prepare SiCNFs by
the precursor conversion method combined with the electrospinning method, and their
application fields are being constantly expanded. Cheng et al. [15,54–57] dissolved PCS
and PVP in chloroform solvent, solved the discontinuity problem of spinning by using the
long-chain structure of PVP, and prepared SiC-based composite nanofibers with a diameter
of 300–500 nm. The electromagnetic absorbing properties of composite fibers were studied.

Our research group has also carried out more work on the preparation of SiCNFs by
the precursor conversion method. Yang et al. [58] prepared micro-nano SiC fibers using the
PCS as precursor with a diameter of 0.5–2 µm by electrospinning and high-temperature
sintering, and the effects of electrospinning parameters on fiber morphology were studied.
Wang et al. [59] used PCS as the precursor and performed electrospinning under high
humidity conditions to prepare flexible SiCNF with a hierarchical pore structure, and the
gas adsorption performance and corrosion resistance of the fiber were studied. The SEM
morphology is shown in Figure 7c,d. Wang et al. [60] mixed PCS with tetrabutyl zirconate
and prepared a gradient structure of ZrO2/SiC fiber by controlling the infusibility process.
The prepared ZrO2/SiC fiber has good high temperature and corrosion resistance. Tian
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et al. [61] prepared hollow SiCNF by single-needle microemulsion electrospinning. The
SEM morphology of the fiber surface and cross-section is shown in Figure 7e,f. Compared
with solid SiCNF, hollow SiCNF has a lower solid thermal conductivity and a higher
infrared extinction coefficient, thus having a good application prospect in the field of
high-temperature insulation.
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In addition to PCS, polyurea silane [62,63], polydimethylsiloxane [64], ethyl orthosili-
cate [65], methyl triethoxy silane [66] and polymethylsilane [67] are also used as precursors
to prepare SiC fibers, but their Si-C skeleton structure and ceramic yield are weaker than
PCS, giving poor morphology and properties of SiC fibers. Therefore, PCS is still the most
promising precursor.

Although the preparation of SiCNF by electrospinning has achieved huge develop-
ment, there are still two problems to be solved: one is that the mechanical properties of
fibers are generally low, or the mechanical properties and nanoscale are not compatible;
Second, the prepared SiCNF has a relatively simple composition structure and cannot meet
the requirements of various fields. Therefore, the focus of future research is to further
improve the mechanical properties of SiCNF and develop a variety of SiCNF structures to
promote its application in more fields.

3.4. Carbothermal Reduction Method

The carbothermal reduction method is to uniformly mix the silicon source and the
carbon source in a solvent, form a gel after drying, and obtain a one-dimensional SiC
nanostructure by a high-temperature carbothermal reduction reaction (Figure 8) [68,69].
Meng et al. [70] dissolved TEOS, sucrose, and nitric acid in an ethanol solution, and treated
them at 700 ◦C to obtain carbon-containing silica gel, which was then reduced at 1650 ◦C
and 3C-SiC nanowires with a diameter of 10–25 nm were obtained. Yang et al. [71] prepared
mesoporous silica and sucrose as raw materials and controlled SiC nanowhisker and SiCNT
by controlling the carbothermal reduction reaction temperature and holding time. The
prepared SiCNT has a specific surface area of up to 190 m2/g. Chen et al. [72,73] formulated
TEOS, hydrochloric acid, and carbon black into a sol in an ethanol solution, dried it to
obtain C/SiO2 gel, and heated it to 1500 ◦C with 0.02 MPa argon gas protection to obtain
cotton-like SiC nanowires. In addition, one-dimensional SiC nanostructures with different
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morphologies such as nanowires, multi-stage nanodisks, and nanorods can be prepared
by controlling the reaction temperature and C/Si molar ratio. Maroufi et al. [17] used
electronic waste as raw material, with electronic display screens as silicon source, computer
plastic shells as carbon source, and prepared mesoporous SiC nanowires by pulverization,
briquetting, and high-temperature pyrolysis. The obtained SiC nanowires had a diameter
of 2–15 nm and a specific surface area of 51.4 m2/g. This method not only reduces the cost
of preparing SiC nanomaterials but also provides a new idea for the secondary treatment
of electronic waste worldwide.
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In addition to the above methods, there are many other methods for preparing one-
dimensional SiC nanomaterials. Pei [74] and Xi [19] prepared SiC nanorods and nanobelts
at 470 ◦C and 600 ◦C by the hydrothermal method and ethanol solvothermal method,
respectively. Seeger et al. [75] used arc discharge technique to prepare SiC nanowhiskers.
Xie et al. [20] improved this technology and used SiC rods as anode materials to achieve a
large-scale preparation of SiC nanorods. Sundaresan et al. [76] prepared 3C-SiC nanowires
by high-energy microwave heating and catalyst-assisted pyrolysis.

