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Abstract: The continuous development of novel materials for biomedical applications is resulting in
an increasingly better prognosis for patients. The application of more advanced materials relates to
fewer complications and a desirable higher percentage of successful treatments. New, innovative
materials being considered for biomedical applications are metallic alloys with an amorphous internal
structure called metallic glasses. They are currently in a dynamic phase of development both in
terms of formulating new chemical compositions and testing their properties in terms of intended
biocompatibility. This review article intends to synthesize the latest research results in the field of
biocompatible metallic glasses to create a more coherent picture of these materials. It summarizes
and discusses the most recent findings in the areas of mechanical properties, corrosion resistance,
in vitro cellular studies, antibacterial properties, and in vivo animal studies. Results are collected
mainly for the most popular metallic glasses manufactured as thin films, coatings, and in bulk form.
Considered materials include alloys based on zirconium and titanium, as well as new promising ones
based on magnesium, tantalum, and palladium. From the properties of the examined metallic glasses,
possible areas of application and further research directions to fill existing gaps are proposed.

Keywords: metallic glass; bulk metallic glass; biocompatibility; in vitro; in vivo; biomedical; Zr-based;
Ti-based; mechanical properties; corrosion resistance

1. Introduction

Improving the success rate of surgical procedures along with the life quality of patients
after operations is the driving force for the ongoing development of new materials for
biomedical applications. The fundamental requirement for such materials is broadly
defined biocompatibility. The U.S. Food and Drug Administration (FDA) provided the
universal definition of this property as the effect of inducing no measurable harm to the
host organism by the material [1]. In this approach, the concept of biocompatibility includes
both chemical and mechanical interactions of material with an organism.

One of the widely used standard materials groups for medical implants, surgical
tools, and other bio-related devices are metallic alloys, including stainless steels, pure
Ti and Ti-based alloys, Co-based alloys, pure Zr and Zr-based alloys, bioresorbable Mg-
based alloys, pure Ta, and other miscellaneous [1–3]. However, they are often afflicted
with many problems including insufficient corrosion fatigue, fretting fatigue resistance,
as well as possible toxicity by the release of toxic ions. For the stainless steels and Mg-
based materials, corrosion resistance is also problematic. For the stainless steels and
Ti-based materials, the wear resistance is a serious concern. Moreover, in the case of
implants, the stress shielding effect [4]—which consists of transferring the loads through
the stiffer element—is challenging. In the typical case, the load is transferred through
the implant (stiffer than the bone) without stimulation of surrounding bones to maintain
their properties, which causes bone resorption and implant loosening. Materials such
as stainless steels, Co-based materials, pure Ta, and certain alloys from other groups—
which are characterized by a Young’s modulus significantly higher than the value for
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the bones (5.7–18.2 GPa [5])—are particularly prone to triggering this effect. However, it
was reported that materials with Young’s modulus values of about 60 GPa are already
effective in eliminating the stress shielding effect [6]. Ultimately, the mentioned issues
lower the applicational biocompatibility of current materials for biomedical applications.
Other problems relate to the inapplicability of some materials for magnetic resonance
due to the displacement possibility (e.g., for ferromagnetic materials such as ferritic and
martensitic stainless steels [7]) or inducing severe artifacts (e.g., for austenitic stainless
steels, Co-based alloys, and even Ti-based alloys [8]). Similarly, artifacts can be induced
during X-ray imaging [9].

The efforts to reduce all of the mentioned drawbacks are in constant progress. How-
ever, the development limitations in the form of possible alloying compositions, internal
structures, and manufacturing techniques are imposed. The possible solution to bypass the
disadvantages of the existing material and overcome the imposed limitations is the use of a
different group of metallic materials, i.e., Metallic Glasses (MGs) which are characterized
by amorphous internal structure.

The majority of metallic alloys at room temperature are characterized by a crystalline
structure, which ensures the optimal arrangement of atoms [10]. However, to some extent,
it is possible to control the structure at the manufacturing stage by altering the thermo-
dynamic conditions. The structures obtained in rapid cooling processes were noticed in
metals as early as in the 1940s [11,12] while applying metal vapors to the cold substrate.
The first confirmed formation of an amorphous structure in metals obtained by cooling
them from liquid to solid state dates to 1960 [13]. It was produced at that time by the
Duwez research team at Caltech through the very rapid cooling of an Au-Si alloy into the
shape of thin foil. This new group of metallic materials was named metallic glasses, by
similarity to well-known amorphous oxide glasses.

The confirmation of the possibility of changing the internal structure in metallic alloys
initiated rapid progress and research on this material group, which is illustrated in Figure 1.
This significant development resulted in the discovery of many new compositions of alloys
with higher Glass Forming Ability (GFA), the determination of changes in physical and
mechanical properties in MGs, and the development of new production methods. Firstly,
the MGs were fabricated only in the form of thin ribbons or foils due to the necessity of
preserving the critical cooling rate (≥106 K/s) essential to obtain the amorphous internal
structure. Later, the optimization of chemical compositions resulted in the opportunity
for manufacturing MGs with lower critical cooling rates (≤103 K/s) and greater critical
dimensions exceeding 1 mm, so called Bulk Metallic Glasses (BMGs) [14,15], which now
can be produced with critical dimensions measured even in centimeters [16,17]. Eventually,
since their discovery, many MGs and BMGs compositions based on various elements have
been developed. However, the necessity to maintain the critical cooling rate still restricts
the maximal, composition-dependent, achievable dimensions.

The non-crystalline internal structure of metallic glasses implies far-reaching changes
in physicochemical properties in relation to their crystalline counterparts. This includes
most of the crucial mechanical [19–21], electrical [22], magnetic [20,21,23] or corrosion
parameters [24]. Typically, the results are, among others, increased strength, hardness,
toughness, and wear resistance with a lowered Young’s modulus and low plasticity [25,26].
In terms of strength, the MGs are closer to the maximum theoretical value than any other
known metallic material [27]. Additionally, they are characterized by increased corro-
sion resistance [28–31], as a result of grain boundary absence that reduces the possible
corrosion routes and the common presence of alloying elements with the great ability
to chemical passivation. This increase is also connected with nearly ideal chemical and
structural (including lack of crystalline inclusions) composition homogeneity in the mi-
croscale [32], which reduces the number of galvanic micro-cells formed [33]. Moreover,
the amorphous internal structure of bulk metallic glasses allows for their thermoplastic
processing [34–36], which implies the possibility of creating complex shapes in a relatively
simple manufacturing process. Ultimately the metallic glasses production methods, usu-
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ally involving extremely fast heat dissipation, allow for the reduction of the limitation
connected with alloying components’ miscibility because the manufacturing conditions
are far from equilibrium. It allows for producing multicomponent alloys with a range of
pre-designed properties.
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With the unique, different than crystalline metallic materials and properties, the MGs
and BMGs were already applied or are under thorough consideration for many prospective
applications, including biomedical purposes, to form the basis for the next generation of
modern devices. In recent times, several metallic glasses were developed specifically for bio-
related applications. Figure 1 shows the rapid increase in publications per year concerning
metallic glasses in bio-related applications after 2011 and their increasing share in the
annual total of publications on metallic glasses. This data shows the potential contained in
these materials and the existing perspective for their further use in the biomedical industry.

The rapid development of biocompatible metallic glasses and the multidirectionality
of ongoing research create the need for regular organization, comparison, and discussion
of varied results. This provides an opportunity to get knowledge of the current state of
research and directs future ones. Therefore, this review intends to cover the recent advances
in the development, properties, and application possibilities of functional MGs and BMGs,
with an emphasis on the promising and most researched Zr- and Ti-based materials devoted
to being used in biomedical applications.

2. Zr-Based Metallic Glasses

Some of the most promising metallic glasses for biomedical applications are materials
based on zirconium, which is characterized by the lack of local and systemic toxicity as
well as the formation of stable oxide layers on the surface in biological environments [37].
Moreover, metallic glasses containing zirconium are among the best alloys in terms of glass
forming ability [38,39] and are characterized by one of the highest levels of development.
This results in the existence of a huge number of defined compositions with determined



J. Funct. Biomater. 2022, 13, 245 4 of 41

properties and many of them have been researched or designed specifically to function in
biomedical applications. The most recent ones, including bulk materials and thin films,
which are characterized by good corrosion resistance in different simulated environments
and/or good in vitro/in vivo biocompatibility, are summarized in Table 1 along with their
determined mechanical properties.

2.1. Mechanical Properties

As presented in Table 1, the exemplary Zr-based metallic glasses currently being
researched are characterized by high strengths in the range between 1043 and 1904 MPa,
a comparatively low Young’s modulus of 70–127 GPa, and moderate to high hardness
reaching 443–843 HV (4.35–9.10 GPa). However, it should be noted, that the higher values of
Young’s modulus are obtained mainly for magnetron-sputtered thin films. The possibility of
obtaining very high strengths and hardness is perfect both for implants and surgical devices
as it ensures the required durability and allows for material mass and volume reduction.
For some thin films produced by magnetron sputtering, the observed hardness was even
higher than those reported in Table 1 reaching about 1030 HV (11.1 GPa) [56], which enables
the possibility of current materials performance improvement by coating application.

Noteworthy, reported in the literature are high values of elastic strain achievable for
Zr-based metallic glasses. This parameter is higher than 2% for each material from Table 1
for which data are available. The elastic strain can reach an even remarkable, as for metallic
material, value of 6.28% (Figure 2) for the Zr56Cu24Al9Ni7Ti4 BMG [48]. For comparison
in the popular 316 stainless steel, the permissible elastic strain is only 0.34% and in Ti-
6Al-4V alloy, 0.67% [57]. The notable increase in elastic strain for metallic glasses makes a
significant difference in their interaction with naturally elastic bones. Such high values of
elastic strain are very desirable in the aspect of designing bone implants in which elastic
deformation should be the default mode with plastic deformation being a sign of a serious
issue. The high values of possible elastic strain are also advantageous in the application for
stents or other microdevices with changeable shapes, which are delivered to their target
destination in compressed form. Some of the materials, including Zr56Cu24Al9Ni4Ti4Fe3
(Figure 2) [48], Zr60.5Ti3Al9Fe4.5Cu23 [40], Zr65Cu20Al10Fe5, Zr63Ti3Cu20Al10Fe5 [47], and
Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (x = 0, 2.5, 5) alloys [49] also exhibit noticeable plastic strain.
In this context, it should be noted, that lack of plastic strain is a significant drawback for
metallic glasses in certain applications, such as surgical tools, as it causes abrupt failure
mode without previous plastic deformation working as a warning sign.

The Young’s modulus of Zr-based metallic glasses (70–127 GPa) is significantly lower
than this for the 316L stainless steel (193–210 GPa) and lower even than this for the Ti-6Al-4V
alloy (101–125 GPa) [57]. Mentioned higher values of elastic modulus obtained for thin films
are of lower importance as in these cases, the Young’s modulus of the substrate materials is
the key factor. A low Young’s modulus for Zr-based metallic glasses indicates the enhanced
mechanocompatibility with the bone tissue characterized by a Young’s modulus from about
5.7 to 18.2 GPa depending on the measuring direction (for human femoral cortical bone) [5].
Considering load-bearing orthopedic implants, materials with a Young’s modulus closer
to the values for bones cause lower bone resorption in the implant vicinity. It relates to
reducing the stress shielding effect (see Section 1). Therefore, this area of applications can
benefit from the use of Zr-based metallic glasses with a low Young’s modulus.

