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Abstract: Electroencephalogram (EEG) has emerged as the most favorable source for recognizing
brain disorders like epileptic seizure (ES) using deep learning (DL) methods. This study investigated
the well-performed EEG-based ES detection method by decomposing EEG signals. Specifically,
empirical mode decomposition (EMD) decomposes EEG signals into six intrinsic mode functions
(IMFs). Three distinct features, namely, fluctuation index, variance, and ellipse area of the second
order difference plot (SODP), were extracted from each of the IMFs. The feature values from all EEG
channels were arranged in two composite feature forms: a 1D (i.e., unidimensional) form and a 2D
image-like form. For ES recognition, the convolutional neural network (CNN), the most prominent
DL model for 2D input, was considered for the 2D feature form, and a 1D version of CNN was
employed for the 1D feature form. The experiment was conducted on a benchmark CHB-MIT dataset
as well as a dataset prepared from the EEG signals of ES patients from Prince Hospital Khulna (PHK),
Bangladesh. The 2D feature-based CNN model outperformed the other 1D feature-based models,
showing an accuracy of 99.78% for CHB-MIT and 95.26% for PHK. Furthermore, the cross-dataset
evaluations also showed favorable outcomes. Therefore, the proposed method with 2D composite
feature form can be a promising ES detection method.

Keywords: epileptic seizure; electroencephalogram; empirical mode decomposition; 1D and 2D
composite feature; convolutional neural network

1. Introduction

Epileptic seizure (ES) is a seizure when abnormal electrical activity arises in the brain
due to the underlying condition of epilepsy. It is one of the most common neurological
diseases worldwide [1] and is a major health concern. ES is usually diagnosed based on
an individual’s seizure patterns, medical history, and results of neurological exams and
imaging tests. ES recognition is important because it tends to recur, and the potential
consequences can be severe. As it is a brain disorder, detection through analyzing brain
signals is the most favorable method, and electroencephalogram (EEG), an affordable,
noninvasive method for measuring brain activity, is the most promising for ES detection.

Epilepsy has been a subject of extensive research in the computational intelligence
domain over the last few decades ([2–6]) for automated ES detection and diagnosis. In
recent years, machine learning (ML) and deep learning (DL) techniques have emerged
as powerful tools for analyzing EEG for the diagnosis of neurological disorders such
as autism and emotion [7,8]. EEG signals are the most promising brain signals for ES
analysis and recognition, particularly for recognizing the abnormality of the brain due to
its painless experiment and inexpensive nature [9]. EEG signals during seizure typically
show abnormal rhythmic activity in the brain, known as spikes and sharp wave discharges.
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EEG signals consist of some challenges regarding nonstationary and nonlinearity behavior,
similarity in frequency and amplitude in seizure and non-seizure segments, and noise
while recording [10].

Existing EEG-based ES studies have explored various techniques to process the EEG
signals, extract relevant features, and use different ML/DL methods for ES detection.
Some studies have focused on using raw EEG signals (e.g., [4–6,11–13]) and employed DL
learning methods for feature extraction with embedded methods of individual DL methods.
Furthermore, recent studies have explored various feature extraction methods to capture
discriminative information from raw EEG signals [3,11,14–17]. Recent EEG-based ES
studies have focused on signal transformation and feature extraction techniques to achieve
better ES recognition using ML/DL methods. Some other studies have incorporated signal
transformation techniques through decomposition and filtering [2,3,14].

The study aimed to investigate the well-performing ES detection method from EEG
signals by considering these main steps: EEG signal decomposition, feature extraction,
and the classification of ES using ML and DL methods with an appropriate representation
of features. The empirical mode decomposition (EMD) scheme decomposes EEG signals
iteratively into intrinsic mode functions (IMFs) (i.e., decomposed signals), where initial
IMFs hold most of the information, and the information quality gradually degrades in
the later IMFs. Three distinct features, namely, the fluctuation index, variance, and ellipse
area of the second order difference plot (SODP), are extracted from the first six IMFs
(i.e., 18 (=6 × 3) extracted features per EEG channel). The feature values from all EEG
channels were arranged in two different composite feature forms: a 1D (i.e., unidimensional)
form that places the channel features one after another in a sequence and a 2D image-like
one that places the individual channel features in rows. A convolutional neural network
(CNN), the most prominent DL model for 2D input, was considered for the 2D feature
form, whereas a neural network (NN) and 1D version of the CNN were used for the 1D
feature form for ES detection. The experimental evaluation and analysis were performed
on the CHB-MIT benchmark EEG dataset and a dataset prepared from the EEG signals of
ES patients from Prince Hospital Khulna (PHK), Bangladesh. Additionally, cross-dataset
evaluations assessed the generalization and robustness of the models. Collectively, the
significance of this study lies in the decomposition of EEG signals, feature extraction from
IMFs, and reshaping them into two different forms, and the employment of appropriate
ML/DL methods for ES classification. More specifically, the main contributions in the
context of ES detection and the achievements of this study are:

1. The use of EMD for IMF extraction from the CHB-MIT and PHK datasets as well as
the fluctuation index, variance, and ellipse area of SODP feature extraction from IMFs.

