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Abstract: A methodology is implemented to deform the surface of a magnetorheological elastomer
(MRE) exposed to an external magnetic field by means of data matrix manipulation of the surface.
The elastomer surface is created randomly using the Garcia and Stoll method to realize a nonuni-
form morphology similar to that found in real MREs. Deformations are induced by means of the
translations of the magnetic particles inside the elastomer, under the influence of a uniform magnetic
field, generating changes in the surface roughness. Our model computes these deformations using a
three-dimensional Gaussian function bounded at 2 standard deviations from its mean value, taking
as the standard deviation value the radius of the particle that causes the deformation. To find the
regions deformed by the particles, we created a methodology based on the consultation, creation
and modification of a system of matrices that control each point of the random surface created. This
methodology allows us to work with external files of initial and subsequent positions of each particle
inside the elastomer, and allows us to manipulate and analyze the results in a smoother and faster
way. Results were found to be satisfactory and consistent when calculating the percentage of surface
deformation of real systems.

Keywords: magnetorheological elastomer (MRE); Gaussian random surface; roughness RMS; surface
roughness; numerical simulation; magnetic particles; magnetodeformation

1. Introduction

Magnetorheological elastomers (MRE) are materials composed of an elastic material
known as elastomer (for example polydimethylsiloxane or PDMS, silicone rubber, natural
rubbe, butadiene rubber polyurethane, etc. [1]) along with embedded magnetic particles,
so that the material can be deformed by the influence of an external magnetic field. These
materials can be divided into two groups: isotropic MRE and anisotropic MRE. The former
are exposed to a magnetic field at the time of curing, obtaining a chain-like arrangement of
the magnetic particles inside, whereas the latter are not exposed to a magnetic field at the
time of curing, obtaining a random distribution of the particles inside [2,3]. When an MRE is
immersed in an external magnetic field, the particles are magnetized, resulting in a dipolar
interaction among them, forming chains of particles. The movements of theses particles
within the elastomer matrix cause deformations, mostly evidenced on the surface, showing
spike shapes at the terminations of the chains close to the surface [2,3]. Such deformations
can modify the rheological properties of the surface, one of these is the roughness, and any
change to it can affect other properties, such as the wettability of the surface, which can
be, in principle, increased or decreased by means of the external applied magnetic field
without the use of chemical treatments on the material.

The simulation of MRE surfaces has been performed in several works, for example,
one by Pedro A. Sanchez et al. [4], where they simulated the structure of an MRE using
molecular dynamics with a coarse-grain approach. The surface for this work was taken as
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the agglomerate of spheres present in the MRE; subsequently, the calculation of the rough-
ness was taken as the difference in heights between the chains formed from the spheres.
Another work employing the Monte Carlo method is the one developed by Michelle Ger-
vasio and Kathy Lu [5] for the simulation of the MRE, studying the agglomeration of the
nanoparticles together with the elastomer, and how this can affect the structure of the
MRE. Their results were compared with surface measurements taken with atomic force
microscopy (AFM); however, the surface recreated for the simulation was a flat surface
with protruding spheres, as a representation of the nanoparticles. On the other hand, one
of the most commonly used techniques is the finite element method (FEM) [6], as in the
case of Rui Li [7], where the MRE was simulated using FEM and a magneto-mechanical
coupling of the particles with the matrix by means of COMSOL, in addition to recreating an
initial surface with random profiles using fractal geometry. The deformation of the surface
was performed as the displacement of a point in the random profile given the movement
of one or several particles inside the MRE. In this case, no neighborhood around every
specific point was considered for the deformation of the surface and the technique is one
with a high computational cost [6]. A common feature in these works and through these
techniques is that the surface is deformed at the same time that the MRE is simulated, i.e.,
the surface can only be analyzed once for each complete simulation performed, which
makes it difficult to compare different surface cases with the same MRE conditions, such as
particle concentration and temperature, among others, implying a greater consumption of
time and computational resources.

In some of these works simulations were performed in two dimensions (2D), obtaining
a one dimensional roughness profile. The random roughness profile can be created in
several ways, some of these are fractal geometry [8], Monte Carlo method [9], and Gaussian
wave convolution [10], among others. In several studies [7–9], surface modifications
have been modeled by considering only the displacement of specific geometrical points
belonging to the surface, but not the overall displacement of the portion of the elastomer
in the neighborhood of such points, as this is expected to occur in real experiments where
elastic and mechanic properties of the elastomer can play a key role. In addition, despite
the effort of analyzing the effect of a single embedded particle upon a surface [11], no
information is available, to the best of our knowledge, for a set of particles and more
concretely for a nonuniform random distribution of particles within an elastomer, which
is the case in real systems where aggregates or the formation of chains of particles can
take place.