In short, the one-dimensional SiC nanomaterials have promoted rapid development
of their preparation technology due to their excellent physical and chemical properties
and broad application prospects. At the same time, one-dimensional SiC nanomaterials
with different morphological structures have been fabricated, and the related principles
fully studied. Among the many preparation methods, electrospinning technology and
carbothermal reduction methods are the most promising methods for preparing one-
dimensional SiC nanomaterials from the perspective of commercial scale preparation
and nanostructure designability. In addition, the combination of different preparation
techniques to prepare a new structure of SiC nanomaterials to meet the needs of different
functional applications is an important direction for the development of one-dimensional
SiC nanomaterials.

4. Applications of One-Dimensional SiC Nanomaterials in Sensors

As one of the most important compound semiconductors, SiC has been widely used
for various sensors in harsh environments due to its wide bandgap, excellent thermal
stability, high strength, good thermal shock resistance, high electron mobility, and good
chemical inertness [77]. The high electron mobility of SiC is beneficial to shuttle the
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charge carriers quickly, which could offer an opportunity to design SiC-based sensors with
fast response/recovery time. These unique advantages have led SiC to be regarded as a
promising candidate for electro-devices (chemical sensors). As we all know, nanostructured
SiC materials with low dimensionality are expected to show excellent properties due to
their quantum confinement and morphology effects. Related research has focused on
preparing low-dimensionality SiC nanostructures and correlating their morphologies with
their size-controlled electrical performances [78].

4.1. Gas Sensors

Currently, the application of SiC in the field of gas sensors is mainly based on com-
mercial SiC chips, where insulation or oxide layers and precious metals are deposited to
form metal insulator semiconductor field-effect type, Schottky diode, P-N junction diode,
and metal oxide semiconductor capacitive gas sensors. These sensors are expected to offer
satisfactory performance in gas detection in harsh environments such as high temperature
and humidity [79]. At present, the detection of gases such as hydrogen [80], nitrogen ox-
ides [81,82], carbon monoxide, and alkanes [79] at high temperatures is being achieved by
controlling the insulation oxide layer, noble metal types, and gas sensing models. However,
according to the gas response mechanism, the generally long response time of SiC-based
gas sensors makes it difficult to meet the critical requirements for practical applications.
Thus, the sensitivity and the intrinsic response speed of SiC-based gas sensors still have
lots of room for improvement.

One-dimensional SiC nanomaterials, due to their high aspect ratio and specific surface
area, are prone to providing more active sites for the target gas. They can quickly cause
surface ion transport when the external environment changes, resulting in rapid changes in
their electrical properties. Therefore, using one-dimensional SiC nanomaterials to prepare
gas sensors is expected to have characteristics such as fast response and high sensitivity,
and can be stable when used in extreme environments. To the best of our knowledge, the
most widely studied sensors based on SiC material are hydrogen gas sensors.

