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Abstract: Transition metal dichalcogenides (TMDs) have unique absorption and emission proper-
ties that stem from their large excitonic binding energies, reduced-dielectric screening, and strong
spin–orbit coupling. However, the role of substrates, phonons, and material defects in the excitonic
scattering processes remains elusive. In tungsten-based TMDs, it is known that the excitons formed
from electrons in the lower-energy conduction bands are dark in nature, whereas low-energy emis-
sions in the photoluminescence spectrum have been linked to the brightening of these transitions,
either via defect scattering or via phonon scattering with first-order phonon replicas. Through tem-
perature and incident-power-dependent studies of WS2 grown by CVD or exfoliated from high-purity
bulk crystal on different substrates, we demonstrate that the strong exciton–phonon coupling yields
brightening of dark transitions up to sixth-order phonon replicas. We discuss the critical role of
defects in the brightening pathways of dark excitons and their phonon replicas, and we elucidate
that these emissions are intrinsic to the material and independent of substrate, encapsulation, growth
method, and transfer approach.

Keywords: two-dimensional materials; transition metal dichalcogenides; dark excitons

1. Introduction

The intriguing electronic structure of monolayer transition metal dichalcogenides
(TMDs) arises from the strong spin–orbit coupling and the lack of inversion symmetry,
yielding a spin-splitting of the conduction and the valence bands at the K and K’ valleys of
the hexagonal Brillouin zone, where the extrema of their direct bandgaps are located [1,2].
Such properties are unique to these materials and open exciting pathways towards novel
spin/valley opto-electronics applications [3], especially in the realm of quantum computa-
tion [4,5]. However, such applications require a thorough understanding of the complex
optical excitation and relaxation processes in these two-dimensional semiconductors. There
are a variety of monolayer semiconducting TMDs (MX2, with M = Mo, W and X = S,
Se and Te), with important differences in their optical transitions. Unlike molybdenum-
based TMDs, the lower conduction band in tungsten-based TMDs carries an opposite
spin to that of the upper valence band, making these lower energy, intra-valley transitions
spin-forbidden. There are also momentum-forbidden transitions between conduction and
valence bands with the same spin, but in different valleys. Nevertheless, in addition to
the optically allowed bright transitions (e.g., neutral excitons and trions), the emission
characteristics of monolayer tungsten-based TMDs show an increased level of complexity
at lower energies, with a plethora of emissions that are not yet fully understood. These
low-energy emissions have been broadly attributed to the brightening of initially dark
excitons, either via defect or phonon scattering. Elastic scattering and binding by de-
fects brighten these dark transitions by providing the spin-flip or the momentum change
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required by the selection rules, without the need of phonons [6–9]. This process gives
rise to zero-phonon-line emissions, namely emissions with no phonon scattering [10–13].
Inelastic scattering with phonons, however, results in emissions that are replicas of the
zero-phonon lines at energies shifted by an integer value of the phonon’s energy [10–14].
The strength of the electron–phonon coupling determines the specific phonons involved in
the brightening of dark excitons [13]. Several emissions linked to inelastic scattering with
phonons have been observed, including spin-flipping Γ phonons and spin-conserving K
or Λ phonons [11–13,15]. In all cases, the emissions were attributed to first-order replicas,
corresponding to single-phonon emissions.

It is clear that defects play an important role in the brightening of these dark excitons,
but so far, the identities of the types of defects involved in the scattering process have
been elusive. Recent studies included magneto-photoluminescence, resonant Raman, and
photoluminescence spectroscopy on high-quality WS2 or WSe2 exfoliated from bulk crystals
and, in some cases, encapsulated in hexagonal boron nitride (hBN) [10–13,15,16]. Even very
clean samples, such as those encapsulated in hBN, have been argued to have defects that
were intrinsic to the material, but could not be attributed to specific vacancies; therefore,
questions on their origin have been left open [11]. The picture becomes more complicated
for defects in larger-area materials grown by chemical vapor deposition (CVD) and for
substrates other than hBN. The presence of substrate non-uniformity, as well as of the
impurities left from the transfer process, may play a significant role in the brightening of
dark excitons; however, systematic studies on the effect of the defect density in the material,
of the encapsulation and of the interaction with the substrate are still lacking.