Some of the BMGs, namely Zr40Ti15Cu10Ni10Be25, Zr50Ti5Cu10Ni10Be25, and
Zr40Ti15Cu10Ni5Si5Be25 alloys, were also proved to have excellent tribological characteris-
tics followed by exceptionally high wear resistance [45] illustrated in Figure 3 by very low
residual depth after the microscratch test in comparison to reference common materials
widely used in biomedical applications. Such characteristics are highly attractive to prevent
the excessive wear of implants or surgical tools and reduce the number of debris that
could potentially lead to the necessity of implant removal. Moreover, it was also confirmed
that these tribological parameters can be even more improved by a relatively simple heat
treatment process [58], which further increases the area of possible applications.
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Table 1. Recent exemplary Zr-based amorphous alloys considered for biomedical applications together with their technological details and mechanical parameters:
d—obtained diameter/thickness, σmax—compressive ultimate strength, E—Young’s modulus, HV—Vickers hardness, εel—elastic strain.

Composition (at.%) Production Method d (mm) Structure σmax (MPa) E (GPa) Hv (HV) εel/εpl (%) Ref.

Zr63.5−xTixAl9Fe4.5Cu23
(x = 0, 1.5, 3, 4.5, 6) Arc melting/suction casting 3–10 Fully amorphous 1580–1690 – – –/0.9–4.7 [40]

Zr61Ti2Cu25Al12 Arc melting/suction casting 2–10 Fully amorphous – 83 – – [41,42]
Zr58.6Al15.4Co18.2Cu7.8 Arc melting/suction casting 10 Fully amorphous 1950 84 – –/2.0 [43]
Zr55Ti3HfxCu32−xAl10

(x = 0, 1, 2, 3, 4, 5) Arc melting/suction casting 4–8 Fully amorphous 1695–1824 73–85 – 2.0–2.5/0–2.6 [44]

Zr40Ti15Cu10Ni10Be25 Arc melting/suction casting 3 Mainly amorphous – – 796 – [45]
Zr50Ti5Cu10Ni10Be25 Arc melting/suction casting 3 Mainly amorphous – – 741 – [45]

Zr40Ti15Cu10Ni5Si5Be25 Arc melting/suction casting 3 Partially amorphous – – 843 – [45]
Zr70Ni16Cu6Al8 Arc melting/arc tilt casting 3 – 1500 * 70 – 2.2/0 [46]

Zr65−xTixCu20Al10Fe5
(x = 0, 2, 4, 6, 8) Arc melting/suction casting 2

Fully amorphous for x = 0,
2, 4, and partially

amorphous for x = 6, 8
1405–1905 – – –/0–8.6 [47]

Zr56Cu24Al9Ni7−xTi4Fex
(x = 0, 1, 3, 5, 7) Arc melting/suction casting 2

Fully amorphous for x = 0,
1, 3, and partially

amorphous for x = 5, 7
1043–1709 – – 3.9–6.3/0–5.6 [48]

Zr60+xTi2.5Al10Fe12.5-xCu10Ag5
(x = 0, 2.5, 5)

Arc melting/suction
casting/casting 1–2 Fully amorphous ~1660–1740 70–78 443–460 2.0–2.0/4–12 [49]

Zr55Co30Ti15 Arc melting/melt spinning 0.04 Fully amorphous – – – – [50]
Zr62Cu22Al10Fe5Dy1 Induction melting/melt spinning 0.04 Fully amorphous – 96 495 – [51]

Zr37Co34Cu20Ti9 Arc melting/melt spinning – Fully amorphous – 81 567 – [52]
Zr40Ti35Ni14Nb11 Magnetron co-sputtering 0.0006 Fully amorphous – 122 ~658 – [53]

Zr46Ti40Ag14 Magnetron co-sputtering 0.0003 Fully amorphous – 109 ~567 – [54]
Zr46Ti43Al11 Magnetron co-sputtering 0.0002 Fully amorphous – 127 ~520 – [54]
Zr62.5Pd37.5 Magnetron sputtering – Fully amorphous – – – – [55]

* Determined in a tensile test.
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with a scratch speed of 1 mm/min and pre- and post-scan measurements with the load of 0.03 N.
Images of scratches (a) and corresponding scratch parameters such as penetration depth (b) and
residual depth (c) for the Zr40Ti15Cu10Ni10Be25, Zr50Ti5Cu10Ni10Be25, Zr40Ti15Cu10Ni5Si5Be25 alloys,
reference 316L surgical steel and Ti6Al4V alloy obtained in scratch tests. (Reprinted and adapted
from ref. [45] under Creative Commons CC-BY license).
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2.2. Corrosion Resistance

An imperative for non-resorbable implants and surgical tools is excellent corrosion
resistance in the body environment strongly connected with a limited release of toxic
ions. Meeting this condition paves the way for further in vitro and in vivo research.
In recent studies, the corrosion resistance of Zr-based metallic glasses in varied simu-
lated environments was investigated by potentiodynamic polarization tests. The reported
environments included:

• Phosphate Buffered Saline (PBS) [32,40,43,47,49–54],
• Simulated Body Fluid (SBF) [41,45,48,59],
• Artificial Blood Plasma Solution (ABP) [50–52],
• Artificial Saliva Solution (ASS) [50–52],
• Hank’s Balanced Saline Solution (HBSS) [50–52,55,60],
• Ringer’s solution [31],

and standard environments of 0.6 mol/dm3 NaCl, 1 mol/dm3 HCl, 1 mol/dm3

H2SO4 [44] and 0.1 mol/dm3 NaCl combined with 10g/dm3 lactic acid [46]. The identified
corrosion protection mechanism is connected with oxides layers formation on the surface of
the Zr-based materials [30,32,61–64]. Cumulatively, the research showed excellent corrosion
resistance of Zr-based metallic glasses, typically better than for pure Ti and Ti-based alloys.
It was expressed by the low value of corrosion current density, as depicted in Figure 4.
However, their passive region width often tends to be low [47] for example in comparison
with crystalline Ti-based alloys [40,43,45,46,48,49], which can result in pitting corrosion and
is visible in Figure 4 as a sudden increase in current density with more positive polarization.
The susceptibility of Zr-based metallic glasses to pitting corrosion in chloride-containing
solutions [64], such as body fluids, is one of the main concerns related to their corrosion
resistance aspect. As human cell membrane potential can reach about 0.1 V, it can stimulate
the electrochemical corrosion of implants with low pitting corrosion resistance [65–67].
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The corrosion resistance is strongly dependent on the chemical composition of the
particular alloy and even single percentage variations can alter the alloy behavior creating
one of the possible areas for improvement of pitting corrosion resistance. Furthermore, it
should be noted that the alloying elements’ influence is not uniform in every composition
and the synergistic effect must always be taken into consideration. The popular alloying
element addition is Ti, which is known to improve the GFA and mechanical properties
considering the content of about 2–3 at.% [40,47] in the ZrTiAlFeCu alloys. However, the
optimal content of Ti to enhance the pitting corrosion resistance is much higher (about
4–6 at.%) [47]. For alloys with lower Ti content, this results in low width of the passive
region during polarization tests that lead to a faster breakdown in the passive layer [40,47].
It was also reported by Jin et al. [44] that Hf addition at the expense of copper in ZrTiH-
fCuAl alloys group improves their GFA and mechanical properties or corrosion resistance
depending on the concentration of the elements. Still, it is possible to find a composition
providing a good balance between the aforementioned parameters. Similar conclusions
were drawn by Shi et al. [48] for ZrCuAlNiTiFe alloys, where the adjusted addition of 3 at.%
of Fe with reducing the content of Ni improved both the GFA, mechanical properties, and
pitting corrosion resistance (Figure 4). Ultimately, the Zr45Ti36Fe11Al8 showed remarkable
corrosion resistance with no susceptibility to pitting corrosion [32]. All presented works
show how crucial the optimization of the chemical composition is to design the desired
properties. Moreover, the gathered research shows the importance of minor alloying
additions in the formulation of the proper glass-forming alloy for biomedical applications.

Based on discussed studies, it is also rational to look for new non-standard alloying
elements to improve the functional properties of the BMGs. For example, Jain et al. [51]
evaluated the ZrAlFeCu alloy with the addition of dysprosium. The alloy showed good
corrosion resistance due to the addition of one more element promoting the formation of
stable oxides. However, the examined alloy was obtained only in the form of a thin ribbon,
which currently limits its application possibilities. The exceptional corrosion resistance was
also shown for binary ZrPd alloy with the unique nano-granular structure [55]. The applied
magnetron sputtering production method gives the prospects to utilize this alloy for thin
coatings to gain benefits from the connection of two different materials with complementary
properties. By using this technique, there is also a confirmed possibility of obtaining thin
films of Zr-based metallic glasses with the controlled addition of nitrogen (ZrCuAlAgN)
which also seems to be beneficial for corrosion resistance [56]. For the BMGs, it was recently
reported that the pitting corrosion resistance can be improved by introducing very low
levels (about 1200 ppm) of oxygen impurity (Figure 5), which causes shrinking of the
free volume highly active regions through enabling the structural ordering and without
inducing undesirable crystallization [68].

Inevitably, the passive region width increases with the time of exposure to the corrosion
environment as the thicker oxides layer is formed which was, for example, shown for the
ZrTiCuNiBe materials group [45]. This suggests the possibility of artificial, chemical, or
thermal, passivation of the metallic glasses before intended use to improve their corrosion
resistance without compositional modifications. Sawyer et al. [69] incorporated a technique
of thermal Ceramic Conversion Treatment (CCT) to obtain a thick ceramic passive layer
of oxides on the Zr44Ti11Cu10Ni10Be25 BMG surface during the oxidizing between the
glass transition temperature and crystallization temperature. With the right choice of
temperatures and times, the technique proved to be effective in increasing the surface
hardness (to even 18.32 GPa) and improving the tribological characteristics. It also greatly
enhanced the corrosion resistance in terms of the width of the passive region, as the sample
was passivated through the entire test up to the polarization of about +1.2 V in relation to
corrosion potential. However, the corrosion current density without external polarization
was slightly higher for the treated samples indicating a little bit worse corrosion resistance in
steady conditions. Nearly all the obtained characteristics are very beneficial for biomedical
applications and the method seems to be very promising to test on other MGs compositions.
Similar research, but including the temperatures after the crystallization temperature, was
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reported by Wang et al. [31] for the Zr56Al16Co28 BMG. This study confirmed the widening
of the passive region by heat treatment but also indicated the undesirable increase in
corrosion current density and revealed the worsening of corrosion resistance in the presence
of crystalline phases. The obtained annealing results, in addition to the passivation of
an outer layer of materials, should also be interpreted in the context of the thermally
activated relaxation process. A reduction of free volumes from the manufacturing stages
and associated lower surface electrochemical activity were proven to also be responsible
for increased pitting corrosion resistance [70,71].