4.1.1. Hydrogen Sensors

As one of the most widely used nanostructures, SiC nanowires can afford an inexpen-
sive and miniaturized alternative for hydrogen sensing. In a typical work, Pt nanoparticle
decorated SiC nanowires were fabricated. The obtained SiC nanowires had a diameter of
100 nm and the Pt nanoparticles were distributed uniformly on the SiC nanowire surface
(Figure 9a). Silver paste used as the source and the drain electrodes was applied at both
ends of the Pt-nanoparticle decorated single SiC nanowire sensor. Schematic of the single
SiC nanowire sensor is shown in Figure 9b, which exhibited high sensitivity (S = 20%)
and fast response/recovery time (3 s/45 s) toward H2 at 600 ◦C (Figure 9c). It was found
that hydrogen atoms can react with the surface oxygen of SiC nanowires to form hydroxyl
groups (Figure 9d). These groups can react with surface oxygen to form water, creating
an oxygen vacancy and further contributing to the conductivity of SiC nanowires [83].
In addition, DC/RF magnetron sputtering was applied to synthesize Pt-decorated SiC
nanoballs (Figure 9e) and their gas-sensing properties toward H2 at a high operating
temperature range (30–480 ◦C) studied (Figure 9f). The sensor exhibited a high sensing
response (S = 44.48%) with a very fast response time (15 s) toward 100 ppm at 330 ◦C
(Figure 9g). It was found that the response time decreased with rising concentration and
the recovery time increased with increased H2 concentration, mainly due to the diffusion-
limited kinetics at low H2 concentration. The high active surface area of SiC nanoballs
affords a large number of catalytically enriched surface reaction sites for H2 adsorption
(Figure 9h), which could enhance the hydrogen detection rate. It affords a new method to
design and construct a promising gas sensor with excellent properties for low detection of
hydrogen in harsh environments [84]. Pt nanoclusters@SiC nanosheets were produced via
a simple one-step wet chemical reduction reaction (Figure 9i) by Sun et al. [85]. The result
showed that Pt clusters with a diameter of 2–3 nm were homogeneously distributed on
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the surface of SiC nanosheets (Figure 9j). The Pt NCs@SiC NSs showed a good response
(15.7%) towards 500 ppm H2 at 300 ◦C and this novel device exhibited good stability over a
month and a good linear relationship between response and H2 concentration (Figure 9k).
It affords a simple large-scale preparation method to synthesize hydrogen sensors applied
to high-temperature harsh environments. The Schottky junction between Pt and SiC plays
an important role in improving gas sensing properties. In addition to noble metal deco-
rated SiC composites, other SiC coupled semiconductors as gas sensing material were also
synthesized. Rýger et al. [86] demonstrated that the GaN/SiC heterostructure exhibited
enhanced sensitivity towards H2. The sensor device showed a low detection limit (20 ppm)
and a short response time (12 s). It offers a new strategy for fast online gas analysis systems.
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Figure 9. (a) TEM images of Pt nanoparticle-decorated SiC nanowire; (b) schematic of the Pt-
nanoparticle decorated single SiC nanowire sensor and its operation; (c) the typical response curve of
the SiC nanowire sensor; (d) a schematic showing probable hydrogen sensing processes occurring on
the Pt nanoparticle decorated SiC nanowire [83]; (e) SEM surface morphology of Pt-decorated SiC
sensing layer; (f) schematic diagram for sensing measurement setup; (g) gas response curve vs. time
(1–8 min.) for 100 ppm hydrogen gas at operating temperature of 330 ◦C; (h) schematic illustration of
hydrogen gas sensing mechanism of Pt decorated SiC nanoballs [84]; (i) preparation process of Pt
NCs@SiC NSs; (j) HAADF-STEM images of Pt NSs@SiC NSs; (k) dynamic response curves towards
different H2 concentrations [85].

4.1.2. Other Gases Sensors

SiC-based sensors can detect not only hydrogen but other gases as well. For example,
SiCNT has high reactivity due to its sp3 hybridization and polarization characteristics of
silicon atoms, even higher than CNT [87]. Theoretical investigations show that the adsorp-
tion of gas molecules by SiCNTs is mainly chemical, rather than the physical adsorption
mechanism of CNTs, which results in the target gas having a greater impact on the surface
and bulk electrical properties of the SiCNTs. Therefore, the SiCNTs have a faster response
speed to gases. In this regard, researchers predicted through theoretical calculations that
SiCNT has good gas sensing performance for gases such as CO [88], HCN [88], CO2 [89],
O2 [87], NO2 [90], HCHO [91], SO2 [92], and C2H6 [93]. Unfortunately, the controlled
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preparation of SiCNTs is currently difficult, and there have been no research reports on the
gas-sensing experimental results of SiCNTs.

Researchers have also carried out similar work on the gas sensing performance of
other one-dimensional SiC nanomaterials based on the theoretical analysis results of SiC-
NTs, mainly targeting SiC nanowires and nanofibers [94]. Wang et al. [95] reported the
humidity-sensitive performance of SiC nanowires at room temperature for the first time.
The study suggests that the physical and chemical adsorption of water molecules on SiC
nanowires determines their dielectric constant under different humidity conditions, causing
capacitance changes. Li et al. [96] believed that water molecules in the air were ionized
when adsorbed on the nanowire surface forming a hydrogen bond. The formation of the hy-
drogen bonds leads to a slightly negative charge of the sheath since water molecules donate
electrons. With the transfer of some electrons from water molecules into SiC nanowires,
the resistance of p-type SiC nanowires increases and a humidity-sensitive response occurs
(Figure 10c). The SEM morphology of SiC nanowires and the test results under different
humidity conditions are shown in Figure 10a and 10b, respectively. ZnO/SiC nanofibers
were synthesized via electrospinning of polymer solutions followed by heat treatment. This
process is necessary for polymer removal and crystallization of semiconductor materials.
The experiment results demonstrated that the ZnO/SiC nanocomposite exhibited a higher
concentration of chemisorbed oxygen, a higher activation energy of conductivity, and a
higher sensor response towards CO and NH3 as compared with ZnO nanofiber [97]. Sultan
et al. [32] reported the synthesis of polypyrrole (PPy) and polypyrrole/SiC nanocompos-
ites (PPy/SiC) and PPy/SiC/dodecylbenzenesulfonic acid (DBSA) by an in situ chemical
polymerization method and their application was used as a sensor for the detection of
highly toxic chlorine gas. PPy/SiC/DBSA nanocomposite was found to possess higher DC
(direct current) electrical conductivity as compared to that of Ppy and Ppy/SiC. The sensing
response was determined based on the change in DC electrical conductivity. The responses
of PPy and both the nanocomposites were found to be highly sensitive and reversible to
chlorine gas. This seems to be promising as an effective approach towards the sensing
technology for the detection of chlorine gas.