2. Representing the feature values in the 1D form and 2D image-like form and employing
the appropriate CNN model for ES classification.

3. The model with 2D feature and CNN was identified as the most promising method for
ES recognition, outperforming other approaches for the CHB-MIT and PHK datasets.

4. Cross-dataset evaluations and outcomes comprising other prominent studies revealed
the proficiency of the proposed method.

The rest of the paper is structured as follows. Section 2 briefly reviews different ES
studies using ML and DL methods. Section 3 describes the proposed method, which
includes signal decomposition, feature extraction, feature reshaping the 1D/2D composite
form, and classification using CNN. Section 4 includes the experimental studies, presents
the experimental results and analysis, and compares the proposed method’s outcomes with
the state-of-art. Finally, Section 5 first summarizes the contribution and achievement of the
present study, and then outlines several future research directions that have emerged from
this work.

2. Related Works

According to the recent literature, various EEG-based ES detection methods use
diverse techniques to process the EEG signal, extract features, and classify ES using different
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ML/DL methods. An approach utilizing mutual information (MI), CNN, and learned
factor graphs was investigated in [18] to detect seizures, where MI was used to find the
correlation between channels for the CHB-MIT dataset. CNN (i.e., 2D CNN) was used to
detect seizures from the CHB-MIT dataset without feature extraction [12]. Imaged EEG
signals from CHB-MIT were also classified using CNN [13]. CNN was also used in [19]
for seizure classification using plotted EEG images formed from EEG signals. 1D CNN, a
variant of CNN, was used in [4] for ES detection by using the raw EEG of the Bonn dataset.
In another study [5], a transfer learning concept was used in the ES detection process,
where a pre-trained AlexNet CNN model was used on raw EEG data.

In [6], graph attention networks (GATs) were used for spatial feature extraction, and
bi-directional long short-term memory (BiLSTM) was used for ES detection from the raw
EEG signals of the CHB-MIT and TUH [20] datasets. The study in [21] investigated the
effects of MinMaxScaler normalization and evaluated the outcomes obtained by employing
recurrent neural network (RNN), LSTM, and BiLSTM models on the preprocessed CHB-
MIT dataset. A method was proposed in [11] to deal with imbalanced seizure data in
CHB-MIT: a generative adversarial network (GAN) was used for data enhancement, and a
1D CNN was trained on an augmented dataset containing original and generated EEG data.
A deep LSTM network was proposed in [22] to learn the temporal dependencies using
single-channel EEG data from the Bonn dataset. A lightweight 1D CNN-based ES detection
model, LightSeizureNet, was introduced for the CHB-MIT dataset, featuring both patient-
independent and patient-specific versions [23]. In [24], the CHB-MIT dataset was employed
for ES detection, utilizing frequency bands to make brain networks in conjunction with
CNN techniques.

Some studies have employed signal decomposition in ES recognition. EMD was used
to decompose EEG signals to extract different types of entropy, fractal dimension, statistical,
and exponential energy from the IMFs [2]. The study used a support vector machine
(SVM) classifier to differentiate the seizure and non-seizure signals from the Bern-Barcelona
EEG dataset. Cross-bi-spectrum EEG signal analysis and three linear and six nonlinear
features were used [15], and SVM was used for ES classification from the Freiburg iEEG
database [25]. SVM was also used to detect neonatal seizure in [16] with the time and
time–frequency domain correlation features from the Helsinki University Hospital dataset.
The Tunable Q-wavelet transform (TQWT)-based decomposition of CHB-MIT, combined
with feature extraction (i.e., nonlinear, temporal, statistical) and classification using SVM
and random forest (RF), were performed in ES classification in [3]. Genetic algorithm and
particle swarm optimization were used to refine the parameters of hybrid SVM in [26]
for the Bonn dataset. In [17], two time-domain feature extraction methods were utilized
along with different classifiers like SVM, K nearest neighbors (KNN), logistic regression
(LR), RF, decision tree (DT), naive Bayes (NB), etc., to detect seizure. The feedforward
NN was used in [14] to classify seizures, where wavelet decomposition was used along
with feature extraction. In [27], variational modal decomposition (VMD) was applied
to decompose EEG signals from CHB-MIT, where features like differential entropy (DE)
and high-frequency detection (HFD) were derived and used with an SVM classifier for
ES detection. In another study [28], CNN was used to decompose EEG along with an ES
detection model utilizing adversarial training and the attention-based CNN algorithm to
achieve patient-independent diagnosis from raw EEG signals.