In this work, we introduce a way to simulate modifications that arise on the surface of
an MRE when it is under the influence of an external magnetic field, showing a change on
the surface in the regions where magnetic particles are found. Here, the surface is created
randomly using the Gaussian wave convolution method which allows the creation of
random 3D surfaces. Deformations in the surface neighborhood of the embedded particles
are modeled by using a Gaussian bell approximation over a range of influence or cut-off
values, which depend on the size of the particles and their changes in position. We propose
a recreation of the surface deformation by means of input files that have the initial and final
positions of the particles. This allows a differentiated analysis only on the surface, allowing
eventually the use of other techniques, such as Monte Carlo or molecular dynamics, based
on data from output files. The resulting surface deformation can be saved in a readable
data file and requires only an X, Y mesh to reproduce the surface.

2. Model and Method
2.1. Three-Dimensional Random Surface Roughness

Random roughness surfaces can be described using a height distribution function
(HDF) and an autocovariance function (ACF) [12]. Several models can realize this type
of surface, such as the Thorsos method, the spectral Monte Carlo method [12], the mean
motion method [13], or the method of Garcia and Stoll [10,14]. For this work, the method of
Garcia and Stoll was chosen, since its development is simpler to apply in code, it decreases
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the computation time, and fundamental parameters can be added for a surface such as
the RMS height and the correlation length. This method consists of taking both a height
distribution function and an autocovariance function. In our case, a Gaussian function was
chosen, whereas the correlation function was convolved with a Gaussian filter, as described
by Garcia and Stoll [10,14], and the convolution was achieved using a fast Fourier transform
algorithm. For the simulation, a random number generator with a Gaussian distribution
was used for the height distribution function taking into account the RMS height, and the
convolution was performed with the following Gaussian filter [10]:

F(x, y) = e
−2
(

x2

τ2
x
+

y2

τ2
y

)
, (1)

where x, y are the positions of the center of the Gaussian, τx and τy are the correlation
length for the x, y directions, respectively. The correlation lengths τ of an autocorrelation
function is defined as the value at which the function decays 1/e from its initial value, and
it is a measure of distance between two features, such as the peaks of the Gaussian bells
in a correlated surface [15]. Figure 1 shows an example of a surface generated with this
method.

The Garcia and Stoll method has been employed successfully in several works in
which the simulation of a random surface has been required, for example for the study
of liquid-mediated adhesion between 3D rough surfaces [16], for the surface roughness
evolution of a stressed metallic implant [17], and for studying the particle rebound on
rough surfaces [18]. For our work, an initial random surface was generated by using the
Garcia and Stoll method [10,14], with a random Gaussian distribution for both the height
distribution function and the covariance function, where we assumed the surface to be
isotropic, i.e., the correlation length at x is equal to the correlation length at y , in order to
be more consistent with a real surface without texture [19,20].

Figure 1. Three-dimensional random surface with RMS height of 5 µm, τx = 40 µm, and τy = 50 µm.

2.2. Deformation of the Surface by Magnetic Particle Movements

Experimental investigations show that surface deformations in MRE can generally
be found in cuspid-like shapes separated by valleys [8,21,22], where such deformations
are attributed to the chain-like formations taking place in the MRE with or without an
external magnetic field. Chains are formed due to the interplay between Zeeman and
dipolar interactions, with a trend of the magnetic moments of the particles being oriented
along the direction of the applied magnetic field [2,3]. The intensity of the field affects the
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quantity and size of the chains, thus affecting the surface and therefore the roughness. To
simulate these deformations, a system is modeled which consists of an elastic matrix with
randomly distributed magnetic particles, and a random roughness profile is incorporated
using the methods mentioned above. The movement of the particles is performed by
using a standard Monte Carlo method with Metropolis dynamics in the framework of a
Hamiltonian containing dipolar and Zeeman interaction terms. We want to stress that
during every single Monte Carlo step, trials consist of attempts of new magnetic moment
orientations and new random positions displacements for every single particle. Each of
these movements generates a change on the surface, having at the end a system in equilib-
rium with a modified surface. The roadmap in this work is to separate the system into two
parts, namely, a first one consisting of a matrix with embedded magnetic particles evolving
toward equilibrium, and a second one is the surface itself. This is proposed for the follow-
ing reasons: (1) computational cost decreases by separating the processes, (2) observation
windows of the evolution of the system can be taken and displayed graphically, without
the need for using the same equipment for the simulation; that is, the equilibration of
the particle movements can be performed on a computer, such as a laptop, different to
others where surface reconstruction and visualization can be carried out. In this way,
simulation can be partitioned into two different tasks. During this process, files containing
the initial and final conditions (positions and magnetic moments) for a given value of the
external magnetic field can be generated and stored, and the respective surfaces can be
reconstructed.