Our group Wang et al. [98] reported an effective approach to fabricating SnO2@SiC
hierarchical architectures by a hydrothermal process by growing SnO2 nanosheets on
a SiCNF surface (Figure 10d,e). The unique SnO2@SiC hierarchical architectures could
strengthen the gas sensing performance of NFs at 500 ◦C, with a response and recovery time
of 4 s and 6 s for 100 ppm ethanol, respectively (Figure 10f). The hierarchical architectures
have a significant impact on the rapid response and recovery of SiCNFs. Subsequently, the
facets-exposed TiO2 nanosheets and facets-exposed TiO2 nanorods were successfully grown
on the surface of macro-meso-microporous SiC fiber (MMM-SF) (Figure 10g). The obtained
TiO2/SiC composites possessed a core-shell hierarchical structure, which exhibited a high
response time of only 1 s at 450 ◦C towards 100 ppm acetone (Figure 10h). The excellent
gas sensing properties are due to the exposure of high-energy {001} crystal of TiO2 and
the synergetic effect of TiO2/SiC heterojunctions as well as the core-shell hierarchical
architectures. As shown in Figure 10i, acetone molecules could be absorbed and desorbed
on the {001} facets-exposed TiO2 nanosheets (TNS001) from a discretional direction almost
without any hindrance due to the vertical growth of TNS001 on the MMM-SF [99]. Recently,
Wu et al. [100] prepared multi-level structured SiCNFs composed of SiC nanorods wrapped
together through electrospinning technology combined with a high-temperature pyrolysis
process and then loaded Pt nanoparticles with a diameter of 2–3 nm on the fiber surface
through the ethylene glycol reduction method to study their high-temperature ammonia
performance. The multi-level structure SiCNFs loaded with Pt nanoparticles exhibited a
sensitivity of 9.1% to 500 ppm ammonia gas at 500 ◦C, with a response and recovery time
of only 2 s and 5 s, respectively, demonstrating good high-temperature ammonia sensitivity.
Table 3 shows the typical gas sensing performances of SiC-based sensors.
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Figure 10. (a) SEM images and photographs of SiC nanopaper (inset is the image of nanowires); (b) the
humidity sensing performance of SiC nanopaper in an atmosphere of different RH; (c) the proposed
humidity sensing mechanism of SiC nanowire [96]; (d) schematic illustration of the synthesis process
for SnO2 NSs@SiC NFs; (e) SEM image of SnO2 NSs@SiC NFs; (f) comparison of the response time
and recovery time between pure SnO2 NSs, and SnO2 NSs@SiC NFs, ethanol concentration 100 ppm,
operating temperature 500 ◦C [98]; (g) SEM images of TNS001@MMM-SFs; (h) the response/recovery
behaviors toward 100 ppm acetone at 450 ◦C; (i) proposed sensing mechanism for the high response
and ultrafast response/recovery rate of the TNS001@MMM-SFs [99].

Table 3. Gas-sensing performances of SiC-based sensor nanostructures.

Material Structure Target Gas C (ppm) Tem. Response tres/trec LOD Ref.

Pt/SiC nanowire H2 40,000 600 20% 3/45 — [83]
Pt/SiC nanoballs H2 100 330 40% 15/40 5 [84]

Pt/WO3/SiC nanolayer H2 10,000 530 — — — [101]
Pd/SiC nano cauliflower H2 100 300 40% 7/13 2 [102]
Pd/SiC nanofilm H2 — — — — — [103]

Graphene/SiC/Si nanowalls H2 150 — 25% — 0.5 [104]
Pt/SiC nanosheet H2 500 300 15.7% — — [85]

PdPt/SiC nanofilm H2 100 350 60% 21/35 5 [105]
Pt/WO3/SiC nanofilm H2 2000 350 — — — [106]
Pt/WO3/SiC membrane H2 20,000 — — 50/50 — [107]

SnO2/SiC nanofiber Ethanol 100 500 25 4/6 10 [98]
ZnO/SiC nanofiber CO 20 500 110% — — [87]