3. Epileptic Seizure Detection from EEG Using EMD and DL

Existing ML/DL-based methods are diverse in using raw EEG signal data with feature
extraction from raw or decomposed EEG signals. In the case of decomposition, EMD can
adapt to the local characteristics of a signal by dividing it into its intrinsic modes, which
are the most significant and relevant parts of the signal. EMD-based decomposition was
better than discrete wavelet transform (DWT) in [2]. Different features (e.g., entropy, fractal
dimension, statistical, exponential energy) were extracted from the decomposed signals
(i.e., IMFs), and classification using SVM from the features in the unimodal 1D form showed
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remarkable performance in [5]. It is possible to use CNN, the most popular DL method, by
reshaping the extracted features into a 2D form in the exploration for further improvements
in detection performance.

The study intends to improve EEG-based ES recognition performance by developing
an EMD and CNN model. The proposed framework of ES detection is illustrated in Figure 1,
depicting the principal operation steps: preprocessing of the collected EEG signal, signal
decomposition using EMD, feature extraction from decomposed signals (i.e., IMFs), com-
posite feature formation through feature representation, and finally, classifying ES using ML
and DL methods. Each signal channel produces three IMF samples through decomposition
in the first stage. Next, three distinct features (i.e., fluctuation index, variance, and ellipse
area of SODP) are extracted from each IMF. Therefore, there are eighteen extracted features
for a single EEG channel. The composite feature is formed through feature representation,
aggregating features for individual channels and then combining them for all channels. The
classification of ES is finally performed from the composite feature with the appropriate
ML/DL method. The following subsections describe the individual operational steps of
the framework.

Figure 1. Proposed framework for epileptic seizure detection.

3.1. Data Collection and Preprocessing

The study used a publicly available CHB-MIT benchmark dataset and a locally col-
lected EEG dataset from Prince Hospital Khulna (PHK), Bangladesh. Two datasets are
described below.

3.1.1. CHB-MIT Dataset

The well-studied CHB-MIT dataset [29] was created by a team of investigators from
the Children’s Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT).
In this dataset, the sampling rate of the signals is 256 samples per second. This study
considered EEG signal data from 22 channels: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3,
C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ,
P7-T7, T7-FT9, FT9-FT10, and FT10-T8. EEG data from 24 available cases were analyzed to
prepare seizure and non-seizure samples. With a 10-s window size and 70% overlapping
(i.e., 3-s step size), the EEG signal is divided into consecutive segments. Such segmentation
ensures that no information is lost during the signal processing and allows for a more
robust EEG signal analysis, particularly in cases where the activity of interest (e.g., seizures)
may occur within smaller time frames. A total number of 3707 segments for seizure
and 3707 segments for non-seizure were created. Therefore, 7414 collective samples were
prepared for ML/DL for further steps.

3.1.2. Prince Hospital Khulna (PHK) Dataset

The EEG signal of the PHK dataset was recorded under the supervision of a specialist
in neurology and epilepsy (i.e., an author of the study). Specifically, EEG signal data from
10 patients were taken into consideration in this study with approval from the hospital
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authority (Ref.: PDK/2023/0125). Table 1 provides a concise summary of the patients in
terms of age and gender; the patients’ names, addresses, and other personal information
have been kept anonymous for privacy purposes and the ethical clearance criteria set by
the hospital. The Nicolet vEEG System manufactured by Natus Neuro, USA [30] was used
to record the data; the model is NicOne, version 5.94. Different montage settings have been
interpreted such as monopolar and bipolar (longitudinal and transverse). The recorded
channels (in monopolar or referential montage) were FP1-A1, F3-A1, C3-A1, P3-A1, O1-A1,
FP2-A2, F4-A2, C4-A2, P4-A2, O2-A2, F7-A1, T3-A1, T5-A1, F8-A2, T4-A2, T6-A2, FZ-A1,
CZ-A1, PZ-A1, ECG-Bipolar, and Photic. Excluding ‘ECG-Bipolar’ and ‘Photic’, signals
from 19 general channels were considered for processing for ES detection. The PHK EEG
data are in .e(Nicolet) format, with 500 samples per second. EEGLAB toolbox (version
2021.1) of MATLAB was used to convert the Nicolet into CSV files and resample them
to 256 Hz to make them compatible with CHB-MIT. EEG Viewer software (v5.71.3.2522)
was used to visualize the signals and spikes of different channels. From 10 cases, 578 s
of seizure signals and 578 s of non-seizure signals were collected. Notably, 380 segments
(190 segments for seizure and 190 for non-seizure) were created using a 10-s window and
70% overlapping.