2.3. Methodology for Surface Deformation

In a first step, an initial random surface is generated by using the Garcia and Stoll
model [10,14]. Surface reconstruction depends on the change in the position of the particles
in the system and above each particle near the surface, and the appearance of it is modeled
by means of a 3D Gaussian bell of the form:

f (x, y) = α + βe
(x2+y2)

σ2 , (2)

where α is the height where the Gaussian bell begins, β is the maximum bell height, x, y are
the positions of the center of the bell, and σ is the standard deviation which is the same as
the radius of the particle lying below the bell. The bell grows proportional to the change in
height, that is, the greater the change in height the larger the size of the bell; therefore, the
parameter β is dependent on this change, where this is taken as the value of the change
in height of the particles. Since the complete graph comprises flattened portions beyond
three times the standard deviation, a suitable cut-off was chosen to be among the limits
from −2σ to 2σ as shown in Figure 2, so as not to affect the surface too much. This model
allows the creation of peaks and valleys in the z direction, if the displacement of particles is
either positive or negative.

Figure 2. Gaussian bell cut from −2σ to 2σ: (a) 3D Gaussian bell, (b) a typical 2D section of the 3D
Gaussian bell.
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The random initial matrix (Minitial) of the surface is a mesh of specific points (x, y)
which are uncorrelated with the positions of the magnetic particles (Xp, Yp) underlying the
surface. Since the displacements of the particles (due, for instance, to the applied magnetic
field or to the dipolar interaction) will be responsible for the surface deformations, the two
layers of points , namely (x, y) and (Xp, Yp), must be somehow coupled or concatenated.
To do that, a surface interpolation function (Finterpolate) was defined by using Python’s
interp2d function from Scipy library [23], so we can find or add any point within it. The
goal with this is to be able to deform the points of the surface mesh with a Gaussian function
whose centroid coincides with the closest magnetic particle right below. The magnetic
particles that generate the deformation are those closer to the surface, since it is assumed
that the innermost particles, away from the surface, will not affect it. Such an assumption
was made considering only those particles closest to the surface, within a band of 30% of
the total height of the initial simulation box. For percentages higher than this, the value of
the percentage of surface deformation varies less, with differences of less than 1%.

The process to achieve this is as follows: First, the initial mesh positions (x, y) are
concatenated with the final positions of the magnetic particles (Xp f inal , Yp f inal) generating
all the necessary points (Xall , Yall) to modify the surface. Then, using the interpolation
function, two matrices are generated, the Zall matrix using the Xall and Yall positions, which
will be the basis for the rest of the algorithm, and the Znew matrix using Xp f inal and Yp f inal
positions, with the purpose of identifying these positions in the Zall matrix, to generate
the deformation through a Gaussian function. As mentioned above, the displacement of
the particles generates the deformation, therefore it is necessary to create an array that
contains these values; in this case, the displacements in the z direction are stored. These are
calculated as the difference between the initial and final locations of each particle, named
as ∆Z, which corresponds in turn to the β parameter in Equation (2). This methodology
is summarized in Flowchart 1 in Figure 3, showing data processing from the creation of
the surface to the modification of it; however, in the binary execution step, where Zall and
Znew are compared, it is necessary to deepen its operation. In this step, if the decision is
“Yes”, we proceed to the methodology of the replacement of the area affected by the particle
movement, as summarized in Flowchart 2 in Figure 4. Taking into account the large number
of steps involved in the modeling, Flowchart 1 integrates all the variables and matrices
necessary for the creation and subsequent modification of the surface, whereas Flowchart
2 specifies the way in which these variables and matrices will be used to generate the
modification in specific regions of the surface, more concretely, those local zones influenced
by the presence of particles underlying the surface. To achieve this, we proceed as follows:

1. Indices formed by pairs of integers (row, column) in the 2D Znew data matrix are
identified for easy access of the real value points (Xp,Yp).