Pt/SiC nanofiber NH3 500 500 9.1% 2/5 1 [99]
TiO2/SiC nanofiber CH3COCH3 200 450 30 3/12 1 [100]
Ppy/SiC nanoparticle Cl2 — — — — — [32]

4.2. Pressure Sensor

High-temperature pressure sensors have applications in many domains, such as
advanced industrial, automotive, and aerospace [108], utilizing this parameter to keep the
equipment healthy and running. Particularly, they play an essential role in monitoring the
fuel efficiency in the combustor hot zone to reduce emissions and improve reliability [109].
To achieve this aim, pressure-sensitive materials and temperature-resistance are required.
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Therefore, SiC is particularly viewed by researchers because of its outstanding properties.
In terms of mechanical properties, SiC has a higher stiffness and fracture strength as well
as better resist wear, oxidation, and corrosion than commonly used silicon [110]. There are
two main types of pressure sensors: one type utilizes capacitive effects in sensing pressure
and the other type uses piezoresistive effects. Researchers have conducted a lot of work in
both areas.

Capacitive-type pressure sensors are attractive for high-temperature applications
because the device performance is tolerant of contact resistance variations and wireless
sensing schemes can be readily realized to eliminate any potential performance degradation
due to wiring parasitic capacitances. Furthermore, capacitive devices can achieve high sen-
sitivity, low turn-on temperature drift, and minimum dependence on side stress and other
environmental variations [108]. Marsi et al. [111] prepared a 3C-SiC diaphragm capacitive
pressure sensor and tested the capacitance under different pressures and temperatures.
Compared with Si-based capacitive pressure sensors, 3C-SiC-based capacitive pressure
sensors exhibited good thermal stability and high sensitivity. At conditions of 1000 ◦C and
100 MPa, the capacitance was 70 pF. For piezoresistive type pressure sensors, piezoelectric
materials exhibit unique electromechanical coupling and have recently received growing
interest in the miniaturization of electromechanical devices down to micro/nano scales.
These novel materials are particularly attractive for applications in energy harvesting, sens-
ing, actuating, etc., due to their unique advantages such as small size, high sensitivity, high
stability, low cost, and a simple readout circuit. For example, the piezoresistance behaviors
of single-crystalline n-type 3C-SiC nanowires with an N doping level of 8.28 at% were inves-
tigated [112]. The sensitivity was 7.7 × 10−11 Pa−1 under a load of 135.25 nN. Subsequently,
P-type 3C-SiC nanowires with B dopants were synthesized by catalyst-assisted pyrolysis of
polysilazane. As shown in Figure 11a,b, the transverse piezoresistance measurement of an
individual 3C-SiC nanowire was performed under AFM at RT. Compared to those of con-
ventional SiC materials (bulk 3C-SiC often <0.2, p-type 3C-SiC thin film often <0.03), the ca.
∆R/R0 of p-type 3C-SiC nanowires was much higher up to 11.14 (Figure 11c), suggesting
that the resistance changes of SiC nanowires with B dopants were much more sensitive than
those of conventional SiC materials. Interestingly, the piezoresistance coefficient π [109]
of the wire changed from −8.83 to −103.42 × 10−11 Pa−1 as the loaded forces varied from
51.7 to 181.0 nN (Figure 11d); the corresponding GF was up to −620.5, suggesting their
promising applications in pressure sensors with high sensitivities [113]. Subsequently, in a
similar way, Prakash et al. presented the fabrication of SiC nanowires with co-doped N
and P elements, which were fabricated via the pyrolysis of a polymeric material [114]. The
measured transverse piezoresistance coefficient of the established SiC nanowires increased
from 5.07 to −146.30 × 10−11 Pa−1 as the loading forces varied from 24.95 to 130.51 nN.
The corresponding GF was calculated up to ca. −877.79, which was higher than the values
for all SiC nanostructures that had ever been reported.