Table 1. Summary of cases of the PHK dataset.

Case No. 1 2 3 4 5 6 7 8 9 10

Age (Year) 28 9 13 6.5 18 4 3 7 17 1.5

Gender F M F M M M F F M M

3.2. EEG Signal Decomposition Using Empirical Mode

Signal decomposition enables a more in-depth analysis as simpler components can
reveal underlying patterns. EMD decomposes EEG signals into intrinsic mode functions
(IMFs), which represent different time-scale components of the signal. A detailed descrip-
tion of EMD is available in [2]. EMD iteratively extracts the IMFs from the signal until
a residue is obtained that cannot be further decomposed; initial IMFs hold most of the
information, and the information quality gradually degrades in the later IMFs. In this study,
the first six IMFs were considered to carry sufficient information.

For a better understanding, the first six IMFs of the seizure and non-seizure segments in
the PHK are shown in Figure 2. It can be observed from the figure that individual IMFs are
also continuous signal-like time series. During seizures, EEG signals tend to exhibit sharp
and irregular activities. The corresponding IMFs may contain high-frequency components
with large amplitudes (see IMF4), representing the rapid and chaotic neuronal firing
associated with seizures. In non-seizure EEG signals, the IMFs are generally smoother and
more regular. The frequency components are mostly well-organized and follow predictable
patterns, reflecting normal brain activity.
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Figure 2. Six IMFs of seizure and non-seizure sample cases from the PHK dataset.

3.3. Feature Extraction from IMFs

In this study, features were extracted from six IMFs individually. From each IMF,
three features were extracted. Short descriptions of the feature extraction methods are
given below:

3.3.1. Fluctuation Index (FI)

The fluctuation index provides a measure of the relative level of variability in the data.
FI can be used to compare different time series (here, an IMF) to identify data patterns and
trends, which is obtained as:

Fluctuatuion Index =
1

X − 1∑X−2
x=0 |si(x + 1)− si(x)|, (1)

where X is the length of signal si(x), here an IMF. A higher FI indicates that the data are
more variable, while a lower value indicates that the data are more stable.

3.3.2. Variance

Variance is a measure of how far the individual data points in a set are from the mean
or average of the data, which is obtained as:

Variance =
∑X−1

x=0 (si(x)− µ)2

X − 1
, (2)

where µ is the mean of the signal si(x).
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3.3.3. Ellipse Area of Second Order Difference Plot (SODP)

Dispersion or variability of a time series dataset is measured by the ellipse area of
SODP. The SODP is a graphical depiction of the second-order statistics of a time series,
which can be used to spot trends and outliers in the data. The ellipse area of the SODP
is considered an important feature for time series data because it provides a compact
representation of the variability and spread of the data. The SODP is obtained as [31]:

d1(x) = si(x + 1)− si(x), (3)

d2(x) = si(x + 2)− si(x − 1), (4)

where si(x) is the time series signal, here an IMF. To measure the SODP of the signal si(x),
d2(x) was plotted against d1(x). The visual analysis revealed that the initial IMFs of the
seizure data exhibited a greater dispersion of data points in an elliptical pattern. The ellipse
area of SODP is defined by:

Areaellipse = πab, (5)

where a and b denote the semi-major and semi-minor axes, respectively. The semi-major
and semi-minor axes with the parameters are given as:

p1 =

√
1

X − 2∑X−2
x=0 d1(x)

2, (6)

p2 =

√
1

X − 2∑X−2
x=0 d2(x)

2, (7)

p3 =
1

X − 2∑X−4
x=0 d1(x)× d2(x), (8)

δ =
√

p1
2 + p2

2 − 4
(
p1

2 × p2
2 − p3

2
)
, (9)

a = 1.7321
√

p1
2 + p2

2 + δ, (10)

b = 1.7321
√

p1
2 + p2

2 − δ (11)

where X is the length of si(x).

3.4. Feature Representation

Composite feature formation representing the extracted ones is necessary to input
them perfectly in the ML/DL model for ES classification, which is the crucial issue of
this study. Each channel has six IMFs, and each IMF is further decomposed into three
features, i.e., making 18 (=3 × 6) features per channel. It is essential to carefully consider
the characteristics of the features and select the most appropriate representation technique
to ensure the optimal ML/DL model performance. This study organized the features in two
formats, as illustrated in Figure 3: 1D or unidimensional and 2D forms. These two different
forms of organizing the feature values offer different perspectives for analyzing EEG data.
In the 1D form represented in Figure 3a, the 18 feature values of each EEG channel are
placed one after another in a single line. This arrangement creates a linear sequence where
the feature values of the channels are concatenated. For instance, the feature values of
22 EEG channels of CHB-MIT were arranged in a continuous sequence of 396 (=18 × 22)
values. For the PHK dataset, it was a continuous sequence of 342 (=18 × 19) values for
19 EEG channels.