In this work, we present temperature, incident-power and polarization-dependent
photoluminescence (PL) measurements on monolayer TMD flakes that are suspended
or supported by a substrate. Specifically, we studied WS2 that was (a) exfoliated and
encapsulated on hBN, (b) directly grown by chemical vapor deposition (CVD) on hBN
and SiO2, and (c) grown by CVD and transferred onto SiO2 substrates patterned with
holes. In both suspended and substrate-supported samples, a complex blend of low energy
photoluminescence emissions is detected. The power and temperature dependence of these
emissions, combined with Raman scattering information on the vibrational modes, suggest
that the low energy emissions are defect-assisted phonon replicas, consistent with previ-
ously reported works [10–13,15]. More importantly, we observe multi-phonon emissions,
with replicas up to the sixth order. The low-energy emissions are stronger and broader
for samples transferred from the growth substrate, likely due to the larger number of
defects/residues from the transfer process. These findings highlight important material de-
sign strategies that can be utilized to control excitonic dynamics in 2D van der Waals layers
and advance the engineering tools needed to develop future 2D optoelectronic devices.

2. Materials and Methods

We examine five different types of WS2 samples: (1) CVD-grown monolayers on
SiO2 (referred to as-grown), (2) CVD-grown monolayers on hBN, (3) CVT-grown bulk
crystals exfoliated and encapsulated on both sides with hBN, (4) CVD-grown monolayers
transferred to a fresh SiO2 substrate, and (5) CVD-grown monolayers transferred and
suspended on holes that were pre-patterned in the SiO2 substrate. A visual summary of the
samples is in the Supplementary Information in Figure S1. This comprehensive selection of
WS2 materials and preparation methods allow us to examine samples with different defect
densities (CVD-grown vs. CVT/exfoliated), as well as examine the role of substrates and
their inhomogeneities, by comparing hBN, SiO2, and suspended samples.

The CVD growth is performed at atmospheric pressure (APCVD). Details on the
precursors and substrate preparations are outlined in the supplementary information. For
WS2 grown on top of hBN, the growth process is the same as the growth process for
monolayer samples, with the main difference being the substrates for WS2 on hBN growth
will have hBN exfoliated onto them via mechanical exfoliation, and then rinsed under
electronic grade acetone followed by IPA to remove any tape residue.
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The chemical vapor deposition process begins with an anneal for 60 min at 120 ◦C
in an Argon environment with 500 sccm flow rate. The sulfur boat is heated to 85 ◦C
throughout the anneal. Following the anneal, the temperature of the furnace is ramped up
from 120 ◦C to 750 ◦C in 40 min and from 750 ◦C to 850 ◦C in 10 min. The Argon flow rate
is maintained at 200 sccm from 120 ◦C to 750 ◦C and at 70 sccm from 750 ◦C to 850 ◦C, and
throughout the growth phase. The temperature of the sulfur boat is increased from 85 ◦C
to 175 ◦C throughout the temperature ramp phase in the heating profile. The Hydrogen
flow rate is ramped from 0 to 10 sccm at 750 ◦C and maintained at this rate until the end of
the growth phase. Once the WO3 boat reaches 750 ◦C, the sulfur temperature should be at
175 ◦C. At the end of the growth phase, the Hydrogen gas flow is turned off, the Argon
flow rate is increased to 1000 sccm to flush out any residual by-products of the chemical
reaction and the sulfur and furnace heating elements are turned off. The Argon gas flow is
turned off once the furnace cools down below 200 ◦C.

For samples transferred from the growth substrate to a substrate patterned with holes,
we used a water-assisted delamination process with polystyrene as a carrier layer [17].
Details on the transfer process are also included in the supplementary information.

Optical measurements from room temperature to 78 K were performed under high
vacuum conditions, at 1.0 × 10−6 Torr, with a WITec Alpha 300RA system using the 532 nm
line. The spectra were measured in the backscattering configuration using a 63× objective
and an 1800 or 600 grooves mm−1 grating. The cooling was achieved with a SuperVariTemp
Janis Research cryostat, using a continuous flow of liquid nitrogen as the cooling agent.
This cryostat was adapted for Raman spectroscopy.