Phan et al. investigated the strain concentration effect of nanowires by both theoretical
and experimental routes (Figure 11e,f) [115]. Based on nanowires locally fabricated on free-
standing structures with a high strain concentration, the strain induced into nano-scaled
sensing elements is amplified while the bulk materials are still at a small strain regime,
thereby enhancing the sensitivity of the sensors. The strain induced into the as-fabricated
nanowires was derived to be approximately five times larger than that of the microresistors
(Figure 11g). The response of the nanowire pressure sensors was approximately three times
larger than that of the pressure sensors using micro-sized SiC (Figure 11h). In addition, for
the SiC fibers in unidirectional glass/epoxy composites, the resistance change of the SiC
fibers was measured according to the applied mechanical strain. In this study, the strain
sensing characteristics of semi-conductive SiC fibers were investigated and the electrical
sensing properties of the SiC fibers were evaluated. As a result, the piezoresistivity of the
SiC fibers showed outstanding strain sensitivity with an average GF of 8.25 and excellent
linearity up to the strain range of 1.36% [116]. From this, it can be seen that compared
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with the research on bulk SiC, one-dimensional SiC nanostructures have shown potential
application prospects in the field of pressure sensors.
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Figure 11. (a) TEM images of as-synthesized SiC nanowires; (b) schematic diagram for the mea-
surement of the piezoresistance effect in SiC nanowire; (c) the ca. ∆R/R0 ratios as a function of the
applied forces; (d) relationship between the, ca., piezoresistance coefficients and the applied lading
forces [113]; (e) schematic sketch of strain induced into the free standing nanowire and micro bridge
under pressure; (f) SEM image of the nanowire array from the top view, showing the nanowires
are connected to two serial micro resistors; (g) simulation of strain induced into the nanowires and
microscaled frames; (h) a 3-fold increase in the sensitivity of nanowire sensors (blue) in comparison
to SiC microresistors (red) [115].

In situ electrical measurement experiments in individual SiC nanowires were carried
out for tensile strain using a transmission electron microscope. Fracture strain approaching
10% was achieved for a diamond-structure SiC nanowire with a <111> direction. The
calculated piezoresistance coefficient of this SiC nanowire was −1.15 × 10−11 Pa−1, which
is similar to the coefficient of the bulk material [117–119]. Pulliam et al. [120] developed a
micromachined SiC fiber optic pressure sensor for use in the extreme temperatures and
pressures of propulsive environments. Meanwhile, optical signal processing using sap-
phire waveguides was developed for this application. The combination of the sapphire
waveguide and a SiC membrane chip provides a fiber optic pressure sensor capable of
operating above 1100 ◦C. Ultrasonic vibration mill-grinding was applied to fabricate the
SiC diaphragm with a thickness of 43 µm and a surface roughness of 19 nm. The sensor
head was formed using a nickel diffusion bonding technique. The pressure sensor shows
good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. at room tempera-
ture [121]. The electron emitter of the individual SiC nanowire was placed and soldered
using the electron beam-induced carbon deposition technique. The results demonstrate
that the piezoresistive effect caused by the electrostatic force had a significant impact on the
electronic transport properties of the nanowire, and excellent electron emission characteris-
tics can be achieved in the pulse voltage driving mode, including lower turn-on voltage
and higher maximum current [122]. The propagation of the Lamb modes along a-SiC/c-
ZnO thin supported composite structures by different ZnO and a-SiC layer thicknesses
and electrical boundary conditions was simulated by Caliendo. A pressure sensitivity of
9 ppm kPa−1, in the 4–10 kPa range, was predicted for the a-SiC/ZnO ZGV (Zero Group
Velocity) based pressure sensor [123]. A SiC and aluminum nitride-based DTMCPS (Double
Touch Mode Capacitive Pressure Sensor) with a substrate notch was explored. Condensed
yet exhaustive step-by-step mathematics of key performance parameters were detailed
for the sensor under study. This was carried out to provide a detailed understanding of
the underlying physical and mathematical principles [124], and aimed to provide a fast
analysis model for prototyping the sensor. Nakamura et al. [125] simulated strain gauge
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factors in several n-type alpha and beta SiC nanosheet models based on first-principles
calculations. Their original procedure of simulating piezoresistive properties was applied to
the two-dimensional system with a multivalley conduction-band structure. The calculated
gauge factors of the 2H-SiC (0001) nanosheet model for the [1–99] tensile strain were very
small at room temperature, but the longitudinal gauge factor showed a significant negative
value at high temperatures. Moreover, microstructures on sub-100 nm SiC membranes
with a large aspect ratio up to 1:3200 play an important role in response [126]. Unlike
conventional processes, this approach started with Si wet etching to form suspended SiC
membranes, followed by micro-machined processes to pattern free-standing microstruc-
tures such as cantilevers and micro bridges. The authors demonstrated a SiC pressure
sensor by applying lithography and plasma etching on released ultrathin SiC films. The
sensors exhibited excellent linear response to the applied pressure, as well as good re-
peatability. Table 4 summarizes recently developed, typical SiC-based pressure sensors
from the perspectives of materials, temperature, pressure, and sensitivity (or gauge factor,
piezoresistance coefficient).

Table 4. Summary of typical SiC-based pressure sensor and their key performance.

Materials Temperature/◦C Pressure Sensitivity Type Ref.