2. The surface points to be affected by the Gaussian bell are determined within a cut-off
region (−2σ,+2σ).

3. The matrix containing the Gaussian bell (ZGauss) is created using the points from
step 2.

4. A matrix is created using the interpolation function (Zchange).
5. The complete surface matrix (ZAll = Minitial

⋃
Znew) is scanned to be modified.

6. If the value scanned of ZAll matches with any value of ZChange with a tolerance of
1 × 10−9, it is modified with the value found in ZGauss. If the value does not match, it
is not modified.

In step 1, the real value of the z coordinate linked to every index value in the Znew
matrix corresponds to the α parameter in Equation (2). Such a value represents the baseline
above which the Gaussian bell is built.

In step 2, the extension of the region to be modified is identified using the particle
radius (σ in Equation (2)), whereas the (Xp,Yp) coordinates determine the center of the
Gaussian bell. At this step, a new array of points (XG,YG) is needed to build the Gaussian
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bell, whose values range from the central position of the particle (Xp,Yp) to the cut-off
values described above.

Figure 3. Flowchart 1, complete cycle of the deformation of a random surface.

Figure 4. Flowchart 2, change of surface values using the ZGauss and Zchange matrices.

Step 3 creates the matrix ZGauss containing all the height values covering the Gaussian
bell surface.
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Step 4 creates a fourth matrix (Zchange) using the interpolation function and the posi-
tions to be modified (Xp,Yp). This matrix acts as a bridge between the matrix of the whole
surface ZAll and the section to be modified with ZGauss.

In step 5, the matrix of the entire surface ZAll is scanned to be modified using the
next step. Thus, in step 6, ZAll is modified with ZGauss if the tolerance of the comparison
between ZAll and ZChange is fulfilled, otherwise the surface remains the same.

Particles were treated as single-domain particles interacting each other via dipolar
interactions and with a uniform external applied magnetic field along the z-direction
through a Zeeman interaction. Simulation was performed over 243 magnetite particles of
0.8 µm radius, inside a box of 30 × 30 ×10 µm3, this is shown in Figure 5.

Figure 5. Three-dimensional elastomer-magnetic particle system, the color is associated with the
z-component of spin. (a) System before applying magnetic field . (b) System after applying magnetic
field.

3. Results and Discussion

Two random surfaces were considered. One involved a higher correlation length
(τx = τy= 2 µm, isotropic surface) in order to obtain a smoother surface as shown in Figure 6.
A second surface with a lower correlation length (τx = τy= 0.4 µm, isotropic surface) , which
makes the surface noisier, was also simulated. This last one, however, allows us to identify
on the surface those regions below which the particles are located. The RMS height values
were both 2 µm. Surface deformations were performed using the methodology described
in the previous section, using 400 points for the initial grid, which subsequently increases
in size due to the particles, obtaining a final grid of 463 points. The results of test 1 are
shown in Figure 6 , the results of test 2 are shown in Figures 7 and 8. The calculation of
the RMS roughness parameter was performed using the following expression (standard
deviation of heights) [24]:

µRMS =
1
N

√√√√ N

∑
n=1

(zn − z̄)2, (3)

where N is the total number of points on the surface (total points after deformation, N = 463
for both tests), zn is the height at each point on the surface, and z̄ is the average of the
heights.



Computation 2023, 11, 46 8 of 11

Figure 6. Three-dimensional surface for the elastomer-magnetic particle system for test 1 with
RMS height of 2 µm, τx = 2 µm, and τy = 2 µm (a) Initial surface without modification. (b) Surface
modified by the movement of the particles.

We can observe that the surface has been modified in several sections due to the
conglomerate of magnetic particles. Such deformations are consistent with a topography of
valleys and peaks as observed in experimental work [7,21,22].

Figure 7. Three-dimensional surface for the elastomer-magnetic particle system for test 2 with RMS
height of 2 µm, τx = 0.4 µm, and τy = 0.4 µm (a) Initial surface without modification. (b) Surface
modified by the movement of the particles.