For temperatures below 78 K, we used a Montana Instrument cryostation equipped
with a 100x objective in its chamber (Cryo-Optic, Bozeman, MT, USA) for high contrast
imaging. The photoluminescence spectra were obtained by a single grating spectrometer
(Horiba) and imaged on a CCD camera (Symphony I Horiba, Singapore). For laser sources,
we employed a 532 nm diode and tunable M-squared laser (515 to 680 nm).

3. Results

Optical excitation of WS2 comprises free charge carriers, neutral excitons (bright and
dark), charged trions (bright and dark), as well as lattice vibrations (phonons). In the
presence of free carriers, an exciton can undergo an electron exchange scattering event
or bind a free carrier forming a trion [6,15,18–22]. Excitons and trions can interact with
defects either by binding to a defect state or by elastic-scattering. The brightened dark
excitons and their phonon replicas yield radiation emission and give rise to an extremely
rich photoluminescence spectrum.

Figure 1a shows the photoluminescence (PL) emission spectra from the five different
samples at room temperature. The spectra are qualitatively similar for all of the samples,
showing broad emissions in the same energy range. Notably, emissions can be better
resolved in the spectrum collected from CVT WS2 on hBN, revealing more than one peak.
This is expected, since cleaner materials and substrates with fewer defects and inhomogeneities
lead to narrow emission linewidths, consistent with previous reports [6,8,11].

Figure 1b shows the PL spectra for the same samples at T = 78 K. These low-temperature
spectra reveal a dramatic change relative to the room temperature emissions. The ap-
pearance of new peaks, the richer complexity of excitonic emissions, and the systematic
variations between different samples point to interesting phonon- and defect-mediated
processes. As discussed in previous work [13], at low temperature free excitons decay
into lower-energy spin or momentum forbidden states, resulting in a relative decrease in
the bright exciton peak and a relative increase in the low-energy dark exciton emissions.
To help elucidate the specific origin of the PL emissions, we use electrostatic doping to
modulate the charge carrier density. We used e-beam lithography and e-beam evaporation
to pattern a gold contact on a CVD-grown WS2 monolayer that had been transferred to a
doped silicon substrate covered with a SiO2 dielectric layer. The doped silicon was used as
a back gate.
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splitting gives rise to a spin-forbidden dark exciton XDKK and momentum-forbidden dark 
exciton XD-KK. It has been reported that the momentum forbidden dark exciton XD-KK lies 
about 10 meV higher than that of the spin forbidden, due to exchange effects [6]. In Figure 
1c emissions corresponding to these transitions can be identified at approximately 50 meV 
below XA, where the spectrum shows a shoulder. As expected for neutral excitons, this 
feature increases with the applied negative gate voltage, like XA (see also Figure S2). We 
labeled this transition as XDKK, although, due to the close spacing between XDKK and XD-KK, 
it is not possible to discern whether either transitions or both are contributing to this emis-
sion. The next prominent peak in Figure 1c) has a gate dependence characteristic of nega-
tively charged trions. This emission is ~76meV below XA. This energy spacing from XA is 

Figure 1. (a) Room temperature PL of different types of WS2 samples, namely (from top to bottom):
CVD-grown WS2 monolayers on SiO2 transferred and suspended on top of pre-patterned holes
on SiO2; CVD-grown WS2 monolayers transferred onto SiO2; CVD-grown WS2 monolayers on
SiO2; CVD-grown WS2 monolayers on exfoliated hBN; CVT-grown bulk crystals exfoliated and
encapsulated with hBN on both sides. (b) PL of the same set of samples as in (a) at 78K. (c) Gated-
PL spectra of transferred WS2 on SiO2 at 78K. The vertical lines mark the peaks corresponding to
transitions specified in Figure 2b. The inset shows an optical image of the gated sample. The scale
bar is 20 µm.
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Since our CVD-grown WS2 is electron doped, a negative gate voltage depletes the ex-
cess electrons and enhances the neutral excitations. Figure 1c shows the photoluminescence
spectra of WS2 on SiO2 at 78K at gate voltages ranging from +60 to −60 V, with 100 µW
illumination and laser photon energy of 2.33 eV. We note that the curve corresponding to
Vg = 0 in Figure 1c shows a prominent peak above 2.0 eV, in addition to the broad peak
at about 1.9 eV that dominates the spectrum for the CVD sample transferred on SiO2 in
Figure 1b. This is because the two spectra are measured with different incident power (the
power is 10 times higher for the gated spectra in Figure 1c) and the relative peak height for
different emissions strongly depends on the incident power, as it will be discussed later.
The broader energy peak near 1.9 eV is prominent for samples transferred from the growth
substrate and it has a very weak gate dependence. This peak is likely related to the presence
of defects and residues from the transfer process, as outlined later in the discussion section.
At negative gate voltages, the free exciton emission XA emerges, with peak energy marked
by the vertical line at about 2.1 eV.
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Following the identification of the neutral exciton emission XA, the remainder of the
peaks can then be identified by using the band diagram in Figure 2. The conduction band
splitting gives rise to a spin-forbidden dark exciton XD