4H-SiC 23–800 1.38 MPa 5.45 piezoresistive [109]
SiC 300–574 100 psi 7.2 fF/psi capacitive [127]
6H-SiC RT-400 60 psi 5.817 mV piezoresistive [128]
3C-SiC/single crystal RT-400 1100–1760 torr 7.7 fF/torr capacitive [108]
SiC fiber RT 1.36% 8.25 piezoresistive [115]
3C-SiC/nanowire RT 500 mbar 33 piezoresistive [114]

PVDF/SiC nanowire SiC nanowires as
nucleating agent [129]

3C-SiC/single crystal RT-500 5 MPa 0.3477 mV MPa−1 capacitive [110]
3C-SiC nanowire RT 153.56 nN 7.7 × 10−11 Pa−1 piezoresistive [112]
a-SiC/c-ZnO RT 10 kPa 10.98 ppm kPa−1 strain/frequency [123]
3C-SiC thin film 27–1000 100 MPa 70 pF capacitive [111]
PECVD SiC coating film RT 1 MPa 17.1 mV V−1 MPa−1 piezoresistive [130]

B/3C-SiC nanowire RT 181.0 nN −103.42 × 10−11 Pa−1

/−620.5
piezoresistive [113]

N/P/SiC nanowire RT 130.51 nN −146.30 × 10−11 Pa−1 piezoresistive [116]
SiC fiber/SiC foam RT pressure drop [131]
SiC fiber RT - 5 piezoresistive [118]
SiC fiber RT 1.6 × 10−11 m2 N−1 piezoresistive [117]
SiC nanowire RT −1.15 × 10−11 Pa−1 piezoresistive [119]
SiC fiber/sapphire fiber 1100 ◦C [120]
SiC fiber-optical RT 0.1–0.9 MPa 0.27 F.S. [121]

4.3. Bio-Sensors

In addition to excellent electronic and mechanical properties, SiC also has the char-
acteristics of biocompatibility, versatility, chemical stability, and transparency to visible
light, making it suitable for bio-sensor applications. For example, SiC nanomaterials can be
applied in the detection of DNA molecules, organophosphate (OP) molecules, and nitrite,
etc. For DNA detection, Fradetal et al. [132] functionalized two types of SiC nanopillar
arrays; one was top-down SiC nanopillars (pitch: 5 µm) and the other one was a dense array
(pitch: 200 nm) of core-shell nanopillars. Depending on both the pillar morphology and
the pitch, different results in terms of DNA surface coverages were obtained. Particularly,
the DNA molecule coverage was not similar from one nanopillar array to another, which
depended on the case of wide-pitch array. It was concluded that to achieve a DNA sensor
based on a nanowire-field effect transistor, the functionalization must be conducted on a
single SiC nanowire or nanopillar that constitutes the channel of the field effect transistor
and be further experimentally verified. Subsequently, SiC nanowire field effect transistors
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were synthesized and functionalized with DNA molecule probes via covalent coupling
using an amino-terminated organ silane. The experimental results demonstrated the cur-
rent of the sensor was lowered by 22% after probe DNA grafting and by 7% after DNA
hybridization [133].

For organophosphate molecules, Hassanzadeh et al. [134] found that the OP molecules
could be adsorbed at silicon sites of SiCNTs (Figure 12a). It can be concluded that a strong
bond formed between the OP and SiC nanotube. The ∆Egap showed many changes (12%)
in electronic properties, which could induce alteration in the SiCNT electrical conductivity
(Figure 12b). In addition, electrochemical nitrite sensors based on cubic SiC nanowires
with smooth surfaces and boron-doped cubic SiC nanowires with fin-like structures were
reported for the first time (Figure 12c) [135]. As for the electrochemical behavior of both SiC
nanowire electrodes, the cyclic voltametric results showed that both SiC electrodes exhib-
ited a wide potential window and excellent electrocatalytic activity toward nitrite oxidation
(Figure 12d). There existed a good linear relationship between the oxidation peak current
and the concentration in the range limitation of 50–15,000 umol·L−1 and 5–8000 umol·L−1