Information 2024, 15, 256 8 of 16

Figure 3. Two different feature orientations of 18 features (= 6 IMFs × 3 features) for each individual
channel (Ch). Total channels (N) were 22 and 19 for the CHB-MIT and PHK datasets, respectively.
(a) All of the features are placed in a line placing individual channel features one after another in a
line. (b) The feature values of individual channels are placed in rows in the 2D image-like form.

The feature values of individual EEG channels were placed in rows to represent
features in 2D form. The resulting structure resembled an image-like form with values in a
2D matrix, where each row corresponds to a channel, and the columns represent different
features. A particular row in the matrix holds 18 feature values (i.e., fluctuation index
(F), variance (V), and ellipse area of SODP (E) features) for six IMFs of an EEG channel
signal value. At a glance, for the CHB-MIT dataset, the features of 22 channels were placed
in 22 rows with dimensions of 22 × 18. In the matrix depicted in Figure 3b F1,1 in [1,1]
position is the fluctuation index feature value of Channel 1’s (i.e., Ch 1) IMF1. The next
two values, V1,1 and E1,1, are the variance and ellipse area of the SODP features for the
same IMF. The last value in the first row E1,6 in position [1,18] was the ellipse area of
the SODP feature for the IMF6 of Channel 1. As N = 22 for the CHB-MIT dataset, the
remaining 21 rows hold feature values for Ch 2 to Ch 22. Similarly, N = 19 for the PHK
dataset; therefore, the feature values of the channels were placed in 19 individual rows in a
19 × 18 size in 2D form.

3.5. Seizure Classification

Appropriate seizure detection from composite features in 1D or 2D forms using
suitable classifiers is essential. The following subsections describe the architectures of the
three classifiers considered in this study.

3.5.1. 2D Feature Classification with CNN

CNN is a well-studied DL model to classify image or image-like 2D representations
of features ([7,8]) due to its unique ability to process and analyze 2D structured data.
Convolution operation with a 2D kernel makes CNN (hereafter called 2D CNN) particularly
effective in recognizing patterns, shapes, and structures in images or 2D input. Additionally,
pooling is employed to subsample the extracted features, reducing their size while retaining
their essential properties. After several successful convolution and pooling operations,
classification is finally conducted through the dense layer.
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For the 22 × 18 size composite feature (depicted in Figure 3b) for CHB-MIT, the CNN
architecture with three convolution layers (C1, C2, and C3), two pooling layers (S1 and S2),
and dense layer with HN = 10 is

I22×18 → {32K13×3 C120x16 − S2×232S110×8} → {64K23×3C28×6 − S2×264S24×3}

→ {128K33×3C32×1} → {Wo256×10} → {Wo10×2} → O2

Figure 4 illustrates the model architecture. In the model, the size of the kernels K1, K2,
and K3 is 3 × 3 with stride 1, but the number of filters increases progressively from 32, 64,
and 128. After the first convolutional layer, batch normalization is applied to normalize
the activations. The max pooling areas for S1 and S2 are 2 × 2 with stride 2. The final sub-
sampled feature maps are placed linearly into a vector, preparing it for the fully connected
dense layer to classify seizure and non-seizure with two output nodes O2. Activation func-
tions in dense layers are ReLU and SoftMax in the hidden and output layers, respectively.
For HN = 50, the sizes of dense layer weights are updated as {Wo256×50} → {Wo50×2} .
For the PHK dataset with 19 channels, the input was I19×18, and other shapes were updated
accordingly.

Figure 4. CNN structure to classify seizure from a 22 × 18 sized composite feature for the CHB-MIT
dataset.

3.5.2. 1D Feature Classification with 1D CNN

A 1D form of CNN was used for the 1D shape composite feature in Figure 3a. The 1D
CNN is a variant of 2D CNN with convolutional/pooling features and filters in 1D form.
For a total of 396, CHB-MIT features with HN = 10 is

I396×1 → {32K13×1 C1394×1 − S2x132S1197×1} → {64K23×1C2195×1 − S2×164S297×1}

→ {128K33×1C395×1 − S2×1128S347×1} → {256K43×1C445×1 − S2×1256S422×1}

→ {Wo5632×10} → {Wo10×2} → O2

It has four convolutional layers with increasing filter sizes: 32, 64, 128, and 256. For
the PHK dataset with 342 features, the input was I342×1 and other shapes were updated
accordingly.