KK and momentum-forbidden dark
exciton XD

-KK. It has been reported that the momentum forbidden dark exciton XD
-KK

lies about 10 meV higher than that of the spin forbidden, due to exchange effects [6]. In
Figure 1c emissions corresponding to these transitions can be identified at approximately
50 meV below XA, where the spectrum shows a shoulder. As expected for neutral excitons,
this feature increases with the applied negative gate voltage, like XA (see also Figure S2).
We labeled this transition as XD

KK, although, due to the close spacing between XD
KK and

XD
-KK, it is not possible to discern whether either transitions or both are contributing to

this emission. The next prominent peak in Figure 1c) has a gate dependence characteristic
of negatively charged trions. This emission is ~76meV below XA. This energy spacing from
XA is much larger than the ~20–35 meV additional binding energy of an extra electron
expected for bright trions T- [8,15,16,19–22], suggesting that the peak in Figure 1c is likely
due to a negatively charged dark trion, indicated as TD

KK in Figure 2. In fact, TD
KK

requires the additional binding energy corresponding to the splitting of the conduction
band, energetically in agreement with the interpretation from magneto PL measurements
in previous work [15].

To better analyze the rich features of the lower energy spectra, Figure 3 shows a
detailed analysis of the spectrum for the WS2 sample grown on hBN by CVD. The two PL
spectra in Figure 3c are from the same flake, measured at two different locations. Although
the low energy peaks can be found in all the samples, their intensity depends on the
specific sample location. This is an example of the spectral emission variability within
each flake that is also illustrated in the photoluminescence map in Figure S3. The spatial
inhomogeneity confirms that these peaks are related to the presence of defects in the
materials and may be stronger in regions with higher defect densities.
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emissions and their origins. Figure 4a shows the co- and cross-polarized spectra from the 
different WS2 samples at 4K. For the suspended samples and the samples on the SiO2 sub-
strates, the emission is characterized by a broad peak as a background to sharper emis-
sions. The broad peak is less prominent for the sample on hBN. While the broad peak is 
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Figure 3. (a) Optical image of the WS2 flake grown on hBN (yellow) and SiO2 (brown). The dots
labeled as 1 and 2 indicate the positions where the spectra in (c) were measured. (b) Band diagram
showing phonon replicas corresponding to emissions in (c). The vertical transitions are spin forbidden
and brightened by Γ5 phonons. The corresponding peak positions in (c) are marked by orange lines.
The momentum indirect transitions correspond to three peaks marked by the purple lines with four,
five and six A’1(m)-LA(M) phonons, respectively. (c) Spectra measured at two different points for
the flake shown in (a), with 10 µW of incident power (532 nm) at 78K. (The top graph is one of the
spectra in Figure 1b).
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In Figure 3c, by marking the emission from the neutral excitons XA, we can clearly
measure the energy spacing of the other emissions relative to XA. We note that the peaks
corresponding to XA (2.1 eV) and the bright trions T- (2.068 eV) are the weakest peaks, while
the low-energy emissions dominate the spectrum. Several recent studies have attributed
these low-energy emissions to the brightening of dark excitons [6–8,11,12,15,16,23,24], but
clearly identifying the corresponding transitions and their brightening mechanism are
challenging tasks, often leaving behind open questions. For the different types of samples
described here, we already described above how we identify the zero-phonon lines of dark
transitions XD