What is more, recent research confirmed the possibility of increasing the corrosion
resistance by surface nano- and micro-structuring by the femtosecond laser [72]. This effect
is connected with surface self-cleaning and its multi-level structure.
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2.3. In Vitro Cellular Research

Very recently, many Zr-based glassy alloys have also been assessed in in vitro cellular
research concerning their cytotoxicity which determines the next step for the wider applica-
tion of this group of materials. The research with the use of MC3T3-E1 mouse preosteoblasts
cells showed an excellent cytocompatibility of Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (x = 0, 2.5, 5)
BMGs [49], Zr43.3Cu27.8Ni15.2Al9.1Ti4.6 BMG [73], and Zr61Ti2Cu25Al12 BMG [41] in com-
parison with Ti-based alloys and even PEEK polymer in the case of the Zr61Ti2Cu25Al12
alloy. The higher cell proliferation activity resulting in faster cell growth on the surface of
Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (x = 0, 2.5, 5) BMGs in comparison to pure Zr and Ti-6Al-4V
sample is shown in Figure 6a. The proper MC3T3-E1 mouse cells morphology on the
surface of Zr43.3Cu27.8Ni15.2Al9.1Ti4.6 BMG is visible in Figure 6b. The promising results
were obtained even despite the Ag content in the first group of alloys, which is known to
exhibit significant toxicity in ionic and nanoparticle forms [74–76]. However, the Ag ions
cytotoxicity is strictly concentration-dependent [77], which can explain the obtained results
together with low relative Ag content and low release rate [78].
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Figure 6. (a) WST-1 assay protocol results for the Zr60+xTi2.5Al10Fe12.5−xCu10Ag5 (x = 0, 2.5, 5) BMGs
and reference pure Zr and Ti-6Al-4V alloy, illustrating proliferation activities of MC3T3-E1 cells
after a specific time. Results are given as a percent of the highest value. (Reprinted with permission
from ref. [49]. Copyright © 2014 Elsevier B.V., Amsterdam, The Netherlands); (b) Fluorescence
stained MC3T3-E1 cells on the polished surface of Zr43.3Cu27.8Ni15.2Al9.1Ti4.6 BMG after 14 days of
incubation. No visible changes in cell morphology are observed. (Reprinted with permission from
ref. [73]. Copyright © 2022 American Chemical Society, Washington, DC, USA).

Comparably excellent results were also obtained for other Ag-containing BMG
(Zr46(Cu4.5/5.5Ag1/5.5)46Al8 in indirect contact with L929 mouse fibroblasts [60]. Research
on compositionally very similar Zr48Cu36Al8Ag8 MG thin film, with the use of ISO 10993:5
standard, confirmed also low toxicity of this MG to L929 cells in direct contact [79]. Al-
though Li et al. [80] presented contradictory results for the compositionally identical
Zr48Cu36Al8Ag8 BMG in nearly equal conditions (ISO 10993:5 standard) in both direct
and indirect contact. In his research, the tested material showed severe toxicity to L929
cells, what was connected to a high concentration of released metallic ions, such as Cu,
Zr, and Ag. Additionally, the research reported by Rajan et al. [59] considering the same
Zr48Cu36Al8Ag8 alloy but manufactured in the form of thin films by magnetron sputter-
ing, also showed higher cytotoxicity to MC3T3-E1 cells than commercially pure Ti. It
should be mentioned that Cu, which although is a vital microelement [1], can also cause
cytotoxic effects [80,81] and its release is dependent on the alloy composition [65]. The
result from Li et al.’s research on Zr48Cu36Al8Ag8 is rather unusual as the metallic glasses
are commonly characterized by low degrees of ions release [46,82,83]. Moreover, the first
referenced research by Sun et al. [60] on the (Zr46(Cu4.5/5.5Ag1/5.5)46Al8 BMG confirmed its
biocompatibility even in in vivo animal tests (see Section 2.5). This contradiction prompts
research into the effect of minor changes in chemical composition on the ions release in more
aggressive environments. Moreover, the ambiguity should be fully explored especially
bearing in mind the sensitive and responsible alloys’ bio-related application target.

Another popular type of cells used for cytotoxicity verification purposes are human
osteosarcoma cells (HOS), especially from the MG-63 cell lines. Vincent et al. [50] showed a
little toxicity of Zr55Co30Ti15 metallic glass to HOS cells using ISO 10993:5 standard, espe-
cially in comparison with the different Cu-based metallic glass. The research with the use of
MG-63 cells also showed no pronounced cytotoxic effects of Zr62Cu22Al10Fe5Dy1 (according
to ISO 10993:5 standard) [51], Zr37Co34Cu20Ti9 [52], and Zr60.14Cu22.31Fe4.85Al9.7Ag3 [84]
metallic glasses. However, the relative viability of cells on the surface of the first two alloys
was not perfect and oscillated in the range of 73–91% to the control sample, which can
relate to proportionally high Cu content [65] as well as higher ions release.

In other research, the human fibroblasts cells from the cell lines CCD-986sk (from skin)
and IMR90 (from lungs) were utilized to evaluate Zr60.5Ti3Al9Fe4.5Cu23 BMG [40] and a
group of ZrTiCuNiBe BMGs with the addition of Si [45], respectively. The first investigated
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alloy performed better in the cell viability test with CCD-986sk fibroblasts than common
Ti-6Al-4V material. However, the overall cell viability after 24 h in comparison to the
glass control sample was rather poor (65.4 %). The second group of alloys performed
significantly better in contact with IMR90 fibroblasts (in tests according to ISO 10993
standard), providing viability in direct contact better than 88% after 24 h. That was the
case despite the Ni and Be content, which are normally considered toxic and generally
harmful [85,86]. Similarly, good results were obtained for other Ni- and Be-containing
BMGs in tests with mouse fibroblasts from the cell line L929 [60]. These results together,
show that the surface-formed oxides layer can provide sufficient insulation of the core
material from the surrounding environment reducing the ions migration [49,87] in static
(without loads) conditions. The research by Ida et al. [46] confirmed that the amount of
varied released ions by Ni-containing Zr70Ni16Cu6Al8 BMG is negligible in comparison to
Ni-containing stainless steel and even pure Ti (Figure 7). Comparable results were obtained
by Wang et al. [88] demonstrating that the ions release from Zr44Ti11Cu10Ni10Be25 (similar
as in [45]) in SBF is low, but also very dependent on chemical composition. It was also
shown that Ni and Cu ions release is generally higher among varied compositions and
more problematic than Be ions release [88]. The effect of insulating oxides can be also
referenced to the above-mentioned excellent cytocompatibility of Ag-bearing BMGs, as
the insulating oxides layer could have prevented or slowed down the Ag ions’ migration,
maintaining their concentration below the cytotoxicity threshold. However, there is serious
concern about the durability of all the described oxides layer in dynamic and tribological
conditions or in the case of increased corrosion rates which can noticeably rise the ions’
release and lower the viability of the cells [65]. This leads to the current main development
direction of Zr-based metallic glasses for bio-related applications, covering the materials
free of potentially harmful elements to eliminate even the possibility of their release. This
includes mainly Be and Ni, however, adverse effects were also observed for Cu [65,87,89]
and can occur for a sufficient concentration of nearly all important Zr-based metallic
glasses components [1] (e.g., Fe, Co, or Al). Because of their essentiality, getting rid of
them is extremely difficult without worsening GFA, mechanical properties, or corrosion
resistance [38,90–94]. Any deterioration of these functional properties can lead to a worse
bio-performance for glassy alloys without the aforementioned elements, which are harmful
on their own, than for the ones containing these elements. Therefore, the compositional
changes should not be done at all costs. It is recommended to try to use the least harmful
components, reduce the content of those not considered biocompatible if possible, look for
undiscovered alternatives, and monitor the harmful ions’ release to keep their concentration
below the safety limits. At the same time, it should be also done without worsening the
overall functional properties. Recently, the Zr-based metallic glass reinforced by nitrogen
without any toxic elements was synthesized with a formula Zr45.5Ti42Si4.4N8.1 [95]. This
alloy showed good compatibility with human skeletal muscle cells (in the test according to
ISO 10993 standards) but was only synthesized as a thin film which, for now, restricts its
applications to coatings.

The cytocompatibility for existing Zr-based alloys can also be improved by vari-
ous treatments. The abovementioned CCT heat treatment allowed for improving the
Zr44Ti11Cu10Ni10Be25 BMG surface coverage by Saos-2 human osteosarcoma (sarcoma
osteogenic) cells by up to 36%, which was associated with the depletion of the outer oxides
layer in the Cu and Ni [69]. Moreover, it was demonstrated that surface pattering can be per-
formed for Zr-based BMG [96] to improve cells adhesion and optimize the healing process
in the case of implants. In very recent research, the possibility of laser treatment to control
the surface parameters and adhesion for Zr-based metallic glasses was discovered [97,98],
which also provides the prospects for further improvement of material-cell interaction.

Another kind of research is related to material-blood contact and in this field, the
Zr-based glassy alloys have been successfully evaluated. The research on the Zr56Al16Co28
BMG demonstrated its very low (below 0.12%) hemolytic rates indicating its compatibility
with erythrocytes [31]. Moreover, the thin films of the Zr53Cu33Al9Ta5 material proved that
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they do not support blood cells’ adhesion and do not cause platelet aggregation (Figure 8)
leading to thrombosis [83,99,100], which is essential for the needles or stents. Furthermore,
they also do not support the attachment of cancer cells [83] preventing their further division
in the position of the implant.
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2.4. Antibacterial Properties

A desirable characteristic of materials suitable for implants and medical devices is also
the ability to prevent bacterial biofilm formation leading to severe complications including
the necessity to remove the implant [101,102]. The often antibiotic treatment ineffectiveness
makes it advantageous to obtain the antimicrobial characteristic in the material itself or by
its surface modification [103]. Particular metal ions, such as Ag, Cu, or Ni, are effective
in preventing the colonization by bacteria [104–108]. However, as mentioned earlier, they
are also responsible for cytotoxic effects on organisms’ cells. Especially effective is Ag
addition because of the low required ions concentration (way below the cytotoxicity level)
to obtain the antibacterial activity [109]. Therefore, in general, a proper balance should be
maintained between cytotoxic and antimicrobial effects by ensuring that the concentration
of released ions will not exceed the organism’s tolerance limit.

As most of the Zr-based metallic glasses contain the elements suppressing the bacteria
growth, they are generally expected to have a high ability to prevent bacterial biofilm
formation. Recently, the ZrCuTi and ZrCuAg metallic glasses thin films proved their
antibacterial properties (according to JIS Z 2801 standard for the second alloy) both by
the lethal to bacteria ions release [110,111] and smooth non-wettable surface [82,110,111],
which can also be a way to prevent the biofilm formation [102]. As metallic glasses are
characterized by an utterly homogenous internal structure without grain boundaries, the
achievable surface roughness is exceptionally low [112–116]. Together, this provides an
interesting proposition for coatings of surgical tools, stents, fixators, and other biomedical
devices in which cells’ assimilation is not desirable. On the other hand, for the application
on implants requiring strong bonding with cells, the extremely smooth surface would be
a disadvantage.