4. Experimental Studies

The proposed seizure classification methods were tested on the CHB-MIT and PHK
datasets to evaluate their performance. Aside from using 2D and 1D CNNs, an NN model
with a hidden layer with HN 10 and 50 was considered to classify 1D features to better
understand their comparative performances. In addition, cross-dataset evaluation was
also conducted.

4.1. Experimental Setup

In this study, MATLAB® R2021a was used to preprocess and resample the PHK
dataset through the device with the following configuration: CPU: 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40 GHz, RAM: 8.00 GB, 64-bit Windows operating system. The
Python programming language was used to conduct the experiments. Decomposition and
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feature extraction, with model training, were powered by a P100 GPU of Kaggle’s platform.
Fivefold cross-validation (CV) was used to split the training and test sets of the available
7414 segments of the CHB-MIT dataset and 380 segments of the PHK dataset. In a 5-fold
CV, the available samples are divided into five portions, where a portion is considered a
test set by tern and the remaining portions are used to train the model. Adam optimization
was used with a learning rate of 0.001. The classifier models used HN values in dense
layers for 10 and 50.

4.2. Evaluation of CHB-MIT Dataset

Figure 5 shows the training loss curves for a sample fold case (i.e., Fold 1) for
three different ML and DL models for HN = 10 and HN = 50. It can be observed from the
figure that CNN (both 1D and 2D) had faster convergence than NN, and the phenomena
were clearly visible up to 20 epochs. However, all six models converged after 50 epochs.
Figure 6 shows the test set accuracy curves for the six models, whose loss curves are
presented in Figure 5 (i.e., for Fold 1). Significant differences among the models were found
in the test set accuracies.

Figure 5. Training set loss vs. epochs for the CHB-MIT dataset.

Figure 6. Test set accuracy vs. epochs for the CHB-MIT dataset.

Faster test set accuracy improvement with epochs was shown for 2D CNN, and the
worst improvement was observed for NN. Based on the overall test accuracy, 2D CNN was
the best, and NN was the worst.

Table 2 compares the test set accuracies for five individual folds and an average of the
folds among the six models. Based on the average accuracy, 2D CNN (HN = 50) showed
the highest accuracy of 99.78%. This was closely followed by the 2D CNN model with
HN = 10, which achieved an accuracy of 99.71%. The 1D CNN model also performed well,
reaching 99.51% and 99.58% accuracies for HN = 10 and HN = 50, respectively. These
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results emphasize the suitability of the 1D CNN architecture. The traditional NN models
were found to be inferior to the 1D CNN and 2D CNN models, as NN (HN = 50) and NN
(HN = 10) achieved accuracies of 99.09% and 99.39%, respectively. These results highlight
the effectiveness of the 2D CNN architecture in capturing distinguishing patterns within
the data and achieving high accuracy levels.

Table 2. Test set accuracy of the 5-fold cross validation of the CHB-MIT dataset.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. of 5-Fold CV

NN (HN = 10) 99.06 99.39 99.19 98.85 98.99 99.09

NN (HN = 50) 99.53 99.46 99.39 99.33 99.26 99.39

1D CNN (HN = 10) 99.53 99.60 99.39 99.66 99.39 99.51

1D CNN (HN = 50) 99.6 99.66 99.46 99.73 99.46 99.58

2D CNN (HN = 10) 99.93 99.66 99.6 99.73 99.66 99.71

2D CNN (HN = 50) 99.93 99.80 99.73 99.73 99.73 99.78

4.3. Evaluation of PHK Dataset

The PHK dataset was evaluated in the same manner as the CHB-MIT dataset presented
in the previous section. Figure 7 shows the training loss curves for a sample fold case
(i.e., Fold 3 because it showed the variations of models properly) for three different ML
and DL models for HN = 10 and HN = 50. It was observed from the figure that the
CNN (both 1D and 2D) had faster convergence than the NN, and the phenomena were
clearly visible up to 100 epochs. However, all six methods converged after 200 epochs.
Figure 8 shows the test set accuracy curves for the six models. It is remarkable, as seen in
Figure 6, that the accuracy curves of the PHK dataset were not smooth like those of the CHB-
MIT dataset. However, after 150 epochs, all models were near convergence. Significant
differences among the models with many fluctuations over epochs were found in the test set
accuracies. The smaller number of samples in the PHK dataset was the main reason for such
phenomena. At a glance, 2D CNN was the best and NN was the worst, based on the overall
test accuracy.

Figure 7. Training set loss vs. epochs for the PHK dataset.
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Figure 8. Test set accuracy vs. epochs for the PHK dataset.