KK and TD
KK. As mentioned in the discussion of the spectra in Figure 1, XD

KK

is spaced from XA by 50 meV, approximately the conduction band splitting, consistent with
the zero-phonon line of the spin-forbidden dark exciton brightened by elastic scattering
with defects. This vertical transition can also be brightened by a Γ phonon via spin-flip
scattering. For WS2 this is the Γ5 phonon, corresponding to the in-plane out-of-phase
oscillation of the chalcogen atoms with an energy of about 38 meV [25]. The emissions
marked by the vertical orange lines correspond to peak energies matching the first- and
the third-order phonon replicas for these phonon-brightened transitions in the lower and
upper spectrum, respectively.

Similarly, we can identify the zero-phonon line of the momentum-forbidden transitions
XD

-QK (marked by a dotted line just above 2.025 eV) between electrons and holes in the -Q
and K bands, respectively. The energy spacing of this peak from XA matches the spacing
of the conduction band edges at -Q and K, about 70 meV, indicating that the brightening
of the XD

-QK zero-phonon line is due to elastic scattering with defects. These transitions
can also be brightened by scattering with phonons carrying the matching momentum
difference between the electron and the hole. These are acoustic phonons at the M point
of the Brillouin zone that have been shown to strongly couple to excitonic transitions in
previous experiments using resonant Raman spectroscopy [13]. In our spectra we can
clearly see peaks with spacing of 28 meV matching the A1′(M)-LA(M) phonon for WS2.
Notably, the spacing of the peaks from the zero-phonon line indicates that we can measure
up to the sixth-order phonon replica for this phonon-brightened emission, as indicated by
the purple dotted lines. Momentum conservation requires either just one phonon or an
odd number of phonons that includes pairs of phonons with opposite momentum. The
presence of replicas corresponding to an even number of phonons indicates that elastic
scattering with defects must contribute to these emissions to conserve momentum. This is
consistent with the spatial non-uniformity of the intensity of these low-energy emissions.
It is also interesting to note that there are regions of the spectra where several different
emissions are closely spaced. For example, in the spectrum corresponding to location 2 in
Figure 3c, the peaks from the first Γ5 replica of XD

KK, from the zero-phonon line XD
-QK and

from the dark trion TD
KK are all located in the region of the spectrum where the emission is

strongest, at 2.02 eV.
Polarization dependence of the PL spectrum is a strong tool to study the character

of emissions and their origins. Figure 4a shows the co- and cross-polarized spectra from
the different WS2 samples at 4K. For the suspended samples and the samples on the SiO2
substrates, the emission is characterized by a broad peak as a background to sharper
emissions. The broad peak is less prominent for the sample on hBN. While the broad peak
is polarization independent, the sharper emission peaks do change with polarization, as
expected for bright excitons and dark excitons that are not bound to defects. The lack
of polarization dependence of the broad background peak suggests that its origin might
be from excitons bound to defects, rather than excitons scattered by defects [26–30]. The
sharper peaks can be more clearly distinguished in spectra with higher power in Figure 4b,
where vertical lines are used to identify the zero phonon lines and the corresponding
replicas for the more prominent peaks, although small shoulders between the peaks reveal
the presence of other emissions with smaller intensity, such as the zero-phonon line TD

KK.
The peaks identified at energy lower than the zero-phonon line XD

-QK are replicas with
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spacings of about 22 meV, corresponding to the LA(M) phonon mode [13] and 28 meV,
corresponding to the A1′(M)-LA(M) phonon energy [25].
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Figure 4b clearly shows that the relative peak height from different emissions changes
as a function of power. Specifically, the peak heights of the zero-phonon lines and the
phonon replicas continue to grow with power approximately linearly, while the broad
defect background saturates. These results indicate that the broad background is due to
defect-bound excitons, with emissions that are expected to saturate with power for a finite
defect density, once all the defect traps are occupied by excitons. On the other hand, the
zero-phonon lines and the phonon replicas for dark emissions are brightened by elastic
scattering of excitons with defects; therefore, the peak height continues to increase with
increasing incident power.