Excellent results in terms of antimicrobial properties were obtained in tests according
to JIS Z 2801 standard for the ZrCuAlAgN thin films. This material exhibited over 99.999%
lethality rate in biofilm formation tests for both Escherichia coli and Staphylococcus aureus [56],
as depicted in Figure 9. Strong antibacterial activity was also demonstrated for the similar
ZrCuAlAg composition [79]. Moreover, the research according to JIS Z 2081 standard,
by Jabed et al. [54] demonstrated the effectiveness of ZrTiAg thin film metallic glass
in antibacterial activity against S. aureus indicated by a 48 to 97% reduction in colony-
forming units in comparison to uncoated Si substrate. The ZrTiAl metallic glass was not so
effective due to the lack of antibacterial elements. What should be noted is that the metallic
glass thin film synthesized based on the fully non-toxic formula Zr45.5Ti42Si4.4N8.1 [95]
exhibited non antibacterial activity in the test according to JIS Z 2801 standards which
represents a disadvantage of a kind in its applications and prompts consideration of
providing this property.

There is little recent research on the biofilm formation on BMGs. From the available
literature, the Zr58.6Al15.4Co18.2Cu7.8 alloy showed exceptional effectiveness in eradicating
E. coli with a 99.99% level [43]. In addition, the ZrAlNiCu and ZrAlNiCuY BMGs proved to
exhibit an antibacterial effect on S. aureus, greater than the Ti-6Al-4V sample, with the first
one showing superior effectiveness [117]. The effect was ascribed to the Cu ions release.

Recently, it was shown that the antibacterial performance of metallic glasses can be
further improved by surface modifications. Using the femtosecond laser to obtain the
nanostructured surface, the antibacterial properties of the ZrCuNiAlTi BMGs were greatly
increased, while maintaining cytocompatibility [72,73,118]. Further increase was observed
due to the Ag deposition with H2O2 treatment [73]. Evaluating the method for other alloys
with various chemical compositions can open a new set of possibilities for materials with
previously insufficient properties.
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2.5. In Vivo Research

In vivo animal research represents the next step in the biomedical characterization
of potential candidates for wider use, as in the in vitro test it is not possible to observe
the full spectrum of mutual material-organism interactions. To the best knowledge of the
authors, the Zr-based metallic glasses were tested only on small animals such as mice, rats,
and rabbits.

The cylindrical samples of the (Zr46(Cu4.5/5.5Ag1/5.5)46Al8 BMG with the previously
mentioned controversial cytocompatibility in vitro (see Section 2.3) was implanted, together
with Ti-6Al-4V specimen, into the thigh bone of Harbin white rabbits [60] as non-load
bearing implants. Despite the discrepancies in in vitro studies, complete bone healing and
no inflammatory response were observed up to 12 weeks (endo of the study) arguing for the
excellent biocompatibility of the examined material. The other research on BALB/c mice
was performed with the use of the as cast and annealed Zr56Al16Co28 BMG samples [31].
For the samples in the as-cast state and after annealing below crystallization tempera-
ture no inflammatory response, and no cell dysplasia were revealed after 4 weeks since
subcutaneous implantation in the dorsal region of mice. Only inflammation signs were
observed for the samples heat-treated above the crystallization temperatures, so partially
or fully crystallized. These results confirm the deterioration of cytocompatibility with a
transition from amorphous to crystalline internal structure what can be associated with
worse corrosion resistance and increased ions release.

In real applications, the implant must be fabricated in a specific shape. The research
by Ida et al. [46] showed that there is a possibility of machining the Zr70Ni16Cu6Al8 BMG
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to the shape of a screw which was subsequently inserted into the tibia bone of Wistar rats.
The reported test, after 28 days, showed that the implanted BMG promotes much faster
bone formation than the comparative implant out of grade 2 pure Ti and that it can be
even accelerated by the screw implant preload force. This results in much higher stability
of the BMG implant measured by pullout torque and shows its good osseointegration
ability defined as the existence of no relative motion between the implant and surrounding
bone during loading [119]. What can be concerning is the presence of Ni or Cu in the
alloy composition. However, the measured concentrations of each BMG compositional
element in the brain, liver, kidney, and lung of rats after the 28 days showed no significant
difference with the non-implanted control group [46], confirming the lack of the release of
the toxic ions as described in Section 2.3. Comparable results were obtained for Ni-bearing
Zr65Al7.5Ni10Cu17.5 BMG for which no systemic nor local concentration levels of Cu and
Ni were increased after 12 weeks since intramedullary implantation into Wistar rat femoral
bone [120].

The most recent in vivo studies by Sun et al. on Sprague-Dawley rats showed that the
intramedullary placed, load-bearing Zr61Ti2Cu25Al12 BMG implant, depicted in Figure 10a
and b, provides better integration with the bone (Figure 10c) and earlier formation of larger
blood vessels around (Figure 10d) than reference materials (commercially pure Ti and
PEEK polymer) at the same time guaranteeing a lower pain level during recovery [41].
Moreover, the research confirmed no pronounced inflammatory response, no metallic
ions accumulation, and marginal Cu release, confirming the studied BMG as an excellent
candidate for bio-related applications.

On the other hand, different osseointegration results were obtained for the mentioned
Zr65Al7.5Ni10Cu17.5 BMG, which showed less bone bonding than Ti-6Al-4V and low surface
activity after implantation, despite promoting faster surrounding bone healing [120]. What
is a disadvantage for the permanent bone implant can be a functional benefit for temporal
devices such as intramedullary nails. Research on magnetron sputtered MG thin films with
a composition of Zr48Cu36Ag8Al8 also showed that their bone integration is rather poor
due to the surface non-wettability and such coating can be used rather to prevent the bone
affinity, for example, to internal fixators or bone plates [59]. As the composition is similar
to the Zr46(Cu4.5/5.5Ag1/5.5)46Al8 alloys, which showed good osseointegration, it opens a
question: what is the influence of wettability and what is the influence of fine chemical
composition differences on the material-cells interaction as specified in Section 2.3?

Further improvement of in vivo performance of Zr-based BMG is also possible. The de-
scribed femtosecond laser surface nanostructuring (see Section 2.4) also proved its effectiveness
in the in vivo research on BALB/c mice. The implantation of the Zr43.3Cu27.8Ni15.2Al9.1Ti4.6
BMG with a laser-induced periodic surface structure beneath the skin of mice [118] and
attachment to the femur bone [73] caused no abnormal blood parameters or tissue fibrosis
proving the good biocompatibility. The results were obtained even though the intentional
application of S. aureus on the implant surface before surgery [73] showing the exceptional
ability of the material to prevent peri-implant infections.

Finally, the recent applicational studies on the MG thin films showed that particular
compositions (e.g., Zr53Cu33Al9Ta5) can be very effective for coatings of medical devices
such as syringe needles [99,121]. The film improved the durability, hemocompatibility and
reduced the cells’ adhesion which resulted in a less invasive procedure (lower retraction
forces depicted in Figure 11) and less probability of causing thrombosis.

2.6. Summary

The described properties and functionality of Zr-based metallic glasses give hope
for their fast implementation in biomedical applications to reduce the percentage of un-
successful treatments and discomfort of patients. This is supported by their usual good
mechanocompatibility with bones illustrated by a low Young’s modulus. Novel Zr-based
metallic glasses also showed high strengths and hardness. They are also characterized
by very high elastic strains, however, sometimes without further noticeable plasticity.
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These materials also possess excellent corrosion resistance in terms of corrosion current
density. However, they often lack pitting corrosion resistance. Described materials also
exhibited cytocompatibility with various cells better or on the same level as currently used
materials. It is connected with low ions release through an insulating oxides layer, and
lack of toxicity of main components. However, it was shown that suboptimal composi-
tion can lead to faster corrosion and ions release lowering the cells’ viability. For some
compositions, hemocompatibility and antibacterial properties were confirmed. Recent
animal studies also confirmed a lack of negative response for studied Zr-based metallic
glasses after implantation. Their use results in better osseointegration, faster blood vessels
formation, and most important, a less painful and faster recovery. Moreover, the treatments
to improve the mentioned parameters were also recently reported. However, it should
also be noted that varied alloying compositions can exhibit very different behavior despite
minor elemental changes.
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Figure 10. (a) X-ray image of Sprague-Dawley rat with the Zr61Ti2Cu25Al12 BMG implant;
(b) Reconstructed image of bone with the intramedullary placed implant; (c) 3D reconstructions
showing the bone surrounding the implants out of the Zr61Ti2Cu25Al12 BMG, commercially pure
Ti and poly-ether-ether-ketone (PEEK) after a specific time; (d) Digitally micro-angiography recon-
structed radiograph (DRR) of blood vessels in the vicinity of implants out of different materials.
(Reprinted and adapted from ref. [41] under Creative Commons CC-BY license).
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3. Ti-Based Metallic Glasses

Ti-based materials are another group of metallic glasses that has recently gained
much attention. This metal and its alloys have been used in the biomedical industry on
a wide scale for many years [122,123] due to their nearly perfect cytocompatibility [124],
exceptional corrosion resistance (connected with stable TiO2 oxides formation) [3], very
low achievable Young’s modulus—even lower than for the bones—and excellent osseoin-
tegration [122]. Moreover, Ti does not play any biological role in the human body and
no toxic effects are observed even after taking large doses of this element [1]. Never-
theless, Ti-based alloys also face problems mainly related to wear resistance and fatigue
strength [1–3,125,126].

After the discovery of metallic glasses, Ti became one of the most widespread and
beneficial elements in their compositional design, often in connection with Zr. Therefore,
with its excellent biological properties, Ti has formed the basis of a new group of metallic
glasses for biomedical applications. Compositions, involving bulk materials and thin films,
recently synthesized and characterized bearing in mind such use are summarized in Table 2
when their mechanical properties are available. The most researched materials are the
TiZrCuPd and TiZrCuFeSn compositions with their modifications.
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Table 2. Recent exemplary Ti-based amorphous alloys considered for biomedical applications with their technological details and mechanical parameters:
d—obtained diameter/thickness, σmax—compressive ultimate strength, E—Young’s modulus, HV—Vickers hardness, εel—elastic strain.

Composition (at.%) Production Method d (mm) Structure σmax (MPa) E (GPa) Hv (HV) εel/εpl (%) Ref.