Table 3 compares the test set accuracies for five individual folds and an average of
the folds among the six models. Based on average accuracy, NN (HN = 10) showed a
90.79% accuracy, and NN (HN = 50) achieved a slightly better accuracy of 91.05%. Moving
to the CNN architecture, 1D CNN (HN = 10) demonstrated improved accuracy, reaching
91.84%. Subsequently, 1D CNN (HN = 50) further enhanced the accuracy to 92.63%. The
performance improvement was notable when switching to the 2D CNN models. 2D CNN
(HN = 10) exhibited a noteworthy accuracy of 93.94%. Exceeding the performance of all
other models, 2D CNN (HN = 50) showcased the best accuracy of 95.26%. Notably, the 2D
CNN models consistently outperformed their counterparts, suggesting that their ability to
capture patterns led to a superior classification performance.

Table 3. Test set accuracy of the 5-fold cross validation of the PHK dataset.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. of 5-Fold CV

NN (HN = 10) 92.11 88.16 84.21 93.42 96.05 90.79

NN (HN = 50) 90.79 90.79 85.53 92.11 96.05 91.05

1D CNN (HN = 10) 92.11 92.11 86.84 92.11 96.05 91.84

1D CNN (HN = 50) 93.42 93.42 89.47 90.79 96.05 92.63

2D CNN (HN = 10) 94.74 93.42 89.47 96.05 96.05 93.94

2D CNN (HN = 50) 96.05 93.42 92.11 97.37 97.37 95.26

4.4. Evaluation of Cross-Dataset

Cross-dataset evaluation is vital as it ensures that ML models can generalize their
knowledge, handle variations, avoid biases, and perform reliably in real-world scenarios.
In a remarkable effort, this study conducted a cross-dataset evaluation for better under-
standing, especially for the locally obtained PHK dataset, which differs from the CHB-MIT
datasets obtained under different environmental conditions. Furthermore, there are vari-
ations in the data collection methodologies and instrumentations. From both datasets,
12 common channels were taken, which were FP1, F3, C3, P3, FP2, F4, C4, P4, F7, F8, FZ,
and CZ. Although only 12 common channels were taken for the cross-dataset evaluation,
there were some mismatches as the reference channels of both datasets were different. The
total number of features for 12 channels was 216 (=12 × 18). The feature vectors were
reshaped as 12 × 18 for the 2D CNN model. Based on the input size of 12 × 18, the 2D CNN
architecture was changed to two convolutional layers and one max pooling layer. First,
the models were trained with all 7414 segments of the CHB-MIT dataset and tested with
all 380 segments of the PHK dataset. Second, the models were trained with the PHK and
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tested with the CHB-MIT. The training set loss curves were almost similar to the individual
datasets presented in the previous sections; therefore, they are not discussed here for the
sake of brevity.

The main concern of cross-dataset evaluation is the generalization ability. Table 4
shows the overall accuracy of the cross-dataset evaluation for different ML and DL models.
In the test performance of the PHK dataset, the highest accuracy was 74.21%, achieved
by 1D CNN (HN = 50). On the other hand, the best test performance of the CHB-MIT
dataset was 64.12% by 2D CNN (HN = 10), which was lower than the PHK dataset by any
model. The CHB-MIT dataset comprises 7414 samples of diverse features, providing a rich
training dataset that allowed the model to learn from a wide range of data. The accuracy of
a model trained by CHB-MIT indicates its ability to generalize well due to a diverse range
of features. In contrast, the PHK dataset holds only 380 samples, and potentially lacks in
limiting the model’s ability to generalize effectively. As a result, the test performance of the
CHB-MIT dataset while the model trained with PHK showed a relatively low accuracy for
any ML/DL model. Another issue with the low accuracy on the cross-dataset evaluation
was the lower number of channels, as 12 common channels were considered in this study.
However, the results presented in Table 4 reveal that a cross-dataset is effective for real-life
local cases when samples are limited.

Table 4. Cross performance of the CHB-MIT dataset and PHK dataset.