4. Discussion

The low energy features in the photoluminescence spectra of all the different samples
studied here show clear common features. They develop at low temperatures, and they
dominate the spectrum at low incident laser power. This is evident from the maps of
the PL spectra. At room temperature, where the emission is typically dominated by the
bright emissions, i.e., by the trion peak (for CVD-grown material, typically electron-doped
due to sulfur vacancies), the emission is spatially very uniform. At low temperature,
the spatial non-uniformity emerges, and the low-energy emissions are stronger in some
regions of the flakes, as shown, for example, by the two spectra in Figure 3c (see also
the photoluminescence map in the supplementary information). We use the analysis of
the spectra from different types of samples combined with the studies of the spectra as
a function of electrostatic gating to identify the low energy emissions of dark excitations
either as zero phonon lines or as their related phonon replicas. The spatial non-uniformity
of the spectrum points to the essential role played by defects in the brightening process.
Since the zero-phonon lines match the energy spacing from the neutral exciton emission
XA that is expected from the corresponding dark transition in the WS2 band diagram (see
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Figure 2), the defect-assisted brightening must be the result of elastic scattering, rather
than emissions from excitons bound to defects observed in previous works, where the
energies of the low-energy emission zero phonon lines were determined by the defect
binding energies [11]. In addition, we can clearly identify peaks from phonon replicas of
the zero-phonon lines by matching their spacing to WS2 phonons that satisfy the energy
and momentum requirements to brighten these dark transitions. For the brightening
of momentum-indirect dark transitions, we identify zone-edge M phonons that yield
emissions up to sixth-order replicas of the corresponding zero-phonon line. This result is
consistent with previous observations of strong exciton–phonon scattering intensity for
M phonons in WS2 [13]. Our work elucidates that this exciton–phonon coupling is not
strongly affected by the substrate, since these low-energy multi-phonon replicas can be
identified in samples with SiO2 and hBN substrates, as well as in suspended samples, as
shown in Figure 4a. It is interesting to note that in semiconductors the intensity of phonon
replicas with multi-phonon emission can be related to the electron–phonon coupling via
the Huang-Rhys factor [14,31,32]. Although this work is mainly focused on identifying the
phonon replicas and their occurrence for different types of samples, in future work we plan
to study the intensities of the phonon replicas for different transitions and different phonon
modes to extract Huang-Rhys factors for WS2 and other transition metal dichalcogenides.

By comparing the spectra from different types of samples, we find that the effects of
the substrate and the defect density in the WS2 are manifest mainly in the broadening of
these emissions. As expected, more uniform substrates and low- defect density samples
yield sharper emission lines. The broader low-energy emissions are measured from the
transferred samples (see for example transferred CVD WS2 in Figure 1b), indicating higher
defect density from residues related to the transfer process. However, measurements at
lower temperature in Figure 4, show that sharp phonon replicas emerge from the broad
emission background, confirming that phonon replicas are present also in the transferred
samples. While the phonon replicas and the zero-phonon lines are polarization-dependent
and indicate brightening of dark excitons that is assisted by elastic scattering with defects,
the broad polarization-independent background is indicative of excitons bound to defects.
Unlike emissions brightened by elastic scattering, emissions from excitons bound to defects
saturate with increasing power, as shown in Figure 4b.

5. Conclusions

In summary, we show that the low-energy emissions in monolayer WS2 are largely
governed by scattering with phonons and elastic scattering from defects, which remain
regardless of the substrate or growth conditions. In addition, the power dependence and
the spatial non-uniformity confirm that defects seem to play a key role in the occurrence
of radiative recombination from dark excitons. However, these defects are not related to
the substrate or different defect densities from different growth processes, since these low
energy emissions are ubiquitous for samples on different substrates, grown and prepared
with different methods. In our analysis, evidence of emissions due to defect-bound exciton
described in previous work [11] was limited to a broad background signal that was promi-
nent in samples with residues from the transfer process. Our findings highlight important
physics and material design strategies that can be utilized to control excitonic dynamics in
2D van der Waals layers and advance the engineering tools needed for the development of
2D optoelectronic devices.
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