(Ti55Zr15Be20Ni10)100−xFex
(x = 0, 2, 4, 6, 8, 10) Arc melting/suction casting 5–10 Fully amorphous 1878–2355 – – –/3.4–1.3 [127]

Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 Arc melting/tilt pouring 7 Fully amorphous 2080 100 588 –/2.5 [128]
Ti48Cu37Zr7.5Fe2.5Sn2Si1Ag2 Arc melting/tilt pouring 6 Fully amorphous 2050 101 571 2.0/2.8 [129]

Ti45Zr10Cu31Pd10Sn4
Argon

atomization/spark plasma sintering 6 Fully amorphous – 100 – – [130]

Ti47−xCu40Zr7.5Fe2.5Sn2Si1Scx
(x = 0, 1, 2, 3, 4)

Arc melting/suction
casting/tilt pouring 3–6 Fully amorphous 1982–2169 93–101 577–590 –/0.8–5.9 [131]

Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Nbx
(x = 0, 1, 2) Arc melting/suction casting 3–5 Fully amorphous 2031–2078 97–100 588–593 –/1.9–2.5 [132]

Ti40Zr10Cu36Pd14 Arc melting/tilt pouring 5 Fully amorphous 2010 96 556 2.0/0.7 [133,
134]

Ti40Zr10Cu36−xPd14Gax
(x = 2, 4, 8, 10) Arc melting/suction casting 3

Fully amorphous for x = 2,
4, and partially

amorphous for x = 8, 10
1935–2075 93–140 – 1.9–2.1/0.8–2.5 [135]

Ti47Cu40−xZr7.5Fe2.5Sn2Si1Tax
(x = 1, 2, 3, 4) Arc melting/suction casting 3 Fully amorphous 2041–2191 98–101 582–595 –/1.0–3.4 [136]

Ti40Zr35Cu17S8
Induction melting/arc

melting/suction casting 3 Fully amorphous 3200 96 509 – [137]

Ti50Zr25Cu17S8
Induction melting/arc

melting/suction casting 2 Fully amorphous 3100 98 524 – [137]

Ti40Zr10Cu38Pd12 Induction melting/mold casting 2 Fully amorphous 2300 95 734 –/4.0 [138]
Ti40Zr10Cu34Pd14Sn2 Arc melting/suction casting 1.5 Fully amorphous >2000 93 – 2.2/– [139]

Ti60Zr15Cu17S8
Induction melting/arc

melting/suction casting 1 Fully amorphous 2800 98 547 – [137]

TiCuZrPd:Bx (x = 0, 4, 8, 14) Pulsed laser deposition – Fully amorphous – 108–174 454–685 – [140]
Ti42Zr35Ta3Si5Co12.5Sn2.5 Argon atomization/hot pressing – Fully amorphous 1261 79.7 – – [141]
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3.1. Mechanical Properties

From the data gathered in Table 2, it is visible that Ti-based metallic glasses with
various properties-modifying additions are characterized by remarkably high ultimate
strengths in the range of 1261–3200 MPa, whereby the lowest values are obtained for
materials produced by powder metallurgy methods [141]. These values are much higher
than the compressive ultimate stress of 42 to 205 MPa for human femoral cortical bone
depending on the direction of measurement. Such high values of ultimate strength are
a guarantee of the durability of implants or surgical tools even in extreme situations.
However, attention should be paid that the values were obtained from the compression
tests and should also be verified by tensile tests [142,143]. Moreover, the possibility of
the occurrence of the effect of size dependence of mechanical properties [144] dictates the
need to check and confirm the properties for different sample sizes to reduce the error in
estimating the properties of the final product.

Simultaneously, the materials are not very brittle and generally possess distinctive
plastic strain exemplified by Ti40Zr10Cu36Pd14 BMG compression test results in Figure 12.
The few available values of elastic strain are about 2% (e.g., Figure 12) as in the case of
Zr-based metallic glasses, which also means their high capability for elastic deformations,
so desirable for load-bearing implants (Section 2.1). The values are approximately six
times higher than those for the 316L stainless steel and three times higher than those for
the Ti-6Al-4V alloy, which belongs to the current generation of materials for biomedical
applications. The hardness is very uniform between varied materials falling within the
range of 454–734 HV (4.9 to 7.2 GPa) with the majority of the result between 500 and
600 HV. Additionally, it was demonstrated that the hardness values can be increased by heat
treatment near the glass transition temperature and decreased by cryogenic cycling [145].

Similar uniformity is visible for values of Young’s modulus, which ranges between
79.7 and 174 GPa with most values being about 90 to 100 GPa. On average, these are
slightly higher than for the Zr-based metallic glasses (Section 2.1) and higher than the
lowest achievable for crystalline Ti-based alloys [122]. However, these values are still lower
than those for the most popular Ti-6Al-4V alloy (101–125 GPa [57]) and more than two times
lower than those for the 316L stainless steel or CoCrMo alloys, which are extensively used
in implantology [1], what implies a better efficiency in reducing the stress shielding effect.

The interesting and promising opportunity demonstrated for Ti-based metallic glasses
is the possibility of adjusting their Young’s modulus through powder metallurgy. The first
research showed that by using amorphous argon atomized powders in hot pressing with
Cu particles soluble in HNO3 [141] or spark plasma sintering with NaCl particles soluble
in water [130], it is possible to obtain the materials with controlled porosity, as seen in
Figure 13a. Other methods involve manipulating the porosity only by pressure [146] or
temperature [147] control during the spark plasma sintering of mechanically alloyed or
argon atomized powders, respectively. By these processes, the Young’s modulus can be
controlled (Figure 13b) reaching values of below 10 GPa for the Ti45Zr10Cu31Pd10Sn4 [130]
and Ti42Zr35Ta3Si5Co12.5Sn2.5 [141] alloys with 50% or more porosity or of about 28 Gpa
for the Zr65.5Fe22.2Si12 alloy with 26.2% porosity [146]. This manufacturing method also
reduces the limitation connected with the necessity to maintain the critical cooling rate as
the powder with an already amorphous internal structure is used for further fabrication.
However, the pronounced disadvantage of this technology is the simultaneous reduction
in yield and ultimate strength with increasing porosity (Figure 13c) even to values lower
than for human bones. Although by the proper selection of porosity there is a possibility
of obtaining the material with a Young’s modulus comparable to the bone and sufficient
strength, which can be the breakthrough in the field of metallic bone implants eliminating
the stress shielding effect.

What is important, the research by Hua et al. demonstrated that the Ti40Zr10Cu38Pd12
alloy from the popular group of Ti-based BMGs exhibits superior wear resistance to Ti-6Al-
4V alloy (Figure 14) measured by three to four times lower wear rate in dry conditions and
PBS corrosive environment [138]. Furthermore, wear resistance can be further improved
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by high-temperature oxidation treatment [148]. This shows the practical alternative to
one of the largest issues of crystalline Ti-based alloys, which is the aforementioned wear
resistance. Although, it was also revealed that BMG with a very similar composition of
Ti40Zr10Cu36Pd14 has the same fatigue limit as the Ti-6Al-4V alloy which, with higher
initial strength, results in lower calculated resistance to cyclic fatigue [134]. However, the
presence of significant casting defects in the BMG should be noted.

3.2. Corrosion Resistance

As crystalline Ti-based alloys already show very good corrosion resistance, the ex-
pectations and demands from Ti-based metallic glasses are high. Recently, many different
compositions were evaluated in various standard and bio-related environments including:

• Phosphate Buffered Saline (PBS) [128,131,138,148],
• Borate Buffered Solution with 0.1 M NaCl (BBS) [137],
• Simulated Body Fluid (SBF) [140,149],
• Hank’s Balanced Saline Solution (HBSS) [65,130,132,136,150],
• 3.5 wt.% NaCl [127,145,151],
• 0.9 wt.% NaCl [134,136,152,153].

On this basis, it can be stated that in general, Ti-based metallic glasses possess better
corrosion resistance in terms of corrosion current density than commercially pure Ti and
better or similar to the reference Ti-6Al-4V alloy, which is presented in Figure 15. Similarly,
to Zr-based metallic glasses (Section 2.2) the susceptibility to pitting corrosion in chloride-
containing solutions is also noticeable [65,127–129,131,132,134,136,138,145,148,151,152].
Still, it is not as pronounced, and the passive regions are wider. In general, Ti-based
metallic glasses tend to have better pitting corrosion resistance and wider passive regions
than Zr-based materials. However, they are also characterized by slightly higher corrosion
current densities in corresponding solutions.
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There are compositions such as TiCuZrFeSnSiAgTa [136] or TiCuZrFeSnSiSc [131]
with slightly worse corrosion performance in terms of corrosion current density than
Ti-6Al-4V alloys in Hank’s solution and PBS, respectively. As the TiCuZrFeSnSiAg com-
position exhibits a lower corrosion current density in PBS in comparison to Ti-6Al-4V
alloy [128,129] (Figure 15), a conclusion could be suggested that the substitution of Ta and
Sc for Ag deteriorates its corrosion resistance. However, it should be remembered that,
from another perspective, they are beneficial for the optimization of GFA and mechanical
properties. Furthermore, for Ta addition, the pitting corrosion resistance improving effect
can be noticed [136]. The same effect is observable for the addition of Nb in this group of
materials [132].
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alloy on the example of the TiCuZrMAg (M = Fe2.5Sn2Si1) group obtained in PBS solution at about
36.9 ◦C. (Reprinted with permission from ref. [129]. Copyright © 2021 Elsevier B.V., Amsterdam,
The Netherlands).

For the TiZrCuPd BMGs group, worse than for the Ti-6Al-4V alloy corrosion perfor-
mance, measured by corrosion current density, can be observed in PBS [138]. However,
in 0.9 wt.% NaCl solution, better corrosion resistance was observed for the same material
group in comparison with Ti-6Al-4V alloy [134]. It was also demonstrated that the boron
addition improves the corrosion resistance in this group of BMGs [140]. However, its
introduction to the alloy requires a complicated pulsed laser deposition technique, which
allows only for the obtaining of thin films. In other research, Kuball et al. showed that the
sulfur-containing TiZrCuS BMGs are characterized by a very wide passive region, a similar
corrosion resistance as Ti-6Al-4V alloy, and much better than Cu-based Cu47Ti34Zr11Ni8
BMG in the BBS [137]. However, the Ti40Zr35Cu17S8 sample showed isolated corrosion
pits after the polarization test (Figure 16a), in contrast to the Ti50Zr25Cu17S8 (Figure 16b),
and reference Ti-6Al-4V specimen (Figure 16d). What should be mentioned is the research
of Lin et al. [65] on a similar group of TiZrCu amorphous thin films demonstrated that
excessive Cu addition can significantly deteriorate the pitting corrosion resistance in HBSS
leading to excessive ions release.

In recent research [127], the TiZrBeNiFe BMGs group also showed good corrosion
resistance in comparison to 304 stainless steel in 3.5 wt.% NaCl. The TiZrHfBeCuNi BMGs
group outperformed even Zr-based Zr41.2Ti13.8Ni10Cu12.5Be22.5 BMG in the same solution
with the best corrosion resistance with full substitution of Cu by Ni [151]. For the TiZrBe
group, it was also shown that corrosion resistance, along with strength and plasticity, can
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be improved by Co addition [154]. These groups are also characterized by very good GFA
with the possibility of obtaining critical diameters even above 10 mm. However, as one of
the few alloys, they contain potentially harmful Be and Ni elements, the release of which
has not been evaluated.

To reduce the usage of toxic components, recently Yüce et al. [153] developed a
new type of Ti-based metallic glasses with the TiZrSiGeBSn compositions. The alloys
were synthesized in the form of thin ribbons, as their GFA is low because of the lack of
currently essential elements to obtain bulk materials. However, they showed remarkably
wide passive regions, resulting in pitting corrosion resistance, which can be promising for
their further development to reduce this common downside of Ti-based metallic glasses.
Excellent results were obtained for thin metallic glass films based on the Ti60Nb15Zr10Si15
materials which showed significantly lower corrosion current density than the Ti-6Al-4V
alloy used as a substrate [149].