(Figure 12e) with the detection limitation of 5 and 0.5 umol·L−1, respectively. In addition,
a continuous glucose sensor employing radio frequency signals using the biocompatible
material SiC was successfully fabricated [136]. To test the sensor as a function of glucose
level, changes in sensor performance to varying glucose levels were measured and a shift
in resonant frequency to lower values was observed with increasing glucose level. The
functionalization of SiC for biosensing applications was demonstrated by Williams [137].
4H-SiC was functionalized with 3-aminopropyltriethoxysilane (APTES) and subsequently
biotinylated for the selective immobilization of streptavidin. The experimental results
demonstrated that the APTES functionalized and biotinylated SiC surface had the poten-
tial to be employed as a biosensing platform for the selective detection of streptavidin
molecules.
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Figure 12. (a) A schematic illustration of SiC nanotube-based sensor for detecting OP molecule; (b) the
calculated I-V curve before and after the adsorption of OP molecule on SiC nanotube [134]; (c) SEM
image of the B-doped cubic SiC nanowires; (d) the schematic illustration of electrochemical detection
of nitrite based on B-doped cubic SiC nanowires electrode; (e) DPV recordings of nitrite at B-doped
cubic SiC nanowires electrode in PBS (0.1 moL·L−1) with different nitrite concentrations [135].
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4.4. Other Sensors

Placidi [138] combined the stable performance of 3C-SiC under high-frequency condi-
tions to prepare an oscillator in a terahertz environment, which improved its performance
by 50% compared with the commonly used Si-based sensors. Dakshinamurthy et al. [139]
found that the refractive index of 6H-SiC for 632.8 nm He Ne laser varies with tempera-
ture, and can be used to prepare wireless temperature sensors in high-temperature and
harsh environments. Theoretical calculations by Kumar et al. [140] demonstrated that
one-dimensional photonic crystals designed and prepared using 4H SiC and TiO2 can be
used as temperature sensors. In the same year, Rao et al. [141] prepared Schottky diode
temperature sensors using 4H SiC, which can operate stably in the range of 30–300 ºC and
have high sensitivity. Moreover, Peng et al. [142] prepared SiC nanowire ultraviolet (UV)
sensing sensors using the CVD method. The Sciuto group [143,144] prepared UV photoelec-
tron (PDs) sensors using 4H SiC and 6H SiC, which have a wide spectral detection range.
Among them, 6H SiC-based sensors have the potential to achieve visible light detection.
Yang et al. [135] prepared highly sensitive SiC nanostrip photoelectric detection sensors,
which can work stably at 300 ºC for up to 180 days, indicating their promising application
prospects in harsh environments. Recently, a high-performance UV PD with single-crystal
integrated self-supporting 4H-SiC nanohole arrays was constructed, prepared via the anode
oxidation approach. The PD delivers a high responsivity (824 mA/W), superior to those of
most reported ones based on 4H-SiC (Figure 13) [145].
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5. Discussion and Future Trends

In recent years, one-dimensional SiC nanomaterials have attracted great attention
due to their unique structure and outstanding properties. Significant progress has been
witnessed in one-dimensional SiC nanomaterials in the development and application of
sensors. Many methods have been developed to prepare SiC nanomaterials with different
morphologies and structures, such as templates, chemical vapor deposition, electrospinning,
and carbothermal reduction methods. Although the rapid development of one-dimensional
SiC nanomaterials has promoted the exploration of their applications, the research based on
one-dimensional SiC nanomaterial sensors is still in its early stages, and many challenges
lie ahead.
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1. Theoretical calculation results have demonstrated that SiCNT has outstanding gas
sensing and other sensing performance, but current experiments are still difficult to
achieve an accurate preparation of SiCNT. Preparing and constructing SiCNT-based
sensors has been one of the major challenges for future research.

2. The focus of research on one-dimensional SiC nanomaterial sensors has primarily been
on preparation and performance, and while these sensors have shown potential, the
research on sensing principles has still not been conducted sufficiently indepth. One
of the keys to improving the sensing performance and developing high-performance
sensors is to explain the sensing principle through the combination of theoretical
calculations and advanced analytical characterization methods.

3. Selecting suitable components and designing rational morphology and structure based
on application objectives and sensing principles are essential to obtain one-dimensional
SiC nanomaterials with the desired sensing performance. Further surface chemical
functional treatments, precious metal modifications, and construction of heterostruc-
tures can also improve the sensing performance, which can facilitate new processes
and approaches for the development of high-performance SiC-based sensors.

4. At present, the research range of one-dimensional SiC nanomaterial sensors is still nar-
row, and the sensing performance is unitary. How to make full use of the advantages
of SiC nanomaterial multifunction and develop one-dimensional SiC nanomaterial
multifunction sensors is a new direction of one-dimensional SiC nanomaterial sensor
research in the future.

5. SiC is quickly emerging as a versatile material for quantum sensing applications, and
integrating SiC color centers into devices based on 1D SiC nanostructures would be
able to increase their potential applications in energy-based sensors.

At this point, further intensive research is required to overcome these challenges. With
deeper investigations on the sensing principles, fabrication processes, and sensing proper-
ties, the one dimensional SiC nanomaterial sensor will be able to satisfy the requirements
for practical applications in extreme environments.
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