Model Test Performance of PHK
(Training with CHB-MIT)

Test Performance of CHB-MIT
(Training with PHK)

NN (HN = 10) 66.58 61.15

NN (HN = 50) 66.84 61.67

1D CNN (HN = 10) 71.32 62.17

1D CNN (HN = 50) 74.21 60.36

2D CNN (HN = 10) 72.32 64.12

2D CNN (HN = 50) 69.74 63.84

4.5. Performance Comparison with Existing Studies

Several recent studies have conducted seizure detection with different ML/DL meth-
ods with the CHB-MIT dataset. The outcomes of these studies are summarized, and
performance comparisons on the test set with the proposed method are demonstrated in
Table 5. The results of the existing studies are the reported results in the corresponding
articles. Some studies [12,13] used raw EEG signals without any feature extraction tech-
nique. Kaziha and Bonny [12] segmented the dataset by 100 s and achieved an accuracy
of 96.70% using 2D CNN. Gómez et al. [13] also used 2D CNN on raw EEG signal data
and achieved a 99.30% accuracy following the leave-one-patient-out evaluation strategy.
Deepa and Ramesh [21] considered the Minmax scaled CHB-MIT dataset and achieved
a 99.55% accuracy using BiLSTM. To exploit the spatial and temporal relationships of
16 channels of CHB-MIT, He et al. [6] used GAT and BiLSTM for seizure classification
and reported an accuracy of 98.52% in 5-fold CV. Recently, Qiu et al. [23] achieved a
97.09% accuracy in 10-fold CV using 1D CNN.

Some studies have used signal decomposition techniques. Segmenting the dataset
by 2 s, Pattnaik et al. [3] decomposed the EEG signal using TQWT, extracted different
features, and showed a 93% accuracy in 10-fold CV by RF. Segmenting the dataset by
1 s, Dang et al. [24] decomposed the EEG signal into frequency bands and showed a
99.56% accuracy in 10-fold CV by 2D CNN. Compared to all of them, our method achieved
the best accuracy of 99.78% for CHB-MIT in a 5-fold CV. The proposed method’s outperfor-
mance revealed the signal decomposition’s effectiveness using EMD, feature extraction,
and classification using 2D CNN from the 2D representation of the feature values.
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Table 5. Comparison of the proposed method with prominent existing studies on epileptic seizure
detection using the CHB-MIT dataset.

Author [Ref.], Year Segment Time
(Overlap%) Train–Test Split Decomposition + Feature

Extraction
Classification
Using ML/DL

Achieved
Accuracy (%)

Kaziha and Bonny [12], 2020 100 s (No overlap) 70/30 N/A (used raw signal) 2D CNN 96.70

Gómez et al. [13], 2020 4 s (No overlap) Leave-one-patient-out N/A (used raw signal) 2D CNN 99.30

Dang et al. [24], 2021 1 s (50% overlap) 10-fold CV Frequency bands + N/A 2D CNN 99.56

Pattnaik et al. [3], 2022 2 s (No overlap) 10-fold CV TQWT + nonlinear, temporal,
statistical feature RF 93.00

He et al. [6], 2022 1 s (50% overlap) 5-fold CV N/A + GAT BiLSTM 98.52

Deepa and Ramesh [21], 2022 No segmentation 80/20 N/A + Minmax scaled BiLSTM 99.55

Qiu et al. [23], 2023 2 s (50% overlap) 10-fold CV N/A + 1D CNN 1D CNN 97.09

The proposed method 10 s (70% overlap) 5-fold CV EMD + fluctuation index,
variance, ellipse area of SODP 2D CNN 99.78

5. Conclusions

This study investigated a novel strategy of epileptic seizure (ES) detection from EEG
signals through signal decomposition, feature extraction, and classification using DL meth-
ods with appropriate feature representation. The proposed method effectively uses EMD
to decompose EEG signals into IMFs and extract pertinent features from six IMFs. The
extracted feature representation in the 2D and 1D composite forms is the main technical
novelty of the study. The different feature formations enhance the scope to employ various
ML/DL models, and the study considered generic CNN (called 2D CNN) for the 2D feature
form and 1D version of CNN and NN for the 1D feature form. Considering CHB-MIT (the
popular benchmark dataset on ES) and the self-prepared dataset by processing EEG signal
data from a local hospital, computational evaluations of the proposed method were con-
ducted on intra-dataset and cross-dataset classifications. The 2D CNN with 2D feature form
outperformed its counterparts (i.e., 1D CNN and NN) for both datasets in the intra-dataset
classification. The proposed method was identified as the best-suited ES detection method
compared to prominent, recent existing methods. On the other hand, achieving robust
performance in cross-dataset evaluation remains a significant challenge in enhancing the
generalization capabilities of real-life ES detection. Furthermore, the absence of channel
reduction necessitates additional hardware setup, which presents a practical constraint.

In future work, the dimensions or structures of the decomposed features can be
enhanced, and advanced DL models (e.g., 3D CNN) can be employed to investigate the
possibility of further improvement with cross-dataset validations. Future studies can
also explore ensemble techniques (e.g., bagging or boosting) to leverage the diversity of
multiple ML/DL models using the base ML/DL models trained with individual feature
types. Channel selection methods can be explored as a means to overcome hardware
limitations without compromising the detection accuracy.
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