The porous materials fabricated by powder metallurgy out of TiZrCuPdSn metallic
glass also proved to have superior corrosion resistance to commercially pure Ti and were
similar to Ti-6Al-4V [130], which shows that this manufacturing method does not affect the
corrosion behavior negatively.

The corrosion resistance of Ti-based metallic glasses, as for the Zr-based (Section 2.2),
can be additionally improved by heat treatment. Lin et al. [148] demonstrated, on the basis
of the TiZrCuPd BMG, that annealing before the crystallization temperature, together with
surface oxidation, improves the pitting corrosion resistance in PBS through enrichment
of the outer layer in Ti and Zr. These results are comparable to the ones obtained by
Gu et al. [145] from research on the TiZrBeNi BMG. In his study, the corrosion resistance
increases in 3.5 wt.% NaCl was attributed not only to the enrichment but also to free
volume reactive sites reduction by material relaxation, similarly as for the effect of oxygen
impurities for Zr-based alloys (Section 2.2).
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3.3. In Vitro Cellular Research

Recent cytocompatibility research for the Ti-based metallic glasses was mainly con-
ducted with the use of the MC3T3-E1 mouse preosteoblasts cell line. The excellent viability
of these cells was demonstrated on the surface of the Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Nbx
(x = 1, 2) BMGs which outperformed even the reference Ti-6Al-4V material, although the
addition of Nb has a slightly negative effect on GFA [132]. Similarly, superb results were
obtained for the Ti47−xCu40Zr7.5Fe2.5Sn2Si1Scx (x = 0, 2) BMGs which also surpassed the
Ti-6Al-4V alloy in the WST-1 proliferation assay after 7 days (Figure 17a), despite their
slightly worse corrosion performance than this crystalline Ti-based alloy [131]. Moreover,
alloys with the same TiCuZrFeSnSi chemical base and addition of Ag also showed similar
or superior performance in relation to the Ti-6Al-4V alloy in MC3T3-E1 cells’ adherence,
viability, and WST-1 proliferation assays according to ISO 10993:5 standard [128,129]. To-
gether, it points to the suitability of the BMGs from the TiCuZrFeSnSi group as candidates
for biomedical materials. The research confirmed their high GFA and the absence of cytotox-
icity despite the Cu or Ag content which can cause toxic effects with their ions release above
the tolerance threshold (see Section 2.3). However, Lin et al. confirmed that similarly to
Zr-based metallic glasses, the ions release and associated cytotoxicity for Ti-based materials
are highly dependent on the chemical composition [65].
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and the reference Ti-6Al-4V alloy, illustrating the proliferation activities of MC3T3-E1 cells after a 
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2 cells on the polished mirror-like surface of Ti40Zr10Cu38Pd12 BMG after 24 h of incubation. (Re-
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The Ti42Zr35Ta3Si5Co12.5Sn2.5 material with induced porosity was also evaluated with 
the MC3T3-E1 cell line [141]. Regardless of porosity, they showed slight cytotoxic effects 
according to ISO 10993:5 standard in the less challenging indirect contact test in relation 
to the control sample, which can be connected to the cytotoxicity of Co [156,157]. As the 
porous structure could be greatly beneficial for tissues adhesion, tissues-material interface 

Figure 17. (a) Results of the WST-1 assay protocol for the Ti47−xCu40Zr7.5Fe2.5Sn2Si1Scx (x = 0, 2)
BMGs and the reference Ti-6Al-4V alloy, illustrating the proliferation activities of MC3T3-E1 cells
after a specific time. Results were given as 450 nm light absorbance. (Reprinted with permission from
ref. [131]. Copyright © 2016 Elsevier B.V., Amsterdam, The Netherlands); (b) Fluorescence stained
Saos-2 cells on the polished mirror-like surface of Ti40Zr10Cu38Pd12 BMG after 24 h of incubation.
(Reprinted and adapted from ref. [155] under Creative Commons CC-BY license).

The Ti42Zr35Ta3Si5Co12.5Sn2.5 material with induced porosity was also evaluated with
the MC3T3-E1 cell line [141]. Regardless of porosity, they showed slight cytotoxic effects
according to ISO 10993:5 standard in the less challenging indirect contact test in relation
to the control sample, which can be connected to the cytotoxicity of Co [156,157]. As the
porous structure could be greatly beneficial for tissues adhesion, tissues-material interface
properties, osteogenesis, and angiogenesis (blood vessels formation) [158,159], efforts must
be made to enhance the cytocompatibility while maintaining the ability to create the foam
structure. The other porous BMGs with a composition of Ti45Zr10Cu31Pd10Sn4 [160] and an
extremely bio-friendly Ti65.5Fe22.2Si12 [146] manufactured by powder metallurgy showed
very good, comparable to commercially pure Ti, cytocompatibility with MC3T3-E1 cells,
demonstrating that porosity does not significantly affect the viability and proliferation of
the cells.

The research on the TiCuZrPd thin films modified by B with the use of MC3T3-E1 cells
revealed that they also support the proliferation of cells with proper morphology [140].
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Furthermore, the proliferation rates were higher than those for the pure Ti control sample,
although the B addition appeared to have a slightly adverse effect on cell proliferation,
but still way below the cytotoxicity threshold, confirming the studied metallic glass as a
promising candidate for implants and biomedical devices coatings. The TiZrCuPd alloys
can also be obtained as BMGs. The Ti40Zr10Cu38Pd12 metallic glass in a bulk form exhibited
no statistically significant differences in cytocompatibility with Saos-2 human osteosarcoma
cells (Figure 17b) in relation to the Ti-6Al-4V sample [155]. The similar BMG composition
of Ti40Zr10Cu36Pd14 was recently found to have very low ions release dominated by Ti and
Cu (Figure 18) which was below the cytotoxicity threshold in artificial saliva solution [133].
It also revealed high cytocompatibility with human gingival fibroblast cells illustrated
by higher proliferation activity than on the surface of the Ti-6Al-4V specimen, making it
a feasible candidate for dental applications. This research confirmed the earlier results
of good cytocompatibility of the Ti40Zr10Cu36Pd14 BMG estimated in direct contact with
MG-63 human osteosarcoma cells and human dermal fibroblasts HDFa, demonstrated
by similar proliferation indicators as for the Ti-6Al-4V alloy, although lower than for the
control sample of cell culture polystyrene [134]. It was also in accordance with research
by Li et al. which demonstrated excellent viability of L929 cells, according to ISO 10993:5
standard, on the Ti40Zr10Cu36Pd14 BMG surface and in the extraction medium [80]. More-
over, the substitution of Cu for Co by creating the Ti40Zr10Co36Pd14 alloy did not cause
cytotoxic effects on MC3T3-E1 and Saos-2 cells [161], indicating that the release of ions is
low. In the described alloys, potentially problematic in long-term use or more corrosive
environments, can be the presence of Cu and Pd. The latter, even though bio-friendly, can
cause the formation of Pd nanoparticles during the pitting corrosion of TiZrCuPd metallic
glasses [162] leading to cytotoxic effects [163].
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Figure 18. Ions release from Ti40Zr10Cu36Pd14 in artificial saliva solution. Measured by inductively
coupled plasma mass spectrometry (ICP-MS) after 1, 3, and 7 days. (Reprinted and adapted from
ref. [133] under Creative Commons CC-BY license).

The exceptional cytocompatibility with Saos-2 cells, according to ISO 10993:5 stan-
dard and the very low release of ions were demonstrated for thin films composed of
Ti60Nb15Zr10Si15 [149]. The viability of cells in the 24 h indirect test in extraction media
was significantly better for this metallic glass than for the Ti-6Al-4V alloy and, what is
remarkable, even higher than 100% in relation to the tissue culture polystyrene control
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sample. In direct contact, after a long time, the surface of the Ti60Nb15Zr10Si15 sample was
fully covered with well-adhering cells, showing the excellent lack of toxicity of this material.
The same viability, more than 100 %, was also confirmed for this material in indirect contact
with L929 mouse fibroblasts according to ISO 10993:5 standard [149].

As for the Zr-based metallic glasses, also for Ti-based ones, the alloy Ti40Zr25Ni12Cu3Be20
containing Be and Ni elements, showed low cytotoxicity to L929 cells [60]. With a relative
to control sample viability of more than 85% after 7 days, it was only slightly worse
than the Ti-6Al-4V and Zr-based BMGs which can be related to the low toxic ions release
factors (see Section 2.3). Further studies are necessary on the other Ti-based compositions
containing these elements to determine their accurate release and biological impact, as
the materials with the addition of these elements are characterized by good GFA and
mechanical properties [127,154].

Further improvement in Ti-based metallic glasses’ biological performance can be done.
Likewise, to Zr-based alloys (Section 2.3) the use of a femtosecond laser to induce the
surface structures at the micro- and nanoscale was shown to be effective in improving the
cells’ adhesion rates on the Ti-based metallic glasses [164]. Moreover, the stimulation of
oxides creation by laser treatment also has a beneficial influence on cell proliferation activity
by improving the oxides layer capabilities to prevent the diffusion of the ions. On the
contrary, the physically and electrochemically modified surface to obtain the scratch pattern
and the mesh-like pattern, respectively, has no considerable influence on the proliferation,
adhesion, and differentiation of cells except for directing their growth [155].

In terms of interactions with blood, the Ti-based metallic glasses also showed superior
hemocompatibility. The TiNbZrSi alloy coating was found to be non-hemolytic and, unlike
the uncoated Ti-6Al-4V sample, does not exhibit platelet adherence and stimulation leading
to thrombus formation [149]. The same results were also obtained for the thin films based
on TiCuZrPd alloy with B addition [140].

3.4. Antibacterial Properties

There is little recent research on the antimicrobial properties of Ti-based metallic
glasses. However, the available ones showed that the porous Ti45Zr10Cu31Pd10Sn4 BMG is
effective in the long term in restricting the growth of S. aureus [160], what is illustrated in
Figure 19. It was confirmed that induced porosity leads to a higher concentration of Cu
ions, providing the antibacterial effect (Section 2.4), while still being below the cytotoxicity
threshold of MC3T3-E1 cells.

Other research on Ti40Zr10Cu36Pd14 BMG confirmed its antibacterial activity against
Aggregatibacter actinomycetemcomitans, which is common in the oral environment and re-
sponsible for periodontal and peri-implant diseases [133]. Moreover, a significant reduction
in multispecies biofilm formation was observed for the examined BMG in comparison to
the Ti-6Al-4V sample, which was fully covered in a thick layer of different microorganisms
present in human oral flora. The antimicrobial action of BMG was connected with a non-
wettable surface preventing bacteria adherence and the presence of Cu in the surface layer,
similarly as for Zr-based materials (see Section 2.4), confirming the Ti40Zr10Cu36Pd14 BMG
as a viable candidate for dental implants.