In Figure 7, we can observe the output surface deformation arising from the particle
displacement, which is more noticeable for test 2, finding that the valleys and peaks forma-
tion is clearer and more differentiated than the initial surface. In order to better visualize
this deformation, Figure 8 shows a cross section at y = 15 µm where the deformation, due to
several particles found in these coordinates, is observed. As the particles move, the region
consistent with their sizes becomes accordingly modified. This process was carried out
using two system files keeping the same input parameters, e.g., particle size, number of
particles, external magnetic field, and size of the simulation box. The change between the
two systems lies in the initial positions of the particles, in order to obtain two comparable
deformations. We found that the deformation percentages of both systems are practically
the same. For instance, by using the parameters of test 1 (Table 1) for two different initial
systems, the deformation percentage for system 1 was 13.7%, whereas for system 2 it was
14.9%.
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Figure 8. Cross section of the 3D surface for test 2 comparison of initial profile (red line) and modified
profile (blue line). Parallel horizontal black lines represent the band of 30% of the total height of the
initial simulation box.

The values of roughness and percentages of deformation for four tests, each one
consisting of two replicas are summarized in Table 1.

Table 1. Results for 4 tests with their respective initial values, (SC: surface created, MS: modified
surface).

Test RMS
Input τx τy RMS SC RMS MS % Defor-

mation

1 2 µm 2 µm 2 µm 2.1 µm 2.4 µm 14.3%
2 2 µm 0.4 µm 0.4 µm 1.7 µm 2.2 µm 29.4%
3 1 µm 2.2 µm 2.2 µm 1.1 µm 1.6 µm 45.4%
4 1.5 µm 0.3 µm 0.3 µm 1.2 µm 1.9 µm 58.3%

The deformation percentage tells us how much the surface has changed. Results
demonstrate that larger percentages of deformation are obtained in test 2, corresponding
to the case where the particle size is greater than the correlation length. We want to stress
that up to five different simulations were performed in every case for different seeds of the
random number generator used.

4. Conclusions

It was possible to develop a numerical methodology capable of modifying the sur-
face of an elastomer-particle magnetorheological system by considering the respective
coordinates and sizes of the embedded magnetic particles. The method employed matrix
arrays for the creation and modification of the surfaces, and, as such, modifications in
specific regions of the surface, i.e., those local zones influenced by the presence of particles
underlying the surface, can be undertaken.

The main two differences to highlight with respect to other works in the literature
related to the simulation and reconstruction of rough surfaces are:

• Our method allows us to obtain a mathematical function that is fed by a grid of points
(x, y) in order to reproduce a modified and equilibrated surface, which can be then
exported for later use (for instance, to analyze the interaction of a rough surface with
a drop of water for obtaining contact angles) by means of an output file.
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• Our method considers the internal structure of the elastomer to a certain depth in 3D,
in such a way that the presence of particles embedded and their influence, within a
range, upon the surface roughness, was tackled.

The main limitation deals with the fact that the elastomer matrix in our model is
considered as a continuous medium where, in fact, its own microscopic structure based on
chains of molecules and textures is also an ingredient affecting the roughness of the surface.
In this sense, future work should also take into account these details, as well as the elastic
coupling of the particles to the elastomer matrix.

Verification with experimental results is currently in progress in our group, where we
are synthesizing PDMS elastomers with magnetite nanoparticles and performing surface
analysis with atomic force microscopy techniques. The idea behind this type of synthesis is
to obtain a material where it is possible to modify the roughness with the application of a
magnetic field.

We are confident that this approach can help in the understanding of the morphology
and surface properties of MRE systems.
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Abbreviations
Given the large number of variables and abbreviations used in this work, this section summarizes the
name and simple meaning each one of them.

MRE Magnetorheological elastomer.
hdf Height distribution function.
acf Autocovariance function.
τx and τy correlation length for the x,y direction respectively.
α Height value where the Gaussian bell begins.
β Maximum Gaussian bell height.
σ Standard deviation.
Minitial Random initial matrix, using the Garcia and Stoll method.
x, y Mesh points of Minitial .
Xp, Yp Positions of the magnetic particles.
Finterpolate Surface interpolation function, using to interpolate Minitial .
Xp f inal , Yp f inal Final positions of the magnetic particles.

Xall , Yall
Positions resulted of a concatenate initial mesh positions (x, y) with final
positions of magnetic particles.

Zall Surface matrix generated by using Finterpolate with Xall , Yall .
Znew Surface matrix generated by using Finterpolate with Xp f inal , Yp f inal .
∆Z Difference between the initial and final locations of each particle.

XG,YG
Array of points whose values range from the central position of the
particle to the cut-off.

https://github.com/JoseA94/MRE_Surface_Reconstruction.git
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ZGauss Matrix containing the Gaussian bell with XG,YG positions.
Zchange Matrix of the points to affected by Gaussian bell using Finterpolate

with XG,YG.
µRMS Root mean square roughness (RMS roughness).
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