Based on this and the results for the Zr-based materials, the antimicrobial activity
is predicted for other recently researched Ti-based metallic glasses with the content of
elements inhibiting bacteria growth such as Cu or Ag, with a non-wettable surface being
an additional advantage, however, more research is needed in this direction.
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Figure 19. The number of S. aureus bacterial colonies co-cultured with the porous
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<0.001 for **. (Reprinted with permission from ref. [160]. Copyright © 2022 Elsevier B.V., Ams-
terdam, The Netherlands).

3.5. In Vivo Research

In the field of in vivo animal research performed with the Ti-based metallic glasses,
Kokubun et al. [139] implanted 1.5 mm in diameter Ti40Zr10Cu34Pd14Sn2 BMG rods trans-
versely in the femoral bones of Sprague-Dawley rats. After 12 weeks, no inflammatory
reaction was observed nor implant loosening. The rods were surrounded by tissue and
their bone attachment ratio as well as bonding strength were higher than for the pure Ti
control group, indicating excellent osseointegration. Furthermore, no diffusion of ions into
tissues nor increased systemic Cu level were observed, confirming the excellent short-term
performance of the Ti40Zr10Cu34Pd14Sn2 BMG.

In other research, Lin et al. [65] applied a series of MGs with compositions of Zr45Zr40Si15,
Ti40Zr40Si15Cu5, and Ti45Zr20Cu35 for implants placed in the tibias of Sprague-Dawley rats
(Figure 20) for three, six and twelve weeks. The low GFA of these alloys forced the use
of materials in the form of thin ribbons. All rats fully recovered prior to euthanasia. No
inflammatory signs were observed afterward, even for the materials with the highest Cu
content. The implants were fully surrounded by new bone tissue, the density of which
was slightly higher for Cu-free material, what can be associated with higher ions release
from the Cu-bearing materials [65]. However, no necrosis was observed, and the overall
short-term performance of all materials was good. Nevertheless, the in vitro test showed
that, despite excellent results of cytocompatibility for raw materials, the increased corrosion
during the electrochemical corrosion test leads to excessive ions release from the last high-
Cu alloy. This lowers the viability of D1 mouse bone marrow stem cells to about 78%
in 24 h (mild cytotoxicity according to ISO 10993:5 standard). The effects of this were
not evident in in vivo study which can be connected to a lower corrosion rate and body
fluid circulation removing the released ions from the implant site [65]. However, the
proven probability of excessive ions release because of low pitting corrosion resistance (see
Section 3.2) for Ti45Zr20Cu35 MG should be a contraindication to its use, especially in a
long-term application.
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Figure 20. X-ray image of the Sprague-Dawley rat with MG tibia implants of the Ti45Zr40Si15,
Ti40Zr40Si10Cu5, and Ti45Zr20Cu35 alloys. The main images were taken immediately after implanta-
tion, the insets were taken after euthanasia after 6 weeks. (Reprinted and adapted with permission
from ref. [65]. Copyright © 2017 Elsevier B.V., Amsterdam, The Netherlands).

The newly developed porous samples of the Ti45Zr10Cu31Pd10Sn4 alloy were also
evaluated in vivo on the Sprague-Dawley rats [130]. The rectangular 1.5 mm rods were
placed for three months in the diaphysis of rats’ femoral bones. It was demonstrated that
the porous BMG has excellent biocompatibility, as no ions migration was observed, and
bone integration was the same as for the control Ti implant. The porosity allowed for
bone ingrowth and well anchoring. The research reported by Liao et al. [165] confirmed
the results with the porous Ti42Zr40Si15Ta3 BMG, which also supported the cells’ growth
into the porous structure without the distinctive BMG-tissue interface, after implantation
in the tibias of the New Zealand white rabbits (Figure 21). No inflammatory reaction
was observed 6 months after implantation and the newly formed bone had a density
similar to the surrounding bone tissue, indicating the excellent osseo-induction property.
The discussed results are a good prognosis for the further development of this group of
materials and, together with favorable mechanical properties, confirm the right direction of
future development.
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Ultimately, in a different kind of research, the intradermal reactivity of saline, as
well as cotton seed oil extracts from the Ti60Nb15Zr10Si15 amorphous alloy, were tested
according to ISO 10993:12 and WPTOX 013 standards, on albino rabbits after injection [149].
No erythema or oedema were observed, and the injected extracts did not exhibit indications
of toxicity.

3.6. Summary

Based on available research, it can be stated that Ti-based metallic glasses possess
very favorable properties for bio-related devices. However, their overall development
level is slightly below the one for Zr-based metallic glasses. Due to their mechanical
properties, corrosion resistance, hemo- and biocompatibility, they may find application
as: bulk materials or coatings for implants with particularly good osseointegration and
better than current Ti alloys wear resistance, surgical tools with very high strength, or stents
without the proneness to cause platelets aggregation. Not without significance is the proven
possibility of controlling their mechanical and structural properties by powder metallurgy
to reach the bones’ Young’s modulus and cells’ ingrowth capabilities. Their superior to
Zr-based metallic glasses pitting corrosion resistance and often better cytocompatibility
is a good sign for prolonged use. As Ti-based metallic glasses also often contain fewer
potentially harmful elements, they are good candidates for permanent applications. In
spite of the single excellent results, the area of antibacterial properties research and in vivo
testing is less developed than in the case of Zr-based amorphous alloys, which have already
proven their exceptional performance up to a certain point. However, also in the case of
Ti-based metallic glasses, some materials were assessed with no negative in vivo response.

4. Other Metallic Glasses

Although Zr-based and Ti-based metallic glasses are currently most developed for
biomedical applications, they are by no means the only groups suitable for these purposes.
The recent fast development of biocompatible metallic glasses constantly provides new
materials with different base elements which are briefly summarized below.

4.1. Mg-Based Metallic Glasses

Contrary to all described above materials which are meant to be as corrosion resis-
tant as possible to prevent the ions’ release, toxicity, and device damage, the Mg-based
metallic glasses are driven by a different philosophy. According to the third generation of
biomaterials guidelines which include the ability of a material to trigger specific cellular
response [3], the implanted materials are intended to be temporary structures that do
not require further surgical removal, and that support the regeneration processes of the
organism’s tissues [1]. For this, they are designed to be degradable to allow the native
tissue integration and gradual replacement of implant [1,166]. Such an approach enforces
the use of only completely bio-friendly components, such as Mg, which is the essential
ingredient in the human body and can be absorbed and removed by the organism without
causing adverse effects. Recently, the very dynamic development of this material group
can be observed with many very similar compositions [167].

Recently, studied Mg-based metallic glasses mainly belong to MgZnCa alloys with
hardness in the range of 200 to 300 HV, a tensile strength of about 90–200 MPa [168] and
much higher compression fracture strength of about 350–900 MPa [169,170]. These are
much lower parameters than for Zr- or Ti-based materials, however still higher than bones
properties [5] and Mg-based metallic glasses crystalline counterparts. The Young’s modu-
lus of Mg-based metallic glasses is also very low, reaching 45 to 50 GPa [169,170], which
is excellent for eliminating the stress shielding effect. They are also characterized by a
very good elastic strain of 1 to 2% (typical for metallic glasses) and lack of plasticity in
compression [169,170] what is also connected with brittleness [171]. Typically, they are char-
acterized by GFA allowing to produce diameters up to 5 mm [167]. These parameters can
be further improved by the addition of alloying elements [169,172] or solid particles [170],
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however, usually by one at a time and in quantities of a few at.% as GFA of Mg-based is
very susceptible to even minor compositional changes.

The corrosion resistance of Mg-based metallic glasses is low, typically measured in
corrosion rates of about 0.15 to 1.7 mm per year in physiological solutions [168,169] what is
although their desirable property. The corrosion resistance is still higher than for crystalline
Mg-based alloys [167] what allows for their longer biodegradation times leading to full
recovery. The second factor is lower hydrogen accumulation during slower resorption.
The H2 is released in the Mg reaction with H2O and underlies the deterioration of the
mechanical properties of the Mg-based implants [169]. However, for materials prepared
by powder metallurgy, the corrosion rates can reach astonishing values of 75 mm per year
in Hank’s solution [170]. The corrosion rates can be also easily manipulated by alteration
of chemical composition [168,173,174] or application of bio-friendly coatings [175] what
creates the possibility to pre-design the time of implant degradation in the body.

As it was shown, the Mg-based metallic glasses benefit from the group of crystalline
Mg-based alloys showing, i.e., bioresorbability and tissue stimulation ability and from the
group of metallic glasses showing i.e., improved mechanical and corrosion parameters.

In the initial in vitro cellular research, the Mg66Zn30Ca4−xSrx (x = 0, 0.5, 1, 1.5 at.%)
BMGs showed good cytocompatibility, defined by no visible deviations in the morphology
of the cells, with standard MC3T3-E1 mouse preosteoblasts cells [169]. The quantitative
indirect (in extraction medium) cytotoxicity assay of Mg69Zn27Ca4 to MC3T3-E1 cells
showed higher viability for Mg-based BMG than for pure Mg with a value of 90% in
relation to the control group (no cytotoxic effect) [176]. The viability of rabbit primary
osteoblasts in extraction medium from Mg60Zn35Ca5 was statistically the same as for the
Ti-6Al-4V alloy for 30 days of incubation (Figure 22) [177]. Up to the 14th day, it was above
80% indicating only slight cytotoxicity of the material according to ISO 10993:5 standard.
Moreover, the direct contact cytotoxicity of Mg66Zn29Ca5 to MG-63 human osteosarcoma
cells was classified as slight to mild according to ISO 10993:5 standard [178]. The not-
perfect in vitro research results can be connected to a high concentration of released ions
and associated pH changes [170]. What should be noted is that during in vitro tests the
culturing medium is the same for the entire time. In the real application in the organism,
there is a flow of body fluids that can remove the released ions from the implant site which
contributes to more benign testing conditions [65].
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Figure 22. Relative to the control group survival rate of rabbit primary osteoblasts in extraction
medium derived after different times from Mg60Zn35Ca5 BMG, Ti-6Al-4V alloy, and PLA poly-
mer. The p-value is <0.05 for *. (Reprinted and adapted from ref. [177] under Creative Commons
CC-BY license).
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It was also shown, on the example of Mg68Zn28Ca4, that Mg-based metallic glasses
can exhibit antibacterial properties due to the Zn ions presence [175]. The antibacterial rates
against Colon bacillus and Staphylococcus aureus were greater than 80% and can be further
improved to about 100% by nano-hydroxyapatite with ZnO coating.

Recent in vivo research on New Zealand white rabbits with the use of Mg69Zn27Ca4
bone implants showed the new, well-attached, bone accumulation around the implanted
material showing its osteogenic activity with no adverse tissue effects after two months
since the operation (Figure 23a–c) [176]. The associated healing effect and bone growth
for Mg69Zn27Ca4 were even better than for the popular bone substitute—β-tricalcium
phosphate (β-TCP), which is illustrated in Figure 23a–f. Other research [177] on New
Zealand white rabbits demonstrated no Mg60Zn35Ca5 BMG implant loosening after 24
weeks since implantation to the rabbit femur. The formation of new bone was promoted
at a higher rate than for the PLA (polylactic acid) control sample, without inflammatory
signs, and maintaining the proper blood chemical composition. Cumulatively, the results
give a picture of a material with a good application perspective for bioresorbable implants.
However, more detailed cytotoxicity investigations are required.

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 32 of 43 
 

 

against Colon bacillus and Staphylococcus aureus were greater than 80% and can be further 
improved to about 100% by nano-hydroxyapatite with ZnO coating. 

Recent in vivo research on New Zealand white rabbits with the use of Mg69Zn27Ca4 
bone implants showed the new, well-attached, bone accumulation around the implanted 
material showing its osteogenic activity with no adverse tissue effects after two months 
since the operation (Figure 23a–c) [176]. The associated healing effect and bone growth for 
Mg69Zn27Ca4 were even better than for the popular bone substitute—β-tricalcium phos-
phate (β-TCP), which is illustrated in Figure 23a-f. Other research [177] on New Zealand 
white rabbits demonstrated no Mg60Zn35Ca5 BMG implant loosening after 24 weeks since 
implantation to the rabbit femur. The formation of new bone was promoted at a higher 
rate than for the PLA (polylactic acid) control sample, without inflammatory signs, and 
maintaining the proper blood chemical composition. Cumulatively, the results give a pic-
ture of a material with a good application perspective for bioresorbable implants. How-
ever, more detailed cytotoxicity investigations are required. 

 
Figure 23. (a,d) X-ray, (b,e) micro-computed tomography (μ-CT), and (c,f) 3D reconstruction images 
of rabbit bone defects filled with (a–c) Mg69Zn27Ca4 metallic glass, and (d–f) β-tricalcium phosphate 
(β-TCP) after two months since operation. (Reprinted with permission from ref. [176]. Copyright © 
2019 Elsevier B.V., Amsterdam, The Netherlands). 

4.2. Ta-Based Metallic Glasses 
Tantalum is one of the highly desirable metals to use in biomedical applications due 

to its excellent biocompatibility and corrosion resistance connected with good mechanical 
properties [1]. It is used as a minor alloying element in Zr- or Ti-based metallic glasses. 
However, Ta-based metallic glasses are difficult to manufacture due to the poor GFA. 
There are very few results described in the literature. The reported Ta42Ni40Co18 BMG with 
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Figure 23. (a,d) X-ray, (b,e) micro-computed tomography (µ-CT), and (c,f) 3D reconstruction images
of rabbit bone defects filled with (a–c) Mg69Zn27Ca4 metallic glass, and (d–f) β-tricalcium phosphate
(β-TCP) after two months since operation. (Reprinted with permission from ref. [176]. Copyright ©
2019 Elsevier B.V., Amsterdam, The Netherlands).

4.2. Ta-Based Metallic Glasses

Tantalum is one of the highly desirable metals to use in biomedical applications due
to its excellent biocompatibility and corrosion resistance connected with good mechanical
properties [1]. It is used as a minor alloying element in Zr- or Ti-based metallic glasses.
However, Ta-based metallic glasses are difficult to manufacture due to the poor GFA.
There are very few results described in the literature. The reported Ta42Ni40Co18 BMG
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with a 2 mm critical diameter also contains potentially harmful Ni and Co and possesses
remarkably high strength (2.7 GPa), and a relatively high Young’s modulus (170 GPa) [179].
This directs its possible application to surgical tools or stents. However, it was reported that
the creation of Ta-based TaZrCuAlAg thin film metallic glasses by magnetron co-sputtering
is possible [180]. Their hardness is about 7.5 GPa (~695 HV), and the Young’s modulus is
130 to 145 GPa depending on composition indicating a possible application for coatings.

Recently, Lai et al. [181] synthesized TaTiZrSi coating without harmful elements
by magnetron co-sputtering. Two coatings with compositions of Ta57Ti17Zr15Si11 and
Ta75Ti10Zr8Si7 were proven to exhibit an exceedingly high hardness of 12.1 (~1121 HV)
and 15.5 GPa (1435 HV), respectively. Their Young’s modulus were moderately high
with values of 133.7 and 144.5 GPa, respectively. They demonstrated corrosion resistance
superior to pure Ti in Hank’s solution. What is remarkable is that completely no signs of
pitting corrosion were observed even with remarkably high polarization—more than +2 V
in relation to corrosion potential (Figure 24a). Performed in vitro cytocompatibility tests
with D1 mouse mesenchymal cells showed that, relative to control, the viability of cells for
Ti-based MGs is nearly 100% indicating excellent cytocompatibility (Figure 24b). A higher
number of cells was attached to the Ta-based MGs than to pure Ti and pure Ta.
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Figure 24. (a) Potentiodynamic test in Hank’s Balanced Saline Solution (HBSS) results for pure Ti, pure
Ta, Ta57Ti17Zr15Si11, and Ta75Ti10Zr8Si7 metallic glasses; (b) Relative to control group D1 cells viability
after 72 h obtained from MTS assay for pure Ti, pure Ta, Ta57Ti17Zr15Si11, and Ta75Ti10Zr8Si7 metallic
glasses. (Reprinted with permission from ref. [181]. Copyright © 2018 Elsevier B.V., Amsterdam,
The Netherlands).

Together, this demonstrates the outstanding biological performance of Ti-based MGs
coatings and encourages further testing including in vivo.

4.3. Pd-Based Metallic Glasses

Due to the biocompatibility of Pd [182,183] and the remarkably high GFA of composi-
tions in which it is present [17] recent biomedical research also includes materials based
on this element. It was shown that Pd40Cu30Ni10P20 BMG [184] exhibits a hardness of
about 500 HV which is more than for popular biomedical materials such as 316L steel,
Ti-6Al-4V alloy, and even CoCrMo alloy. Moreover, it possesses exceptional wear resistance
both in dry conditions and corrosive phosphate buffer saline (PBS) which is about 30 to
40 times higher than for Ti-6Al-4V alloy (Figure 25a). Its corrosion resistance measured by
corrosion current density is also superior to Ti-6Al-4V, as shown in Figure 25b, indicating
lower corrosion rates. All these characteristics are significant for biomedical applications.
Yet the disadvantage is the presence of potentially toxic Cu and Ni in the described BMG
composition, which can be problematic in further in vitro studies.
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Figure 25. (a) Wear rates for Pd40Cu30Ni10P20 BMG, CoCrMo alloy, 316L stainless steel, and Ti-6Al-
4V alloy in dry conditions and phosphate buffered saline (PBS) solution; (b) Polarization curves
for Pd40Cu30Ni10P20 BMG, CoCrMo alloy, 316L stainless steel, and Ti-6Al-4V alloy obtained in
potentiodynamic test in PBS. (Reprinted and adapted with permission from ref. [184]. Copyright ©
2020 Elsevier B.V., Amsterdam, The Netherlands).

The Pd77.5Si16.5Cu6 composition [185] with a smaller number of harmful elements,
very recently demonstrated excellent hemocompatibility and thrombogenic resistance
preventing the platelets aggregation and activation in comparison to Ti-6Al-4V alloy. This
results in the possible application of this BMG for stents or blood-pumping devices with a
low risk of causing thrombosis.

These two studies open a new field of possibilities toward applications of Pd-based
metallic glasses in bio-related applications further expanding the range of available materials.

5. Conclusions

This review attempted to collect and summarize the recent advances in research on
biocompatible metallic glasses. The presented results demonstrated their appropriateness
as prospective materials for a new generation of biomedical devices with the potential to
solve problems related to standard materials. The possibility of their manufacturing in
bulk form and as coatings for known materials expands the possible fields of application.
However, the small obtainable sizes of these materials are a significant problem in further
use. In parallel with the study of material properties, the development of manufacturing
and processing methods is necessary. The variety of possible chemical compositions and
elemental combinations allows for the creation of alloys with pre-designed properties
and functionality. Though, systematic testing of new compositions is very important as
they can exhibit very different behavior despite minor elemental changes. Moreover, for
all materials, it should be noted that usually, good reported mechanical properties are
typically determined in compression tests. Though, metallic glasses show asymmetry
in tension-compression properties [143]. Therefore, before future use, they need to be
evaluated under load conditions more closely resembling real applications. There is also a
significant lack in the field of fatigue resistance testing for metallic glasses to be applied in
biomedicine. This parameter is essential for the long-term performance of load-bearing
implants or surgical tools.

Recent research on Zr-based metallic glasses showed that their achievable mechanical
and biological properties are suitable for prospective bone implants with good osseointe-
gration and significantly reduced stress shielding effect, temporary fixtures with low bone
affiliation, stents with a low probability to cause thrombosis, needles causing low tissue
damage, or surgical tools with antimicrobial properties and increased lifetime. However,
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for now, they were assessed only in low time intervals on small animals. Attention should
be paid to the long-term performance of Zr-based metallic glasses in the body environment
as they often contain potentially toxic essential elements. There is a lack of knowledge about
the ions’ release in corrosive environments under a cycling load. After more demanding
tests in a longer time and more load-bearing applications with fatigue monitoring, it will
be possible to determine their further biomedical efficacy.

Based on collected research it was shown that recent Ti-based metallic glasses exhibit
properties particularly desirable for surgical tools such as high strength, lack of brittleness,
and wear resistance which is a significant drawback of crystalline Ti-based alloys. In
terms of bone implants, promising research direction is also the reduction of the Young’s
modulus by introducing porosity. Moreover, it also allows for bone ingrowth and better
osseointegration. There is a lack of antimicrobial activity studies of Ti-based metallic glasses,
especially since this group of materials often contains fewer elements with such activity.
From the cytocompatibility point of view, concerning is the presence of Cu in nearly all
recent compositions—especially since its release was not studied in dynamic conditions.
Future considerations should also include further in vivo testing of materials with proven
in vitro biocompatibility, as this field is not as advanced as for Zr-based metallic glasses.

The common point between Zr- and Ti-based metallic glasses is lack of pitting corro-
sion resistance in chloride containing environments. Further compositional optimizations
and treatments development are needed to reduce this drawback with maintaining other
properties. A good starting point are those methods for which efficacy has been proven for
the selected materials.

As even the best synthetic material for biomedical applications is not able to self-heal
like bones, the development of bioresorbable Mg-based metallic glasses seems to be the
rational direction. These materials only support natural tissue regeneration processes,
possess comparable properties to bones, and are composed of elements common in the
human body. However, recent in vitro research also showed varied cytotoxicity of current
materials due to the high ions concentration and pH changes. For future consideration is if
it has an impact on in vivo performance.

The new group of Ta-based metallic glasses showed very favorable corrosion proper-
ties and cytocompatibility. The biggest drawback to solve is the very inferior glass forming
ability. In addition, the achievable Young’s modulus are too high to avoid the stress shield-
ing effect in bone implants. However, other applications are viable after more detailed
biological studies which are a novel and open field for these materials.

Ultimately, the well-known Pd-based materials also recently showed promising initial
results regarding corrosion and wear resistance, as well as hemocompatibility. Further
cytocompatibility studies are necessary to assess their usability as the presence of Cu and
Ni is concerning.
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